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 Abstract

This paper aims at providing answers to the questions raised in Cook, Tone & Zhu (2014) in 

the context of portfolio analysis with Data Envelopment Analysis (DEA). This reflection leads to 

define the financial production process as the generation of a distribution of returns by an initial 

investment. The main contribution of the paper is therefore to consider risks of various orders – 

mean return, variance of returns, and moments of higher order – as output variables and propose 

a set of axioms accordingly to supplement the definition of „financial‟ technology set. In 

particular, this revisited set of axioms offers the advantage of allowing a generalization to multi-

moment frameworks, and the resulting portfolio possibility set allows taking into account 

preferences for increases in risk that have remained ignored in applied studies with DEA 

although discussed in economic theory. We provide illustrations to show the effects of this 

contribution on the measures of technical efficiency and ranking of portfolios on a sample set of 

US common stocks; it shows how the proposed adjustments result in providing rankings that are 

 more consistent with standard risk-return ratios in finance.

Keywords : Data Envelopment Analysis; Portfolio Frontier; Model orientation; Mean-

 Variance; Risk preferences
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 Portfolio analysis with DEA: prior to choosing a model

 1. Introduction 

Since the seminal work of Markowitz (1952) on portfolio selection, several tools, models and 

approaches for decision-making have been developed in the financial and economics literature to evaluate 

the performance of portfolios of financial assets. The mean-variance approach introduced by Markowitz 

relies on the construction of a frontier relative to which portfolio performance is measured. Parallel to this 

literature, a methodology for performance measurement of decision-making units (DMUs) was being 

developed in the economics and operational research literature with Data Envelopment Analysis (DEA), a 

non-parametric tool. The junction between portfolio selection through quadratic optimization and the 

methodology with DEA inherited from operational research occurred with Sengupta (1989), but it took 

until Murthi, Choi & Desai (1997) to identify DEA as an “extremely useful technique for measuring 

efficiency” of mutual funds. While they used a CCR 
1
 model on mutual funds, the following contribution 

In a recent article, Cook, Tone & Zhu (2014) list several modeling issues raised by an ill-adapted 

transposal of DEA models to various fields of research. In order to bring adequate solutions to these issues 

and ensure proper modeling, they also list a series of questions that should be answered prior to any 

analysis with DEA. In this article we intend to question the definition of a technology in the context of 

portfolio analysis through the identification of DMUs, the proper selection of input and output variables 

and the definition of a set of axioms. We propose answers to the questions raised in Cook, Tone & Zhu 

(2014) by identifying what can be the purpose of performance measurement and analysis and how it can 

impact the identification of DMUs or model orientation. We propose to apply a similar treatment to risk as 

the one used for byproducts in weakly disposable DEA models and show the consequences on the 

definition of the technology and model orientations. We also propose to modify the set of axioms inherited 

from production theory to take into account the correlations between assets‟ returns, the possibility of 

riskless investments and the implications of risk reduction on the level of expected return. We finally 

                                                

 as introduced in Charnes, Cooper & Rhodes (1978)

 2 as introduced in Banker, Charnes & Cooper (1984)

of McMullen & Strong (1998) used a BCC 
2
 model. Premachandra, Powell & Shi (1998) then introduced 

stochastic DEA and studied stock indexes, and Morey & Morey (1999) used DEA for multi-horizon 

portfolio analysis. Since then, numerous studies have transposed the whole methodology used in 

production theory and operational research to the study of portfolios of financial assets with DEA without 

necessarily questioning the accuracy of such transposal. Though these works contributed to the 

elaboration of a general approach for measuring single-period portfolio efficiency in multi-moments 

frameworks (see Briec & Kerstens, 2010), some adjustments can still be proposed in order to make the 

approach suited to the analysis of financial assets, by so much as the definition of the underlying 

technology or the choice of a model orientation. At the crossroads of risk and lottery theory, a part of the 

literature in economics emphasizes on two major changes that have not been given much attention until 

now in the literature on multi-criteria decision-making with DEA: multi-moment frameworks ought to 

replace the simple mean-variance framework and the desirability of increases in risk measures ought to be 

considered. These changes drive the adjustments proposed in the paper. 
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provide an illustration of how these changes in the definition of the technology set and the model 

orientations have an impact on the efficiency scores and ranking of a set of portfolios of US common 

 stocks.

2.  Definition of a financial technology prior to the analysis

2.1.  “What is the purpose of the performance measurement and analysis?”

The first question raised in Cook, Tone & Zhu (2014) relates to the purpose of performance 

measurement and analysis. Identifying the purpose of performance measurement prior to the analysis is a 

key concern in a field in which most studies have applied an identical methodology and transposed models 

from production theory to financial assets of various natures, from individual stocks to portfolios like 

mutual funds, hedge funds or CTAs. In both portfolio theory and production theory, performance 

evaluation can be considered under the two complementary angles of technical and allocative efficiency. 

Technical efficiency of financial assets can provide information on the return on investment relative to the 

various costs incurred, independently from any system of prices (e.g. with no regards to the decision-

makers‟ preferences in portfolio analysis). Allocative efficiency is estimated relative to a profit-

maximizing strategy (a utility-maximizing strategy in portfolio analysis, provided that the parameters of 

the utility function are known). While most studies in the literature focus on technical efficiency, Briec, 

Kerstens & Lesourd (2004) and Briec, Kerstens & Jokund (2007) also show how economic efficiency can 

 be reached.

Regarding the study of financial assets with DEA, we propose to distinguish between three purposes. 

One purpose is to provide a ranking of investments for portfolio or asset selection when one investment is 

to be selected rather than the others. The analysis is led from the perspective of investors and implies 

measuring technical or economic efficiency of portfolio selection. A second purpose is to assess efficiency 

of portfolio construction or fund management. In that case the analysis would require measuring technical 

efficiency of portfolios relative to the frontier of their holdings, which has not yet been done in the 

literature to the best of our knowledge. Allocative efficiency of portfolio management or portfolio 

selection can also be measured in order to assess to which extend fund managers or investors succeed in 

reaching their individual objectives regarding either the fund‟s orientation or their respective preferences 

towards risks. 
3
 A third purpose is to assess the efficiency of financial markets. In this case the level of 

aggregation of the technology should replicate the one of the studied market, from a set of large-cap 

stocks only to the set of all assets on the US market for instance. Technical efficiency would then be 

measured to determine how far is the set of all assets on the markets from the market frontier. Further 

analysis can then be made on the determinants of portfolio inefficiency in order to study the drivers of the 

funds‟ performance in two-steps DEA (as in Galagedera & Silvapulle, 2002), which should theoretically 

 converge to the results of a fundamental analysis.

                                                
3 Allocative efficiency of portfolio management for already constituted funds would then have to be considered from the 

perspective of the funds‟ managers, as the investors in a fund are not the decision-makers and their utility functions can differ 

 substantially, as discussed in Ballestero & Pla-Santamaria (2004).
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Depending on the purpose of the study, the definition of technology set through the identification of 

DMUs or assumption of convexity will vary. While efficiency of portfolio selection can be measured 

relative to a set of already constituted portfolios, efficiency of portfolio construction ought to be measured 

relative to the set of assets that can be included in portfolios (either individual assets – a fund‟s 

holdings for instance – or already constituted portfolios like mutual funds to be invested in a fund of 

funds). Efficiency of the financial markets ought to be measured relative to the set of all individual assets 

that this market is composed of. 
4
 In the case of portfolio selection (when the objective is to invest fully in 

one DMU instead of composing a portfolio of DMUs), building a convex frontier does not serve the 

purpose of the study; rather, measuring performance relative to the frontier of a Free Disposal Hull (FDH) 

is consistent to rank the funds and correlations between the portfolios or funds can be ignored. In case of 

portfolio construction however, any element from the set frontier is built from convex combinations of 

individual securities. The linear correlation between the assets‟ distributions of prices however result in 

 building a non-convex technology set in a moment-based framework.

Though performance evaluation can accurately be based on past records, its corollary risk 

measurement may also require resorting to fundamental analysis if it has a predictive intent, so that 

expectations about future prices can be formed from accounting information and used in the decision-

making process. If this is especially true for individual stocks, performance assessment and risk 

measurement of investment funds can still accurately rely on historical records on the grounds that higher 

performance demonstrates superior management skills that can back up more favorable expectations about 

the funds‟ future performance. Predicting price and return remains a difficult challenge; as a consequence, 

whenever the objective of the study relates to portfolio selection in order to achieve future performance, 

decision-makers deal with the records of past returns to form their expectations. Most studies on portfolio 

performance with DEA until now have consequently adopted a retrospective approach, though Briec & 

 Kerstens (2009) introduce a few thoughts for a prospective approach.

Cook, Tone & Zhu (2014) remind the importance of spending more time, prior to the analysis, 

determining what matters to the study-maker (“the precise measures deemed important by management”), 

which leads to the corollary questions of the choice of a theoretical framework to study technical 

efficiency and the identification of the study-makers‟ or decision-makers‟ preferences to study allocative 

efficiency. The economics literature on both aspects reveals that two major changes ought to be taken into 

consideration: first, the inclusion of higher moments of the distribution of returns in the analysis, and 

 second, a possible preference for assets with a higher variance.

Regarding the theoretical framework, though we observe that the mean-variance framework has been 

very popular in the literature on performance measurement of financial portfolios with DEA until now 

(see the table in Appendix), several additional criteria have been proposed and reveal the need to consider 

more general multi-moment frameworks instead. The choice of a theoretical framework impacts the 

definition of the technology by determining the set of inputs, outputs and the definition of a set of 

regularity conditions. In this paper we propose a new treatment of risk as an output in the mean-variance 

framework; this output-based approach allows for a generalization to multi-moment frameworks and to 

 measures of risk of various orders.

                                                
4 The literature on portfolio performance with DEA has focused until now on already constituted portfolios such as mutual funds, 

 hedge funds or CTAs (see the table in Appendix).
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Regarding the parameters of the utility functions, preference for higher mean returns and aversion to a 

higher variance of returns are systematically assumed by study-makers. However, a whole part of the 

literature in economics and empirical finance has developed around the question of riskier choices and 

preferences for increases in even moments (from Blum & Friend (1975) to Golee & Tamarkin (1998), 

Astebro (2003), or Bali, Cakici & Whitelaw, 2010). From this literature we keep here only one major 

finding: the choice of a random prospect with a higher variance does not necessarily imply a preference 

for an increase in risk 
5
 in a multi-moments framework. In other words, risk aversion and the choice of a 

portfolio of financial assets with a higher variance are not mutually exclusive. At constant mean, such 

choice can be attributed to the impact of higher-order moments; in any other case, it can simply result 

from a utility function that attributes higher utility to riskier prospects, provided that they offer a high 

enough return. For this reason, measuring performance relative to a set of efficient but systematically less 

 risky DMUs is too restrictive and ought to be reconsidered.

2.2. “What are the decision-making units and the outputs and inputs to be used to 

 characterize the performance of those DMUs?”

In portfolio analysis, DMUs can either be individual securities or portfolios of securities such as 

investment funds or indexes, depending on the object of the study. One specificity of such DMUs is the 

linear (Pearson) correlation between their distributions of prices or returns. This correlation can be 

opposed to the implicit assumption of independence between DMUs in production theory, as long as the 

definition of the „financial technology‟ is based on characteristics of the distribution of returns of the 

financial assets. Indeed, the existence of a linear correlation between the DMUs‟ distributions results in 

making the convex combinations of the moments of the distributions a non-linear function of these 

moments, which in turn results in building non-convex technology sets whenever these moments are 

 identified as input or output variables.

[Insert Figure 1 here] As illustrated in Figure 1, some degree of linear dependence between financial 

assets impacts the level of risk of any convex combination of financial assets. It can be reduced through 

diversification; still, even linear independence (a case of zero linear correlation) between DMUs would 

not anyway result in linear combinations of the initial DMUs‟ risk levels for some risk measures. The 

minimum level of risk when measured by the variance of a distribution of returns is a convex quadratic 

function of the mean return; the resulting non-convexity of the set frontier is consequently an issue only 

whenever we measure performance using a direction vector that follows an expansion path. These 

dependence relationships between financial assets result in an additional specificity of portfolio analysis 

with DEA: in spite of being made of efficient portfolios, the frontier may very well be composed of 

portfolios made of inefficient assets only. This is illustrated in Figure 1 where the two inefficient DMUs 

“Oppenheimer Target M.” and “Fund Manager Aggressive Growth” both enter in the composition of the 

 efficient frontier.

Cook, Tone & Zhu (2014) remind that any process assimilated to a production process has to be clearly 

understood prior to the selection of input and output variables and remind the importance of ensuring that 

they “properly reflect, to the greatest extent possible, the “process” under study”. However, the criteria 

                                                
 5 In the sense of Rotschild & Stiglitz (1970), meaning a preference for the application of a Mean-Preserving Spread.
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that have been either explicitly proposed or implicitly used for the selection of inputs and outputs in the 

literature that uses DEA on financial assets do not necessarily relate to the notion of a “production 

process”. One criterion relates to the nature of the interaction between input and output variables, and 

more precisely whether it is characterized by a causal relationship of the production-kind or not. The 

identification of the causal relationship, if any, considerably eases the choice of input and output variables 

among the set of relevant variables. Another criterion relates to the behavior of decision-makers towards 

input or output variables inferred from what‟s assumed to be their preference or aversion to these 

variables. This second criterion is often considered as a mean to address the need to take into 

consideration investors‟ preferences, and more especially the measures that are relevant in their opinion. 

However, once the first criterion has been successfully applied, the second criterion becomes pointless. 

Still, the choice of a theoretical framework prior to the analysis should ensure consistency in the definition 

of any „financial production process‟, determine its level of aggregation and drive the selection of input 

 and output variables.

In spite of a rather consensual choice in the literature on the metrics (mainly return and total risk), on 

their source 
6
 and on the choice of output variables, the multiplicity of measures that have been proposed 

to account for input variables shows that there is no consensus either on the theoretical framework to be 

used for the study, on the measures to be used to account for some risk metrics or on the input or output 

 status attributed to various measures.

On the one hand, desirable outcomes have always been included in the set of output variables and the 

choice of measures of reward as outputs obtains a consensus. Over various measures of average return 

proposed in the literature, one can find either mean or compounded return on past performance, 
7
 as well 

as expected return on future performance. Returns can either be expressed as gross or net returns 
8
 and as 

sometimes as excess return above the market‟s performance, either before or after tax. Minimum returns 

can also be found in some studies (see Wilkens & Zhu (2001), Glawischnig & Sommersguter-Reichmann, 

2010) as well as the number of days/months with positive returns on a daily/monthly distribution of 

returns, (see Gregoriou & Zhu, 2007), upper (or higher) partial moments (see Gregoriou (2003), 

Gregoriou & al., 2005) or consecutive gains (see Gregoriou & Zhu, 2007). McMullen & Strong (1998) 

also take into consideration the returns over various time-horizons. Traditional performance indicators as 

the Sharpe and Treynor ratios, the Jensen‟s alpha or the reward-to-half-variance index (see Basso & 

Funari, 2005) have been considered as output measures, as well as other desirable outcomes such as a 

positive skewness of the distribution of returns (see Wilkens & Zhu, 2001), indicators of stochastic 

dominance or of the ethical orientation of a fund. In these latter cases a qualitative indicator can be added 

to the set of output variables (the ethical factor of Basso & Funari (2003) or the stochastic dominance 

 indicator of Basso & Funari (2001, 2005) and Kuosmanen, 2005).

                                                
6 Lamb & Tee (2012) remind that we generally “estimate the measures from the series of returns and classify some as return 

 measures and some as risk measures”

7 Arithmetic means of the distribution of returns assume withdrawal of gains while geometric means of the distribution of (gross) 

 returns assume reinvestment of past gains.

 8 What we refer to as the „gross return‟ is similar to the „capitalization factor‟ of Basso & Funari (2007).
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On the other hand, various costs associated to investment as well as undesirable outcomes have always 

been included in the set of input variables. 
9
 Murthi, Choi & Desai (1997) consider standard deviation of 

the returns as an input variable, as well as the transaction costs that managers incur “in order to generate 

the return” such as an expense ratio (management fees, marketing and operational expenses), additional 

loads for some funds (sales charges, redemption fees) or management turnover. Similarly, McMullen & 

Strong (1998) consider standard deviation of returns, sales charges, expense ratio and minimum 

investment as inputs. Eling (2006) includes the minimum investment or the lock-up period in the set of 

input variables, as well as an indicator of trading activity or excess kurtosis. Basso & Funari (2001) 

propose various risk measures (standard deviation of returns, root of the half-variance or beta coefficient) 

and additional costs as input variables. Choi & Murthi (2001) also consider managerial skills, market and 

institutional factors in their set of input variables. Wilkens & Zhu (2001), Galagedera & Silvapulle (2002), 

Basso & Funari (2003) then used many of the above-listed measures on multiple time horizons. 

Glawischnig & Sommersguter-Reichmann (2010) introduced lower partial moments as new measures of 

risk and input variables. Eling (2006), Gregoriou & Zhu (2007) or Branda (2015) also use various 

drawdowns (maximum or average drawdown, standard deviation of drawdown, Value-at-Risk, conditional 

Value-at-Risk or Modified Value-at-Risk), the beta factor and residual volatility or tracking error, and 

 Gregoriou & Zhu (2005) use the proportion of negative returns in a distribution of returns as an input.

For all contributions listed above risk measures are treated as input variables and return measures as 

output variables, which can be explained by two main reasons. On the one hand, decision-making in 

production is based on input reduction and output augmentation and decision-making in finance is 

generally based on risk reduction and return augmentation. On the other hand the frontier of efficient 

portfolios is similar in shape to a production frontier; the analogy has then been made for long between 

efficiency analysis in production and performance analysis in finance. This analogy and the desirability 

for return and commonly accepted undesirability of risk have led numerous authors to consider the risk-

return relationship of financial assets as equivalent to an input-output relationship. We propose instead an 

approach that both reflects the „financial production process‟ by treating risks of various orders as outputs 

 in any multi-moment framework and includes the possibility of increases in risk measures.

2.3.  Resulting financial technology in a mean-variance framework

Under a mean-variance framework, defining the relationship between the level of second-order risk 

(measured by the variance or standard deviation of returns) and the realized return on investment as a 

„production‟ relationship would lead to an erroneous and incomplete representation of the technology. On 

the one hand, no functional form can express the expectation of a higher return as a result of a riskier 

investment. On the other hand, the positivity of the risk-return relationship has been proven wrong on 

some categories of assets (on alternative investments for instance) or in case of the so-called „leverage 

effect‟ (when the past returns are negatively correlated to the future volatility of some stocks, on short-

term horizons). The risk-return relationship, often considered positive, is consequently no appropriate 

 support for the representation of the technology.

                                                
9 The only exception can be found in Devaney & Weber (2005) and Devaney, Morillon & Weber (2016) who include risk 

 measures in the set of output variables.
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As the measures associated to risk and return both have the same source (the distribution of returns), it 

then seems consistent to treat them all as outputs. 
10

 Devaney, Morillon & Weber (2016) remind for 

instance that “in a statistical sense it is not the case that the second moment of the return distribution 

(risk) determines the first moment of the distribution (return)”. Similarly, higher moments of the 

distribution to be included in multi-moment framework (as skewness or kurtosis) and any measure 

characterizing the distribution of returns could be regarded as outputs. A similar understanding of the 

„financial technology‟ can be found in Anderson & al. (2004) who consider that any benefit arising from 

an investment is an output and the investment itself is the input. However, while they consider that the 

level of risk is “taken” by the investor and is therefore part of the initial investment made in the portfolio, 

we consider that it cannot be quantified a priori and is therefore not „taken‟ but rather generated 

simultaneously to the distribution of returns. A timing assumption also underlies any production process: 

output generation must be preceded by the supply of some input, as it results from the latter and the 

production process necessarily takes some time. This sequence is realized here: all outputs are generated 

 simultaneously after the initial investment has been made.

Following our proposal to treat risks of various orders as outputs, any analysis based on a multi-

moment framework implies working on the output correspondence of the production possibility set, which 

ensures that the set is closed. One convenient consequence is that performance measurement relative to 

the frontier can be made regardless of the system of preferences: models are no more constrained to be 

oriented towards risk reduction only along with return augmentation, which was the case when risk was 

 considered as an input.

From the above specifications a financial technology can be defined as in equation (1). We assume an 

output vector 𝐲 = (𝑓1, 𝑓2, … , 𝑓𝑛) with 𝑓𝑖 the random variable “risk of order 𝑛”. 
11

 As reminded in Lamb & 

Tee (2012), any measure from the set of possible portfolios is a function 𝑔: ℑ → ℝ, with the value of this 

measure being a population statistic (a sample statistic in practice) and a real number (rather than a 

random variable). It is always assumed that the portfolios‟ returns are realizations of the random variable. 

Staying in the simple mean-variance framework, we can assume 𝑓1 and 𝑓2 to be the first two non-

standardized moments that characterize the portfolios‟ distributions of returns. For an initial 

investment 𝑥 
12

 (or a vector of inputs 𝐱 ∈ ℝ+
𝑛  with 𝑛 ∈ ℕ the number of input variables), the output vector 

can then be defined as 𝐲 = (𝑓1, 𝑓2) = (𝜇, 𝜎2) and the financial technology set 𝑇 can be defined on its 

output correspondence 𝑃(𝑥)   as such as in (1).

𝑇(𝑥, 𝜇, 𝜎2) = *(𝑥, 𝜇, 𝜎2) ∶ 𝑥  can produce a distribution of returns with the first two moments (𝜇, 𝜎2) +    

and 𝑃(𝑥) = *(𝜇, 𝜎2) ∶  (𝑥, 𝜇, 𝜎2) ∈ 𝑇+ for all 𝑥 ∈ ℝ+  (1)

                                                
 10 Liu, Zhou, Liu & Xiao (2015) provide a similar argument.

11 We use the terminology of the lottery theory that designates as risk of order 1 the risk of loss, measured by the 1st moment of 

the distribution of returns, risk of order 2 the risk of variability measured by the 2nd moment, risk of order 3 the downside risk 

 measured by the 3rd moment, risk of order 4 the outer risk measured by the 4th moment, etc.

12 The above redefinition of a „financial production process‟ mainly questions the causal link between risk and return to conclude 

that they are both generated by an initial investment. Yet, several other input variables may be proposed in addition to this initial 

investment to complete this definition, such as the mandatory presence of a market, some necessary degree of liquidity or the 

presence of intermediaries. Indeed, an initial amount available for investment could generate no distribution of return at all if there 

was no market for instance. One could however argue that the notion of initial investment implicitly assumes that these 

 requirements are met.
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It is also important to notice that the distribution of returns is generally expressed not in monetary units 

but as rates of return on investment. In this case, the output sets would be the same for any level of input 

𝑥, which would translate into the following equality: 𝑃(𝑥) = 𝑃 = *(𝜇, 𝜎2) ∶  (𝜇, 𝜎2) ∈ 𝑇+ for all 𝑥 ∈ ℝ+  .

Let 𝑅𝑗 be the return on DMU 𝑗 with 𝑗 ∈ 𝐽 at time 𝑡. We consider 𝑅𝑗 as a random variable defined on the 

probability space  𝛺𝑗 , 𝐹𝑗, 𝑃𝑗 , with 𝛺𝑗 the sample space (or set of all possible outcomes) of the variable 

𝑅𝑗, 𝐹
𝑗 =  𝐹1

𝑗
, 𝐹2

𝑗
, … , 𝐹𝐸

𝑗
 =  𝐹𝑒

𝑗
: 𝑒 ∈ 𝐸  the set of events that can influence the outcomes of the variable 

𝑅𝑗, with 𝐸 ∈ ℕ∗ the number of possible events and 𝑃𝑗 =  𝑝1
𝑗
, 𝑝2

𝑗
, … , 𝑝𝐸

𝑗
 =  𝑝𝑒

𝑗
: 𝑒 ∈ 𝐸   for all 𝑗 the 

assignment of probabilities to every event contained in 𝐹𝑗. Let‟s also assume that for any DMU 𝑖, 𝜇𝑖 is the 

mean return of a distribution of returns, 𝑞𝑖 is the share of DMU 𝑖 in a portfolio, 𝜎𝑖 is the standard deviation 

of the distribution of periodic returns and 𝜌𝑖𝑗 is the coefficient of linear correlation with the distribution of 

a DMU 𝑗. The set of admissible activity vectors 
13

 that represents all possible combinations of shares 𝑞𝑗 of 

initial investment in portfolio 𝑗   can be defined as in equation (2).

ℑ = * 𝐪 ∈ ℝ𝐽  ∶    𝑞𝑗
𝐽
𝑗=1 ≤ 1   ,   𝑞𝑗 ≥ 0 for all 𝑗  14

 and ℑ ≠ ∅   (2)

Depending on the theoretical framework selected, the representation of the set of possible portfolios is 

then expressed as the set of all the related measures such that 𝐪 ∈ ℑ. The portfolio possibility set defined 

in (1) on the output correspondence can then be redefined from the sample set of observed DMUs and a 

set of admissible activity vectors ℑ as subsets of output vectors 𝑃 as in equation (3) below, if free 

 disposability was assumed on outputs.

𝑃 = *(𝜇, 𝜎2)   ∶    𝐪𝐓𝛍 ≧ 𝜇   ,   𝐪𝐓𝛀𝐪 ≦ 𝜎2   ,   𝐪 ∈ ℑ+   (3)

 with:

 𝛍 the (𝑛 × 1) vector of mean returns of the 𝑛   observed DMUs

 𝛀 the (𝑛 × 𝑛) matrix of covariances of the 𝑛 observed DMUs and 𝛔𝟐 the (𝑛 × 1) vector of 

variance of  returns of the 𝑛   DMUs

 𝐪𝐓 the transpose of  𝐪

The representation of the set of possible portfolios in the mean-variance framework can also be defined 

as the set of all mean-variance combinations of portfolios such that 𝐪 ∈ ℑ as in equation (4), with 𝐺𝑅𝑀𝑉 a 

 non-convex set.

𝐺𝑅𝑀𝑉 = * (𝐸𝑃 , 𝑉𝑃) ∶  𝐪 ∈ ℑ +   (4)

with 𝐸𝑃 =  𝑞𝑗𝜇𝑗 
𝐽
𝑗=1  the mean return and 𝑉𝑃 =   𝑞𝑗𝑞𝑘𝜌𝑗𝑘𝜎𝑗𝜎𝑘

𝐽
𝑘=1

𝐽
𝑗=1   the variance of returns

                                                
13 Referred to as the “set of admissible portfolios” or “portfolio possibility set” in Briec, Kerstens & Lesourd (2004), but as this 

terminology can be confusing we rather keep “portfolio possibility set” to refer to the financial technology set 𝑇  .

14 Following the treatment of short sales commonly accepted in the literature, short sales are treated like negative purchases, such 

that any negative 𝑞𝑗 indicates that portfolio 𝑗 is sold short. If short sales are allowed, the share invested in each portfolio is no 

more constrained to be non-negative. A lower bound to 𝑞𝑗   consequently determines whether or not short sales are allowed.
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2.4.  “What is the appropriate model orientation?”

Based on the literature on decision-makers‟ preferences in the expected utility framework, the 

following model orientations appear theoretically grounded in an output-oriented mean-variance model 

 that assumes a utility function of mean and variance only.

(1) Return augmentation at constant variance, as proposed in Morey & Morey (1999) is 

recommended whenever the parameters of the utility functions are unknown or if it is assumed that the 

tolerance of decision-makers for risk is equivalent to the evaluated DMU‟s variance. If the level of risk 

carried by the evaluated funds reflects the maximum level of risk that the funds‟ managers are willing to 

face, this orientation provides information on how much more return could have been generated for that 

 level of risk. In no case is this orientation related to risk-neutrality. 
15

(2) Risk reduction at constant mean, as proposed in Morey & Morey (1999), allows to measure to 

which extend fund managers succeed in reducing the risk of their portfolio at a given mean return – or 

investors in the evaluated portfolios succeed in selecting the less risky portfolio at a given level of 

required return. This orientation is accurate whenever the parameters of the utility function (consequently 

the coefficient of risk aversion) are unknown but risk aversion is assumed to be shared by all decision-

 makers: under such conditions any portfolio with a lower variance will be preferred, at a constant mean.

(3) The simultaneous risk reduction and return augmentation (the Efficiency Improvement 

Possibility (EIP) function introduced in Briec, Kerstens & Lesourd (2004) and used in Briec, Kerstens & 

Jokung (2007) and Briec & Kerstens, 2009) can also be considered when the parameters of the utility 

function are known and allocative or economic efficiency is measured. However, if the parameters 

remains unknown, nothing can theoretically justify this orientation even though all DMUs with a lower 

variance and a higher return dominate the set of observed DMUs. Indeed, only the evaluation relative to a 

portfolio with a lower variance at a constant mean guarantees that the choice results from risk-aversion 

(risk-lovers could prefer a portfolio with a higher return and a lower variance for the higher return it 

provides). Unless the parameters of the utility function are known, nothing can theoretically justify a 

measurement of performance relative to a DMU that has neither the same level of risk nor the same level 

of return. 
16

 When the parameters remain unknown but risk aversion is a key assumption, we recommend 

to use the second model orientation, as evaluation relative to a DMU with lower variance implies risk 

 aversion at constant mean only.

(4) A simultaneous augmentation of risk and return has not been considered so far in the literature 

with DEA on financial portfolios. Yet, this orientation is especially legitimate whenever it is assumed that 

the higher the expectation on return, the higher the level of risk investors are ready to take, even under the 

assumption of risk aversion. If risk and return are considered as outputs, it is simply an output-based 

Debreu-Farrell measure of technical efficiency. This radial measure, by keeping the ratio risk/return 

constant, guides the evaluated DMU towards the frontier along the „expansion path‟, its output mix. As 

proved by Russell (1985), radial measures present several desirable properties especially when market 

                                                
15 Assuming risk neutrality would merely imply removing any risk measure from the model and evaluate the DMUs relative to the 

 one that provides the highest return.

16 It could for instance lead to measure the performance of a fund relative to another fund that has a different objective regarding 

 risk management.
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prices – or preferences in our context are unknown. In a production framework, one desirable property of 

the radial measure is that it provides information of the variation in revenue, independently of the value of 

prices, known or not (Russell, 1985). For portfolio analysis under the expected utility framework and for a 

utility function that can be expressed as a linear function of the first two moments as in equation (5), such 

direction can provide information on the variation in utility that results from reaching the efficient frontier, 

regardless of the parameters of the utility function. A radial expansion of the observed DMU (𝐸𝑜, 𝑉𝑜) by a 

factor 𝑛 results in (𝐸𝑜
∗, 𝑉𝑜

∗) as in equation (6), and the utility 𝑈∗ associated to this projection to the frontier 

can be expressed as in equation (7). This direction is also consistent with the assumption of jointness 

introduced in section 3.4. If expected future returns are used instead of the mean return on past records, 

they should naturally be positive – according to theory – as they would exceed the risk-free rate of return. 

 The expansion path would in that case be particularly relevant.

𝑈(𝐸, 𝑉) = 𝜇𝐸 − 𝜌𝑉 with 𝜇 and 𝜌 the parameters of the utility function,   (5)

with 𝜇 ≥ 0 and 𝜌 > 0 in case of risk-aversion and 𝜌 < 0   in case of a preference for risk

(𝐸∗, 𝑉∗) =  (1 + 𝑛)𝐸, (1 + 𝑛)𝑉    (6)

𝑈𝑜
∗ = (1 + 𝑛)𝑈𝑜 with 𝑈𝑜

∗ = 𝑈(𝐸𝑜
∗, 𝑉𝑜

∗) = 𝜇(1 + 𝑛)𝐸𝑜 − 𝜌(1 + 𝑛)𝑉𝑜   (7)

The above direction implies positive mean returns, of which a real sample is often not made as it deals 

with mean returns on past records. As no relevant model orientation would consider a decrease in mean 

return, an alternative consists in using the direction of the regression line in the mean-variance space, and 

equation (6) would then become equation (8). It would also be justified in cases where the R-squared of 

the regression is positive and significant, so that it can support the idea of a positive risk-return 

 relationship on the market of the studied sample of portfolios. 
17

(𝐸∗, 𝑉∗) =  (1 + 𝛿 𝑔𝐸)𝐸, (1 + 𝛿 𝑔𝑉)𝑉    (8)

 with 𝑔𝐸/𝑔𝑉 the slope of the regression line and 𝛿   a scalar.

2.5. “What is an appropriate number of DMUs, given the number of inputs and 

 outputs chosen?”

One additional issue to the identification of input and output variables often raised in the literature and 

mentioned in Cook, Tone & Zhu (2014) relates to the appropriate number of DMUs to constitute a sample. 

A reciprocal question relates to the maximum amount of variables to be allowed in the set of input and 

output variables, knowing that additional variables most often result in an increase in the number of 

efficient DMUs. This phenomenon is sometimes referred to as the curse of dimensionality and is 

 especially crucial for non-parametric estimators (see Simar & Wilson, 2000).

                                                
17 By way of example, for the data used in our illustration (sections 4 and 5), the R² of the regression on the returns of the random 

portfolios over 3-year time windows are equal to 0.1559, 0.1597, 0.4104, 0.2576, 0.4979, 0.3008, 0.5106 and 0.2498 for the 

 periods ranging from 2005 to 2007 to 2012 to 2015, respectively.
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This question can be addressed in two way. On a purely theoretical and statistical basis, one can study 

the influence of the number of DMUs and the number of input and output variables on the speed of 

convergence of the estimator (see Kneip, Park & Simar, 1998). On an empirical basis, numerous authors 

recommend restricting as much as possible the number of input and output and some rules of thumb 

relating the number of input and outputs to the number of DMUS have been proposed without being 

theoretically grounded. Empirical testing is also a way to deal with this issue. By varying the sample size 

and the number of inputs and outputs, we could test if efficiency scores are robust across different 

specifications. A recent contribution of Liu, Zhou, Liu & Xiao (2015) deals with how well various DEA 

 models used in performance measurement of financial portfolios approximate the portfolio frontier.

3.  Modifications to the traditional set of axioms

The set of axioms underlying the definition of the technology in the literature that studies performance 

of financial assets with DEA has been transposed from the set of axioms proposed in production theory. 

This set of axioms that we would define as „traditional‟ usually consists in assuming no free lunch, the 

possibility of inaction, free or weak disposability on input and output variables, and that the technology set 

 is convex, bounded and closed. Various assumptions on returns to scale are also proposed.

As financial assets differ in their nature and dependence relationships from production units studied in 

production theory or operations research, the definition of the related technology cannot rely on a strictly 

similar set of axioms. Still, to the best of our knowledge, every study on financial assets with DEA has 

assumed free disposability on both input and output variables for instance. Based on the above redefinition 

of DMUs, input and output variables, we propose here a revisited set of axioms to be applied in a multi-

 moment framework.

3.1.  Non-convexity of portfolio possibility sets

As a consequence of the linear correlation between the assets‟ distributions, convexity cannot be 

imposed as regularity condition for a financial technology. We saw that independence between production 

units could in no way be translated into independence between the distributions of returns of financial 

assets; it would instead be equivalent to an assumption of perfect linear correlation between them in a 

mean-standard deviation framework only. But linear independence or perfect linear correlation between 

financial assets are only particular cases that may never be observed in reality. Moreover, though linear 

independence between the distributions imply a null correlation, the reciprocal is not true: independence is 

 no way implied by an observed zero linear correlation.

In the simplest multi-moment framework that only considers the first two moments of the distribution 

of returns, the mean return of any convex combination of DMUs (of any portfolio of assets) can be 

expressed as a linear function of the individual mean returns of the assets (see equation (4)). On the 

contrary, the variance of any convex combination of DMUs cannot be expressed as a linear function of the 

individual variances of returns of the assets (see equation (4)). In case of a perfect linear correlation 

between assets 𝑖 and 𝑗 such that 𝜌𝑖𝑗 = 1, diversification does not impact the portfolio‟s total risk. The 

portfolio variance 𝜎𝑃
2 is then equal to   𝑞𝑖𝑞𝑗𝜎𝑖𝜎𝑗

𝑛
𝑗=1

𝑛
𝑖=1 . In case all assets in the portfolio were 
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independent, the portfolio variance 𝜎𝑃
2 would be equal to  𝑞𝑖

2𝜎𝑖
2𝑛

𝑖=1  and diversification would impact 

(reduce) the total portfolio‟s risk. When variance is the measure of second-order risk, convex 

combinations of assets can consequently never result in linear combinations of both the assets‟ risk and 

return measures, which would ensure the convexity of the technology set in a mean-variance 

 framework. 
18

One way of making the technology set convex even when correlations are taken into consideration is to 

assume free disposability on the risk dimensions under the approach that defines risk as an input. 

However, as long as risk is defined as an output, even free disposability on the risk dimensions would not 

result in extending the output set into a convex set. On Figure 1 for instance, free disposability on the risk 

measure would extend the set „to the left‟ and result in a non-convex output set due to the set frontier „on 

 the right‟.

Another way of making the technology set convex would be to ignore the linear correlation between 

DMUs and work with standard deviation instead of variance, but this solution leads to wrong estimates of 

efficiency scores. As noticed by Lozano & Gutierrez (2008), all linear programming approaches used to 

measure efficiency of mutual funds – except for Daraio & Simar (2006) – have overestimated risk by 

considering convex combinations of the DMUs‟ respective levels of risk to account for portfolio risk. For 

Brandouy, Kerstens & Van de Woestyne (2013) “it could at best be considered a type of linear 

 approximation of a possibly non-linear portfolio model”.

A third way of obtaining a convex technology set for financial assets would be to choose risk measures 

that display no linear dependence, but that would lead to reconsider the choice of a theoretical framework. 

For instance, Lamb & Tee (2012) and Branda (2015) recently proposed to work with “diversification-

 consistent models” that solve this issue by using other risk measures than variance or standard deviation.

Obtaining a convex technology set of financial assets in a multi-moment framework would then be at 

the cost of either making the unrealistic assumption of free disposability on the risk measures, ignoring the 

linear correlations between the distributions of assets‟ prices, or even modifying the theoretical framework 

itself. In order to stay in line with a framework much favored by the literature on decision-making, we 

 think that convexity should not be imposed as a regularity condition.

3.2.  Axioms of “no free lunch” and the possibility of inaction

The axiom of “no free lunch” has often been considered in financial analysis as equivalent to an 

assumption of fair pricing on the markets. However, Barberis & Thaler (2003) remind that this 

equivalence holds in efficient markets only, and while correct pricing implies no free lunch, the opposite 

is not true. Market inefficiency does not necessarily imply free lunches, and market inefficiency is 

certainly not to be deduced from the sole inability of investors to generate excess return over the market‟s 

                                                
18 If standard deviation of returns – which can be considered as an equivalent measure to variance in terms of information – was 

the measure of second-order risk, linearity of the risk and return measures of the combinations and the assets could only be 

observed in the unrealistic case where all assets portfolio were perfectly linearly correlated (𝜌𝑖𝑗 = 1), such that 𝜎𝑃 =  𝑞𝑖𝜎𝑖
𝑛
𝑖=1  

(the squared root of expression 𝜎𝑃
2 =   𝑞𝑖𝑞𝑗𝜎𝑖𝜎𝑗

𝑛
𝑗=1

𝑛
𝑖=1  above) – or whenever a risk-free asset is included in the portfolio, such 

that 𝜎𝑃 =  𝑞𝑖𝜎𝑖
𝑛−1
𝑗=1  , which makes the optimization problem trivial.
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return. Arbitrage strategies are led by rational investors (the „arbitrageurs‟) and are possible as long as 

some assets are mispriced on the market. Though the strict definition of arbitrage refers to some riskless 

profit opportunities, these arbitrages are not necessarily riskless, as rational investors still lack some 

 information on inefficient markets.

If (𝐱, 𝐲) ∈ 𝑇 and 𝐱 = 0, then 𝐲 = 0 : no „free lunch‟ when the risk measure is the input 𝐱   (9)

𝑃(𝟎) = 𝟎  : no „free lunch‟ when the risk measure serves as an output   (10)

The axiom of „no free lunch‟ can be expressed as in equation (9), for any non-negative vector 𝐱 of 

input and any vector 𝐲 of output and production possibility set 𝑇 such that 

𝑇 = *(𝐱, 𝐲)  ∶   𝐱 𝑐𝑎𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 𝐲+. In an approach that assimilates risk to an input, the axiom of „no free 

lunch‟ implies that if no second-order risk characterizes the asset, no return can be generated, which 

contradicts the existence of assets that are considered free of risk and at the same time generate positive 

returns (such as T-bills). The axiom of „no free lunch‟ therefore precludes the introduction of risk-free 

assets in the portfolio or the proper analysis of any portfolio with a guaranteed minimum return under an 

approach that would consider risk as an input. Such drawback could however be overcome by using 

specific measures of return: in case the excess return over the risk-free rate is used instead of the mean 

return, this axiom allows taking a risk-free asset into consideration and implies that if no second-order risk 

characterizes the asset, no excess return can be generated over the risk-free rate. If however second-order 

risk is defined as an output, the axiom can then be defined as in equation (10), and simply implies that for 

 a distribution of returns to be generated, there must be some strictly positive initial investment.

If short selling or any kind of leverage was allowed it would then be necessary to define another input 

that would be specific to that kind of investment and account for the initial operation implied (borrowing 

the shares, finding a counterpart, arbitraging). Then, though no single cost can theoretically be incurred, 

the action undertaken by the investor would be taken into account and the principle of „no free lunch‟ 

would still hold. A zero input vector would remain specific to the very specific case of „doing nothing‟ 

 that excludes short selling.

A second axiom of the “possibility of inaction” – sometimes referred to as “doing nothing is feasible” – 

could be expressed in two ways depending on the assumption of disposability on inputs. On the one hand, 

the „raw‟ axiom of inaction only assumes the possibility of producing no output from a zero vector of 

input. On the other hand, the „extended‟ axiom of inaction (or axiom of „near‟ inaction) adds a 

disposability component to the input variables and assumes the possibility of producing nothing from any 

non-negative level of input. In an approach that assimilates risk to an input, „raw‟ inaction implies that 

riskless holdings that generate no return belong to the technology set, such that (𝟎, 𝟎) ∈ 𝑇. The origin of 

the production possibility set can in this case represent any holding generating neither risk nor return (cash 

holdings or cash equivalent, or any theoretical DMU obtained from the free disposal of a riskless 

investment). The inclusion of such assets in the technology set can however be hampered by some returns 

to scale assumptions when no such holding is observed and included in the set directly from the sample set 

of DMUs. For a classical DEA under VRS or NDRS, the origin does not belong to the set 𝑇, except if the 

 axiom of convexity always accepted under the DEA-production approach was rejected.

When risk is assimilated to an output, the representation of cash holdings is the origin of each output 

set of the output correspondence. The raw axiom of inaction (𝟎 ∈ 𝑃(𝐱) for 𝐱 = 𝟎) then implies that 
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making no initial investment in any portfolio is possible and will result in no generation of a distribution 

of returns (and consequently a zero-risk and a zero-return). Still, it does not ensure that the origin of the 

set belongs to any output set regardless of the level of input (initial investment). It therefore fails to ensure 

that holding cash or cash equivalents is allowed for any initial amount to be invested. While this axiom 

relates to the possibility of holding cash under an approach that assimilates risk to an input, it only relates 

 to the possibility of doing nothing under the output-oriented approach, which matches its initial meaning.

3.3.  Disposability assumptions on outputs

To the best of our knowledge, every portfolio analysis with DEA until now has assumed free 

disposability on input and output variables (which means on both risks and returns). Free disposability on 

inputs seems consistent when the initial investment is considered as an input. Free disposability of return 

when considered as an output is consistent as well, as any return on an investment can be disposed of: 

once perceived, returns can be kept, reinvested or even wasted. By contrast, the intangible nature of risk 

seems inconsistent with free disposal. Moreover, when risk is identified as an input variable, assuming 

free disposability implies the possibility of increasing the level of risk of an investment at a constant level 

of return. In such case, the addition of any risky asset with a zero mean return to the portfolio would 

correspond to such increase. But still, such possibility would depend on the selected risk measure, which 

prevents us from considering the assumption of free disposability on the risk variable as a generally 

accepted assumption. Assuming free disposability of risk implies the possibility of full reduction of the 

risk measure at a constant level of return, and no more the feasibility of unlimited increases in risk. Such 

reduction will always come at the cost of hedging; costly disposability 
19

 may then be more accurate. 

Moreover, assuming free disposability on the risk dimension would also prevent any inclusion of risk-

loving behaviors in the study as it precludes any projection to „the right‟ of the technology set. But as 

mentioned in Färe & Grosskopf (2003), the disposability assumptions are properties of the technology 

while the choice of a direction relates to the following step of performance measurement. Only arguments 

that relate to the definition of the technology should be used to determine which disposability assumptions 

 are appropriate.

The rationale to treat risk as an input is then similar to what makes some authors treat any detrimental 

variable as an input. The idea that it incurs a cost, together with the natural assumption that decision-

makers try to decrease their costs, leads to consider every variable that is to be decreased as an input. In 

production theory, the same rationale is used in models that assimilate byproducts to freely disposable 

inputs (introduced by Hailu & Veeman, 2001) with negative shadow price associated to these “bad” 

outputs. It however implies that no positive value can be attributed to these byproducts, which is a clear 

limit for portfolio analysis when we consider the progress of the literature on risk-loving behaviors. 

Moreover, as emphasized in Färe & Grosskopf (2003) considering byproducts as inputs would lead to 

inconsistencies with both the traditional set of axioms and physical laws. As these byproducts are 

technically produced by the inputs, they should be considered as outputs. This argument of technical 

feasibility can also be put forward to support our choice of treating risk measures as output variables, as 

we considered an initial investment generates a distribution of returns and that both the mean return, the 

                                                
We use “costly disposability” in this paper preferably to “weak disposability” to account for the cost of hedging mentioned 

 above.
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risk or higher moments characterizing this distribution are just statistics of the distribution of a single 

 random variable.

A second limit of the DEA models used until now on financial assets is that they do not take into 

consideration any jointness between the so-called „good‟ and „bad‟ outputs. The inclusion of jointness in 

the model implies considering the „bad‟ variable as an output variable and no more an input variable in 

order to comply with the definition of jointness and even null jointness, and that‟s what Färe & Grosskopf 

(2004) proposed. For this reason, we choose in our approach not to refer to risk or any other output 

variable as a „good‟ or „bad‟ outputs but rather identify them as “intended outputs” and “joint outputs”. 

Though we agree on the positivity of shadow prices associated to intended outputs, we leave the 

characterization of joint outputs as „good‟ or „bad‟ to the choice of decision-makers according to their own 

preferences. We then impose no a priori assumption of negativity on shadow prices associated to joint 

outputs that could potentially be positively valued by some decision-makers. Joint outputs can then either 

be desired or rejected, but if no uniform preference is assumed among investors it can be interesting to 

consider the possibility of the expansion path that would increase both. As illustrated in sections 4 and 5, 

even though costly disposability is not imposed on the undesirable output but free disposability is kept –

 as it would have been if it has been treated as an input – differences in scores and in rankings can be 

observed due to the application of jointness (when the DMUs are evaluated relative to the risk-averse 

 frontier).

3.4.  Introducing costly disposability and jointness in the models

Costly disposability as it is usually modeled consists in assuming three elements at the same time. A 

first element is jointness (see in Färe & Grosskopf, 2003) that can be defined as in (11)
20

 and introduced 

through a factor 𝜏 on the joint output variables. A second element is null jointness and can be defined as in 

(12). A third element consists in assuming costly disposability on the output that is not freely disposable, 

 meaning relaxing the positivity constraint on the shadow price associated to the constraint.

Jointness of 𝜇 and 𝜎2: if (𝜇, 𝜎2) ∈ 𝑃 and 0 ≤ 𝜏 ≤ 1 then (𝜏𝜇, 𝜏2𝜎2) ∈ 𝑃    (11)

Null jointness of 𝜇 and 𝜎2: if (𝜇, 𝜎2) ∈ 𝑃, 𝜎2 = 0 implies 𝜇 = 0    (12)

We saw that when free disposability was assumed on both risk and return, the portfolio possibility set 

could be defined on the output correspondence as 𝑃 in equation (3). After jointness is introduced to the 

definition of the technology it can be redefined as 𝑃2 in equation (13). A related model – oriented towards 

risk reduction only here – is proposed in equation (14) with an efficiency scores 𝛿2 that can be interpreted 

 as the highest reduction in variance at a constant level of return to reach the set frontier.

𝑃2 =  (𝜇, 𝜎2)   ∶  𝜏2 𝐪𝐓𝛍 ≧ 𝜇 , 𝜏𝐪𝐓𝛀𝐪 ≦ 𝜎2 , 0 ≤ 𝜏 ≤ 1 , 𝐪 ∈ ℑ+    (13)

min*𝛿2+ s.t.   (14)

                                                
ointness of 𝜇 and 

𝜎: if (𝜇, 𝜎) ∈ 𝑃 and 0 ≤ 𝜏 ≤ 1 then (𝜏𝜇, 𝜏𝜎) ∈  𝑃
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 𝜏 𝑞𝑗𝜇𝑗
𝑛
𝑗=1 ≥ 𝜇𝑗  

0

 𝜏2   𝑞𝑗𝑞𝑘𝜎𝑗𝑘
𝑛
𝑘=1

𝑛
𝑗=1 ≤ 𝛿2𝜎𝑗0 2

  𝑞𝑗
𝐽
𝑗=1 =  1

 𝑞𝑗 ≥ 0  for all  𝑗

 0 ≤ 𝜏 ≤  1

The third element of costly disposability can be modeled by an equality in the constraint related to the 

output that is not freely disposable. Introducing this new element, the portfolio possibility set can then be 

defined as 𝑃3 in equation (15). A related model – oriented towards risk reduction only here – is proposed 

in equation (16) with an efficiency scores 𝛿3 that can be interpreted as the highest reduction in variance to 

 reach the set frontier.

𝑃3 =  (𝜇, 𝜎2)    ∶  𝜏 𝐪𝐓𝛍 ≧ 𝜇 , 𝜏2𝐪𝐓𝛀𝐪 = 𝜎2  , 0 ≤ 𝜏 ≤ 1 , 𝐪 ∈ ℑ+   (15)

min*𝛿3+ s.t.  (16)

 𝜏  𝑞𝑗𝜇𝑗
𝑛
𝑗=1 ≥ 𝜇𝑗  

0

 𝜏2   𝑞𝑗𝑞𝑘𝜎𝑗𝑘
𝑛
𝑘=1

𝑛
𝑗=1  = 𝛿3𝜎𝑗0 2

  𝑞𝑗
𝐽
𝑖=1 =  1

 𝑞𝑗 ≥ 0  for all  𝑗

 0 ≤ 𝜏 ≤  1

[Insert Figure 2 here] As reminded by Lamb & Tee (2012), though the definition of a portfolio 

possibility set and its frontier “are […] rarely discussed”, they are fundamental as “any DEA model 

estimates how far a DMU is from the frontier of its production possibility set”. While models (14) and 

(16) should obtain the same results, the choice of any other direction can result in obtaining efficiency 

scores that differ from one model to the other, as 𝑃3 relaxes the positivity constraint on the shadow prices 

of variances compared to 𝑃2. Figure 2 shows how a strict transposal of the traditional set of axioms with 

Variable Returns to Scale resulted in building a technology set 𝑇(𝑥, 𝑦) in the majority of studies on 

financial assets with DEA. It also shows how considering both risk and return measures as outputs allows 

to build the output set 𝑃 of equation (3),  similar to 𝑇(𝑥, 𝑦) in the elements it contains and in preventing 

any model orientation that would simultaneously increase risk and return. Adding jointness to 𝑃 builds the 

output set 𝑃2; adding costly disposability to 𝑃2 builds the output set 𝑃3. The latter allows for performance 

measurement in the direction of a simultaneous increase in risk and return. 
21

 As illustrated in Figure 2, 

minimizing risk only will not change the efficiency scores obtained from a set 𝑃2 to a set 𝑃3. However, 

assuming return augmentation or a simultaneous increase in risk and return will result in increases in 

efficiency scores for some DMUs with the highest levels of risk or return. On the output set 𝑃3 of Figure 

2, DMU 16 would be deemed efficient if evaluated with a model oriented towards mean augmentation 

only. DMUs 1, 7, 13, 15, 20, 21, 23 and 25 on the other hand would obtain a lower inefficiency score 
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compared to the scores obtained with a direction of variance reduction only. In case of a simultaneous 

 increase in risk and return, the inefficiency score of DMU 13 for instance would substantially decrease.

It could also be accurate to impose a limit to the share of cash holdings or other assets in the portfolios. 

Porter & Gaumnitz (1972) for instance add a maximum requirement of 5% of the portfolio invested in 

each asset (excluding cash holdings). In this latter case, it is necessary to constraint activity vectors to be 

lower than this upper limit. A revisited axiom of a „restricted possibility of inaction‟ could then be 

proposed to allow for the study of any kind of risky portfolios, from fully riskless to fully risky portfolios 

(what Porter & Gaumnitz (1972) refer to as cases where no full investment is required). The definition of 

this „restricted possibility of inaction‟ would depend on a factor 𝑞𝐶𝑎𝑠ℎ to range from a fully restricted to a 

full access to cash holdings. Let‟s define the share 𝑞𝐶𝑎𝑠ℎ ∈ ,0,1- as the maximum proportion of cash 

holdings allowed in the portfolio. The restricted possibility of inaction can then be defined as in equation 

(17). The particular case 𝑞𝐶𝑎𝑠ℎ = 1 ensures the inclusion of the origin of the output set in the possibility 

set. A lower limit to the factor of jointness such that (1 − 𝑞𝐶𝑎𝑠ℎ) ≤ 𝜏 ≤ 1 would then have similar effects 

and 𝑃3   rewritten as in equation (18).

*𝟎, 𝟎+ ∈ 𝑃 and 𝑞𝐶𝑎𝑠ℎ ∈ ,0,1- : restricted possibility of inaction   (17)

𝑃3 =  (𝜇, 𝜎2): 𝜏 𝐪𝐓𝛍 ≧ 𝜇 , 𝜏2𝐪𝐓𝛀𝐪 = 𝜎2  , (1 − 𝑞𝐶𝑎𝑠ℎ) ≤ 𝜏 ≤ 1  , 0 ≤ 𝑞𝐶𝑎𝑠ℎ ≤ 1  , 𝐪 ∈ ℑ+    (18)

3.5.  Returns to scale assumptions

Jointness is a key assumption in the context of portfolio analysis: on the one hand, we know that on the 

financial markets risk can only be reduced through diversification or at the cost of hedging, but once the 

higher degree of diversification has been reached only the inclusion of some riskless assets like cash in 

portfolios can further reduce risk. On the other hand, the expected return-risk relationship is positive and 

can justifies the assumption of jointness as well on an expected return-risk framework. Assuming jointness 

or imposing the inclusion of cash in the set of DMUs is then relevant for portfolio performance 

measurement (both solutions will deem similar efficiency measurement in a mean-variance analysis). To 

this regards, Liu, Zhou, Liu & Xiao (2015) propose to include cash in the analysis by replacing the 

constraint  𝜆𝑗
𝑚
𝑗=1 = 1 (the convexity constraint of activity vectors 𝜆𝑗 for a set of 𝑚 DMUs 𝑗) by a 

constraint  𝜆𝑗
𝑚
𝑗=1 ≤ 1 that is actually a mix of the convexity constraint and the Non-Increasing Returns to 

Scale (NIRS) constraint on some scale parameter 𝜃 that should be such that 0 ≤ 𝜃 ≤ 1. The new 

„convexity constraint‟ they propose should consequently be written  𝑧𝑗
𝑚
𝑗=1 ≤ 1 with 𝑧𝑗 =  𝜃𝜆𝑗. Their 

answer to the need of including a risk-free asset in the portfolio possibility set is to assume NIRS, which 

includes the origin of the set to the set of possible portfolios but ensures the inclusion of a risk-free asset 

only if and only if excess returns (above the risk-free rate) are considered instead of returns, which is not 

the case in most studies and should not be a condition for the set to be consistent. An alternative way of 

 dealing with this matter is to propose jointness as we did in this article.

Moreover, as underlined by Brandouy, Kerstens & Van de Woestyne (2013), “the very notion of 

returns to scale may not necessarily be directly transposed to the finance context”. It translates into 

different implications than in the previous studies with DEA: once redefined the „financial production 

process‟ of generation of a distribution of return by an initial investment, the question rather becomes the 
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following: “to which extent does an increase in the initial investment (input) result in an increase in return 

and risks (outputs)?”. In this case, the notion of returns to scale can very well be transposed to the finance 

context and is a consistent object of study. But no such link can be made between risk and return and 

making no returns to scale assumption (assume Variable Returns to Scale – VRS) on output-oriented risk-

return models seems more accurate. In a recent contribution, Lamb & Tee (2012) assert that a model with 

NIRS is appropriate for the study of investment funds. However, this choice is based on the rejection of 

the other possible RTS assumptions: Constant Returns to Scale (and we suppose Non-Decreasing Returns 

to Scale) are rejected due to the infeasibility of funds with infinitely high levels of risk and return that are 

non-attainable in practice, which is actually one of the above arguments to rejected free disposability on 

risk. The rejection of VRS is due to the fact that it violates the axiom of the possibility of inaction in the 

 input-output space; this problem is solved as soon as risk is defined as an output.

It is also important to notice that the measures chosen to account for input and output variables may 

once again require a specific treatment: if the distribution of returns is expressed not in monetary units but 

as rates of return on investment, then scale invariance may even be assumed. Return being traditionally 

expressed as rates of return, an increase in the quantity invested (free of charges) should remain constant. 

An assumption of scale invariance can be made on return if expressed as a rate of return and if all 

additional costs are excluded. In the particular case of some measures like standard deviation of rates of 

returns, the feasible set of outputs combinations would be the same for all any level of input 𝐱. Scale 

 invariance in a multi-moment framework could then be assumed and would translate into equation (19).

Scale invariance : 𝑃(𝜆𝐱) = 𝑃(𝐱) = 𝑃 for all 𝜆 > 0 and 𝐱 ≥ 𝟎   (19)

3.6.  Handling negative data

In production theory, positivity conditions are usually assumed on input and output variables (see the 

conditions in Färe, Grosskopf & Lovell, 1994). While these conditions make sense in a production 

framework, they have to be adapted since financial assets frequently exhibit negative returns, for instance 

during recession periods. Basso & Funari (2007) for instance report that 79% of the mutual funds in their 

sample exhibit a negative average rate of return, and that 86% of these funds exhibit a negative excess 

return. Dealing with negative data is then a matter of importance not only regarding negative returns, but 

also regarding skewness and all odd mathematical moments of the distribution that potentially enter into 

the set of output variables. Moreover, if negative values of return measures are especially problematic 

when using popular ratios of financial performance (Sharpe, Treynor or reward-to-half-variance indexes), 

the capacity of DEA to handle negative measures provides supplementary material to advocate for its use 

 on financial assets.

The literature in operations research provides various solutions to handle negative data. An early 

treatment consists in either performing a change in variables in order to make all data positive (by adding 

a number – sometimes arbitrary – to all values of a variable) or simply excluding any DMU with negative 

input or output from the sample. But since the contribution of Ali & Seiford (1990), the translation 

invariance property for efficiency measures has become a key requirement for any model allowing zero or 

negative data that should be translated prior to the analysis. Translation invariance ensures finding the 

same optimal solutions using the original data and the translated data. Lovell & Pastor (1995) and Pastor 
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(1996) showed that both the additive model of Charnes, Cooper, Golany, Seiford & Stutz (1985) and the 

weighted additive model of Pastor (1994) are translation invariant. On the contrary, the CCR model, the 

variant and invariant multiplicative models of Charnes, Cooper, Seiford & Stutz (1982, 1983) and the 

extended additive model of Charnes, Cooper, Rousseau & Semple (1987) are not translation invariant. 

They also show that the BCC model is translation invariant only when the translation affects either input 

variables (when the model is output-oriented) or output variables (when the model is input-oriented) but 

not both at the same time. Still, as shown in the table of Appendix, many studies with DEA used either 

 BCC or CCR model on financial assets and exclude negative data from their sample.

While Wilkens & Zhu (2001) propose a change in variables for inputs (outputs) when using an 

input-oriented (output-oriented) model with a radial efficiency measure to satisfy translation invariance, 

Seiford & Zhu (2002) distinguish between three kinds of translation invariance depending on which 

outcome is left unchanged after the data is transformed. „Classification invariance‟ leaves the 

classification of DMUs as efficient or inefficient unchanged, „ordering invariance‟ leaves the ranking of 

DMUs according to their efficiency scores unchanged, and „solution invariance‟ (often referred to as 

simply translation invariance) leaves the efficiency scores unchanged. They also propose an approach that 

ensures classification invariance by correcting a posteriori the classification of DMUs as efficient or 

 inefficient.

Silva Portela, Thanassoulis & Simpson (2004) then propose a model based on directional distance 

functions that prevents DMUs with negative output to be deemed efficient while some other DMUs with 

positive output would be deemed inefficient. Pastor & Ruiz (2007), Thanassoulis & Silva Portela & 

Despic (2008) and Kerstens & Van de Woestyne (2011) provide a more complete review of the literature 

on that aspect. Following their conclusions we propose to use directional distance functions that ensures 

translation invariance of the models (see the translation property of Lemma 2.2 in Chambers, Chung & 

Färe, 1998). The choice of direction vectors must then be in line with the three model orientations that are 

 consistent with theory, as discussed in section 2.4.

4.  Data and variables

To illustrate the impact of the various changes proposed in the previous section we extracted from 

Bloomberg weekly prices of 920 US common stocks 
22

 of small, mid and large capitalization over 10 

years (from 2005 to 2015) with a date of IPO earlier than Dec. 2004. These time series were then 

transformed into distributions of weekly returns for 8 rolling time windows of 3 years each. We randomly 

generated 50 portfolios composed of 2 small cap, 5 mid cap and 13 large cap stocks (to be consistent with 

the relative number of each category in the sample), making the implicit assumption of an equal amount 

 invested in each stock. In total, the 50 portfolios use 410 stocks on the initial sample of 920.

Each time series of the portfolios‟ returns was then characterized by a mean return 𝜇𝑡 and a variance of 

weekly returns 𝜎2𝑡 per time window 𝑡. Each joint distribution was as well characterized by a covariance 

of weekly returns. 
23

 In the following models, these variables are considered as output variables, with the 

                                                

 22 The set of all US common stocks for which we could find complete information on prices on that period.

 All statistics related to the dataset can be downloaded on this WebLink  .
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DMUs under evaluation .𝜇𝑗0
𝑡 , 𝜎𝑗0

2𝑡/ to be the mean-variance combinations of each of 50 portfolios (instead 

 of the mean-variance combinations of individual assets) in models (21), (22) and (23).

5.  Key results

5.1.  Performance of portfolio selection and performance of portfolio construction

As explained in section 2.1, efficiency of portfolio selection (when the decision-maker wants to invest 

in one single portfolio) could be measured relative to the FDH, so that the portfolios can be benchmarked 

one to the others. On the other hand, efficiency of portfolio construction can be measured either relative to 

the DEA frontier of portfolios (if the decision-maker wants to constitute a portfolio of already constituted 

portfolios available on the market) or relative to the DEA frontier of individual assets that could compose 

the portfolios (if the study-maker wants for instance to assess how good was a fund manager at selecting 

 the assets on the market to compose the fund).

When measuring efficiency of portfolio selection, more portfolios are obviously deemed efficient when 

evaluated relative to a Free Disposal Hull (FDH) frontier than relative to a DEA frontier. Building an FDH 

technology that includes cash holdings in the sample set of portfolios (to account for the possibility 

inaction) results in an average number of 8.5 efficient portfolios over the 8 periods when the model is 

oriented towards risk reduction only, and 7.75 efficient portfolios when the model is oriented towards 

mean augmentation only. This result makes sense considering these tools serve a different purpose: when 

using FDH, the study-maker does not look for information on how distant the portfolios are from the 

potentially attainable frontier – which is the case when using DEA – but rather which portfolio performs 

better using the sample set as a benchmark. A DEA technology defined as in equation (20) results in an 

average number of 2.25 efficient portfolios when the model is oriented towards risk reduction only and 1 

efficient DMU when the model is oriented towards mean augmentation only. On each time window, this 

efficient portfolio is the one with the highest mean return; such result would be found by any model 

oriented towards mean augmentation only when the correlations are taken into consideration, as for all 

other elements of the efficient frontier, risk is reduced further than any observed level. This specificity is 

illustrated in Figure 2 where DMU 26 does not belong to the efficient frontier. Finally, a DEA technology 

as defined in equation (20) from the sample of 920 US stocks results in deeming none of the 50 portfolios 

efficient, whatever the model orientation or time window. This result makes sense as none of the 50 

randomly generated portfolios could replicate any of the „perfectly‟ built portfolios of assets of the 

 efficient frontier.

[Insert Table 1] As reported in Table 1, evaluating the efficiency of portfolio construction relative to 

the DEA frontier of the portfolios themselves or relative to the frontier of their potential holdings results in 

an average increase in inefficiency scores of 31.33 % over the 8 rolling time windows (among DMUs that 

are deemed inefficient when performance is measured relative to the DEA frontier of portfolios). The 

maximal increase in efficiency scores amounts to 465.73 %. [Insert Table 2] Table 2 provides the 

variations in inefficiency scores obtained from a model that measures efficiency relative to frontier of 

portfolios to a model that measures efficiency relative to the frontier of individual assets in Period 1, with 

both models oriented towards variance reduction only. The average observed variation is + 18.5 % on all 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

the 50 portfolios (excluded portfolio 29 that belongs to the efficient frontier of portfolios). For that period, 

all DMUs with a positive mean return experience an increase in their efficiency score, from + 0.02 % for 

portfolio 32 – one of the portfolios with the lowest positive mean return on that period – to + 439 % for 

portfolio 20. As illustrated by the example of portfolio 20, the DMUs that obtained the lowest efficiency 

scores by being closer to the frontier of portfolios are now as further from the frontier of individual assets 

than the others. As a consequence, their increase in inefficiency scores is very high, and the same is 

observed on other time windows. Similarly, the lowest average impact is observed on periods where more 

 funds exhibit negative mean returns.

5.2.  Spearman Rank correlations with the Sharpe ratio

[Insert Tables 3 & 4] In order to assess the impact of using a model orientation that simultaneously 

maximizes risk and return in a technology set defined on the output correspondence, we compared both 

 the inefficiency scores and the rankings obtained from the following models:

- a „traditional‟ model – described as case (3) in table 4 – oriented towards risk reduction only on a 

technology that assimilates risk to an input and return to an output, assumes free disposability on 

risk and return, thus ensuring the technology set is convex by allowing for infinite increases in 

 risk,

- the model of equation (23) – described as case (4) in table 4 – oriented towards risk and return 

augmentation in the direction of the slope of the regression line of the sample set, on a technology 

defined in equation (20) that assimilates both risk and return measures to outputs, assumes free 

disposability on the return measure but costly disposability on the risk measure, with jointness and 

 null jointness between risk and return, and which results in a non-convex technology set.

As illustrated in Table 3, the inefficiency scores increase on average and the impact on the ranking of 

portfolios is quite substantial: the DMUs gain or lose around 22 ranks on average on each period. A closer 

look to these variations on the 50 portfolios in period 1 shows in Table 4 a strong decrease of inefficiency 

scores for DMUs carrying the highest levels of risk, and a strong increase in inefficiency scores for DMUs 

carrying the lowest levels of risk. The model we propose in equation (23) consequently attributes lower 

 inefficiency scores to risky DMUs, provided that they offer a high enough return.

As the mean-variance framework is fundamental in finance – from the Modern Portfolio Theory to the 

Capital Asset Pricing Model and its extensions – any methodology proposed with DEA in a mean-

variance framework is consistent with the standard approaches in finance. Regarding the Sharpe ratio in 

particular, Eling (2006) already showed that a DEA approach results in obtaining “the same ranking and 

evaluation of the investments as is made by the Sharpe ratio” in the particular case where the excess return 

over the risk-free rate and standard deviation are used as measures of return and risk, respectively (as the 

Sharpe ratio is defined as the ratio of excess return to standard deviation), and the CCR model is used 

(hence Constant Returns to Scale are assumed). Any other model would however result in a different 

ranking. In order to assess the applicability in finance of defining the technology set as in equation (20) 

and using the model of equation (23), we calculated the Spearman rank correlation between the 
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inefficiency scores provided by this model and the Sharpe ratios 
24

 of the evaluated portfolios on each 

period. We did so for the two types of portfolio construction: using the definition provided in equation 

(20) we defined a first output set from our sample of 50 random portfolios, and a second output set from 

our sample of 920 US stocks that could compose the 50 portfolios. We also calculated Spearman‟s rank 

correlation between the Sharpe ratios and the scores generated by a „traditional model‟ described as case 

(3) in Table 4. [Insert Table 5] As shown in Table 5, the rank correlation with the Sharpe ratio is quite 

high and the highest (except for period 5) for the model that measures performance relative to the frontier 

of potential portfolio‟s holdings using a direction that simultaneously increases risk and return measures. 

The rank correlation between the Sharpe ratio and the model that measures performance relative to the 

frontier of portfolios using the same direction is quite high as well compared to the one between the 

Sharpe ratio and the „traditional‟ model in the direction of variance reduction only (except for periods 5 to 

 7, knowing that each period overlaps with the next one by two years).

5.3.  Impact of the introduction of jointness to the technology sets

[Insert Tables 6 & 7] Tables 6 & 7 illustrate the impact of the introduction of jointness in the definition 

of a technology described in case (5) of Table 7 to obtain the technology described in case (6), using a 

model oriented towards risk reduction only. When models are oriented towards risk reduction and 

jointness is ignored, the potential risk reduction is underestimated for DMUs for which performance is 

measured relative to a “weakly efficient” part of the frontier, or what Färe, Grosskopf & Lovell (1994) 

define as the Weak Efficiency Subset (see Figure 2). The introduction of jointness introduces the 

possibility of reducing risk through the introduction of cash holdings (a riskless asset with a null return). 

This way, potential risk reduction of the DMUs with a negative mean return is equal to 100% of their 

respective levels of risk when jointness is introduced to the model. As long as costly disposability with 

jointness and null jointness are assumed, performance can be measured relative to the “strongly efficient” 

part of the frontier for any DMUs with a positive return whatever the model orientation; it ensures that for 

any decrease in return risk is reduced as well as much as possible. As illustrated in the results of Period 1 

(grey rows in Table 7), jointness implies that portfolios with the lowest – yet positive – mean returns in 

the sample could reduce risk even further. We therefore observe a higher increase in inefficiency scores 

for DMUs with the lowest positive mean returns as well as losses in their respective rank. On the other 

hand, introducing jointness attributes a higher rank to the DMUs with higher levels of risk and returns. 

This evolution in the evaluation of performance the riskiest DMUs is in line with what the literature on 

preferences that allow for a favorable evaluation of increases in risk. As briefly mentioned at the end of 

section 2.1, this literature shows how reaching higher levels of risk is not in contradiction with risk 

aversion. This more favorable evaluation is either due to the simultaneous increase in return together with 

parameters of the utility function that attribute a higher gain in utility to this increase in return than the 

loss in utility incurred by the increase in risk, or to a simple preference for increases in risk. This evolution 

then allows for performance measurement of risky portfolios under the most favorable conditions, which 

 is in line with an underlying principle of the use of DEA.

                                                
24 As our dataset consists in distributions of returns (not excess returns over a risk-free rate), we considered cash as the 

riskless benchmark to calculate our Sharpe ratio here. It is then a simple ratio of return over standard deviation, which ensures 

 consistency with the model (23) that assumes jointness and null jointness between risk and return.



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

6.  Conclusion

In this paper we provide arguments to support the idea that performance measurement of portfolios of 

financial assets with Data Envelopment Analysis should not rely on a technology defined through a 

production process that assimilates risk to an input generating some return. Financial assets differ in their 

nature and the dependence relationships between their prices from traditional production units, which 

result in a financial production process that we propose to understand as the generation of a distribution of 

returns from an initial investment. The set of axioms inherited from production theory is revisited 

accordingly and we showed that beyond its theoretical basis, the assimilation of risk to an output results in 

convenient consequences on the consistency of this revisited set of axioms. The resulting definition of a 

financial technology in a multi-moment framework is also well-suited to the study of financial assets in 

that it allows taking into consideration model orientations that consider the possibility of an increase in 

risk measures. We provided illustrations to show how this new definition of the technology and the new 

model orientations could impact efficiency scores and rankings of the portfolios. These illustrations also 

reveal huge potential increases in efficiency scores for riskier DMUs, which leads to question the 

systematic choice of a direction towards risk reduction on markets that are theoretically recognized as 

efficient. Unless the theoretical frameworks are ill-adapted, such variations in efficiency scores lead to 

reconsider either the assumption of market efficiency, the definition of the technology or the model 

orientations. The definition of the technology we provide here also allows including a range of preferences 

that remain ignored by the practitioners in finance, though studied in the literature. We also provide an 

example of how a model orientation that takes into account the possibility for increases in variance can 

obtain rankings of the evaluated portfolios that are in line with traditional ratios used in finance.   
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 Tables

 Table 1

 

 Table 2

 

                             Period : 1 2 3 4 5 6 7 8

Average variation of the inefficiency scores + 18.49% + 0.17% + 29.37% + 42.80% + 47.62% + 44.25% + 42.54% + 25.38% + 31.33%

Maximal variation of the inefficiency scores + 439.04% + 5.53% + 465.73% + 300.45% + 152.00% + 255.05% + 173.43% + 115.77% + 465.73%

(1) (2)

1 9.9546 10.0001 +     0.46% 0.46% Evaluated DMUs:
2 10.1046 10.1046 - 0.00%

3 8.4394 9.5424 +   13.07% 13.07% - 50 random portfolios
4 9.3128 9.8448 +     5.71% 5.71%

5 11.5676 11.7613 +     1.67% 1.67%

6 9.9253 9.9253 - 0.00% (1)
7 7.4708 9.0971 +   21.77% 21.77%

8 8.9192 9.1987 +     3.13% 3.13%

9 6.1587 10.0372 +   62.98% 62.98%

10 6.2278 6.9042 +   10.86% 10.86%

11 8.2682 8.2815 +     0.16% 0.16%

12 6.5989 8.2815 +   25.50% 25.50%

13 9.4629 9.4629 - 0.00%

14 7.8341 8.9087 +   13.72% 13.72% (2)
15 8.0689 8.0689 - 0.00%

16 10.8961 10.9176 +     0.20% 0.20%

17 8.6236 8.6472 +     0.27% 0.27%

18 8.0120 8.0447 +     0.41% 0.41%

19 9.8947 9.8947 - 0.00%

20 1.3323 7.1819 + 439.04% 439.04%

21 8.3576 8.4066 +     0.59% 0.59%

22 6.5900 7.6386 +   15.91% 15.91%

23 9.2063 9.7758 +     6.19% 6.19%

24 11.1728 12.6549 +   13.27% 13.27%

25 8.5485 8.5485 - 0.00%

26 5.2502 9.8191 + 87.02% 87.02%

27 8.0792 8.0792 - 0.00%

28 7.6970 7.6970 - 0.00%

29 0.0000 12.3186 + ∞ + ∞
30 7.7328 10.3006 +   33.21% 33.21%

31 10.0856 10.4479 +     3.59% 3.59%

32 9.1568 9.1583 +     0.02% 0.02%

33 7.1797 7.3625 +     2.55% 2.55%

34 6.3273 6.3419 +     0.23% 0.23%

35 6.6642 8.5939 +   28.96% 28.96%

36 7.3006 7.7032 +     5.51% 5.51%

37 9.7791 9.7825 +     0.03% 0.03%

38 9.8340 9.8340 - 0.00%

39 9.6831 11.0551 +   14.17% 14.17%

40 6.5511 6.7022 +     2.31% 2.31%

41 7.8975 7.8975 - 0.00%

42 7.5574 7.5574 - 0.00%

43 8.5853 8.5853 - 0.00%

44 7.8766 10.2989 +   30.75% 30.75%

45 8.5711 11.9207 +   39.08% 39.08%

46 8.6645 8.6645 - 0.00%

47 9.3078 11.3419 +   21.85% 21.85%

48 7.0874 7.0874 - 0.00%

49 9.0816 9.0816 - 0.00%

50 7.7177 7.8517 +     1.74% 1.74%

Average variation : +   18.49%

Max : + 439.04%

- technology P
1
 built from the sample set

   of 920 US stocks

- model orientation :

   variance minimization

- model orientation :

   variance minimization

Inefficiency measured relative to the frontier of portfolios

 (max. decrease in variance x10,000)Portfolio
Variation in 

inefficiency score

Variation in 

inefficiency score

- technology P1 built from the sample set

   of 50 random portfolios
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 Table 3

 

 Table 4

 

                     Period  :  1 2 3 4 5 6 7 8

Average variation of the inefficiency scores - 15.34% + 9.98% + 276.46% + 195.12% + 772.56% + 510.06% + 492.07% - 6.88% + 279.26%

Maximal variation of the inefficiency scores + 187.60% + 1,103.22% + 5,076.68% + 2,075.97% + 3,212.69% + 1,791.49% + 1,601.74% + 152.94% + 5,076.68%

Average variation of the ranks 22.94 21.50 21.14 21.18 22.10 22.70 22.54 21.62 21.97

Maximal variation of the ranks 49 49 48 48 48 46 47 46 49

Inefficiency

(max. decrease in 

variance x10,000)

Rank

Inefficiency

(max. decrease in 

variance x10,000)

Rank

1 5.8103 42 2.6982 17 -    53.56% + 25 Evaluated DMUs:

2 5.9135 43 2.5950 15 -    56.12% + 28

3 5.2311 31 2.9536 23 -    43.54% +   8 - 50 random portfolios
4 5.6415 37 2.6685 16 -    52.70% + 21

5 7.5755 49 0.9325 5 -    87.69% + 44

6 5.7342 41 2.7743 19 -    51.62% + 22 (3)
7 4.6592 26 3.3831 26 -    27.39% -

8 5.0117 30 3.3222 25 -    33.71% +   5

9 4.9442 28 2.1920 14 -    55.67% + 14

10 2.6794 5 5.6047 47 +  109.17% - 42

11 4.0908 18 4.2474 36 +      3.83% - 18

12 5.2839 33 2.0909 10 -    60.43% + 23

13 5.2718 32 3.2367 24 -    38.60% +   8

14 4.6040 25 3.5881 28 -    22.07% -   3

15 3.8778 15 4.6307 39 +    19.42% - 24

16 6.7271 46 1.7814 9 -    73.52% + 37

17 4.4568 22 3.8814 31 -    12.91% -   9

18 3.8545 14 4.4837 37 +    16.32% - 23

19 5.7035 40 2.8050 20 -    50.82% + 20 (4)
20 1.2977 2 0.4587 3 -    64.66% -   1

21 4.2170 19 4.1212 34 -      2.27% - 15

22 3.3399 8 4.8590 43 +    45.48% - 35

23 5.5679 34 2.7363 18 -    50.86% + 16

24 8.2527 50 0.0000 1 -  100.00% + 49

25 4.3574 20 4.1511 35 -      4.73% - 15

26 4.4832 24 1.6064 8 -    64.17% + 16

27 3.8880 16 4.6205 38 +    18.84% - 22

28 3.5058 10 5.0027 45 +    42.70% - 35

29 0.0000 1 0.0000 1 - -           risk and return
30 5.6165 36 2.1511 12 -    61.70% + 24

31 6.2574 44 2.0944 11 -    66.53% + 33

32 4.9672 29 3.5413 27 -    28.71% +   2

33 3.1766 7 5.1614 46 +    62.48% - 39

34 2.1512 3 6.1869 50 +  187.60% - 47

35 4.0795 17 3.8771 30 -      4.96% - 13

36 3.5104 11 4.8140 42 +    37.14% - 31

37 5.5914 35 2.9171 22 -    47.83% + 13

38 5.6428 38 2.8657 21 -    49.21% + 17

39 6.6798 45 1.4327 7 -    78.55% + 38

40 2.5156 4 5.8226 49 +  131.46% - 45

41 3.7063 13 4.8022 41 +    29.57% - 28

42 3.3663 9 4.9719 44 +    47.70% - 35

43 4.3942 21 4.1143 33 -      6.37% - 12

44 5.6553 39 2.1573 13 -    61.85% + 26

45 7.0019 48 0.5074 4 -    92.75% + 44

46 4.4733 23 4.0352 32 -      9.79% -   9

47 6.8007 47 1.1260 6 -    83.44% + 41

48 2.8962 6 5.6123 48 +    93.78% - 42

49 4.8904 27 3.6181 29 -    26.02% -   2

50 3.6646 12 4.6736 40 +    27.53% - 28

Averages : 4.6604 3.2782 +    15.34% + 22.94

Max  + 49

Min  - 47

- model orientation :

   variance minimization

        - free disposability on risk and return

        - convexity of the technology set

- technology built from the sample set

   of 50 random portfolios under the

   following assumptions :

- model orientation :

   simultaneous mean and variance

   maximization

- technology P1 built from the sample set

   of 50 random portfolios under the following

   assumptions

        - input : risk measure
        - output : return measure

        - no convexity of the technology set

        - input : initial investment
        - outputs : risk and return measures

        - free disposability on the return measure
        - costly disposability on the risk measure
        - jointness and null jointness between

(3) (4)

Portfolio
Variation in 

inefficiency score

Variation in 

ranking
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 Table 5

 

 Table 6

 

  

1 2 3 4 5 6 7 8

… inefficiency scores of a 'traditional' model described as case (3) in 

Table 5
-0.101 0.013 0.007 0.190 0.429 0.254 0.192 0.066

0.999

PeriodSpearman's rank correlation between the Sharpe ratio with cash used as 

the riskless asset and ...

0.6980.3880.8530.9520.986
… inefficiency scores of model (23) in the technology set built from 

the 920 individual US stocks that could compose the portfolios

… inefficiency scores of model (23) in the technology set built from 

the 50 random portfolios of US stocks
0.517 0.696 0.771 0.611 -0.105 0.027 0.089 0.634

0.9980.565

Period : 1 2 3 4 5 6 7 8

Average variation of the inefficiency scores + 80.54% + 137.56% + 94.24% + 50.48% + 26.84% + 40.01% + 31.01% + 37.48% + 62.27%

Maximal variation of the inefficiency scores + 194.12% + 691.64% + 1,210.70% + 445.39% + 148.19% + 227.27% + 164.59% + 93.40% + 1,210.70%

Average variation of the ranks + 6.8 + 4.36 + 5.44 + 6.36 + 5.32 + 6.88 + 5.92 + 8.72 + 6.23

Maximal variation of the ranks + 24 + 9 + 26 + 18 + 14 + 19 + 17 + 22 + 26
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 Table 7

 

  

Inefficiency

(max. decrease in 

variance x10,000)

Rank

Inefficiency

(max. decrease in 

variance x10,000)

Rank

1 5.8103 42 9.9546 45 +  71.33% -    3 Evaluated DMUs:

2 5.9135 43 10.1046 47 +  70.87% -    4

3 5.2311 31 8.4394 27 +  61.33% +    4

4 5.6415 37 9.3128 38 +  65.08% -    1

5 7.5755 49 11.5676 50 +  52.70% -    1

6 5.7342 41 9.9253 44 +  73.09% -    3 (5)
7 4.6592 26 7.4708 14 +  60.34% + 12

8 5.0117 30 8.9192 33 +  77.97% -    3

9 4.9442 28 6.1587 4 +  24.56% + 24

10 2.6794 5 6.2278 5 +132.43%

11 4.0908 18 8.2682 25 +102.12% -    7

12 5.2839 33 6.5989 9 +  24.89% + 24

13 5.2718 32 9.4629 39 +  79.50% -    7

14 4.6040 25 7.8341 19 +  70.16% +    6

15 3.8778 15 8.0689 23 +108.01% -    8

16 6.7271 46 10.8961 48 +  61.97% -    2

17 4.4568 22 8.6236 31 +  93.49% -    9

18 3.8545 14 8.0120 22 +107.86% -    8

19 5.7035 40 9.8947 43 +  73.48% -    3

20 1.2977 2 1.3323 2 +    2.67%

21 4.2170 19 8.3576 26 +  98.19% -    7

22 3.3399 8 6.5900 8 +  97.31%

23 5.5679 34 9.2063 36 +  65.35% -    2

24 8.2527 50 11.1728 49 +  35.38% +    1 (6)
25 4.3574 20 8.5485 28 +  96.19% -    8

26 4.4832 24 5.2502 3 +  17.11% + 21

27 3.8880 16 8.0792 24 +107.80% -    8

28 3.5058 10 7.6970 16 +119.55% -    6

29 0.0000 1 0.0000 1 -

30 5.6165 36 7.7328 18 +  37.68% +  18

31 6.2574 44 10.0856 46 +  61.18% -    2

32 4.9672 29 9.1568 35 +  84.35% -    6

33 3.1766 7 7.1797 12 +126.02% -    5

34 2.1512 3 6.3273 6 +194.12% -    3

35 4.0795 17 6.6642 10 +  63.36% +    7

36 3.5104 11 7.3006 13 +107.97% -    2

37 5.5914 35 9.7791 41 +  74.90% -    6

38 5.6428 38 9.8340 42 +  74.27% -    4

39 6.6798 45 9.6831 40 +  44.96% +    5

40 2.5156 4 6.5511 7 +160.42% -    3

41 3.7063 13 7.8975 21 +113.08% -    8

42 3.3663 9 7.5574 15 +124.50% -    6

43 4.3942 21 8.5853 30 +  95.38% -    9

44 5.6553 39 7.8766 20 +  39.28% +  19

45 7.0019 48 8.5711 29 +  22.41% +  19

46 4.4733 23 8.6645 32 +  93.69% -    9

47 6.8007 47 9.3078 37 +  36.87% +  10

48 2.8962 6 7.0874 11 +144.71% -    5

49 4.8904 27 9.0816 34 +  85.70% -    7

50 3.6646 12 7.7177 17 +110.60% -    5

4.6604 8.0923 +    80.54% +  6.8

Max  +  194.12% +  24

Min  +      2.67% -    9

        - free disposability on the risk measure

        - jointness and null jointness on the

          measures of risk and return

- model orientation :

   variance minimization

- 50 random portfolios

- technology built from the sample set

   of 50 random portfolios under the

   following assumptions

        - input : initial investment

        - outputs : risk and return measures

        - free disposability on the return measure

        - convexity of the technology set

- technology built from the sample set

   of 50 random portfolios under the

   following assumptions

        - free disposability on the risk measure

        - no jointness on the measures of

        - convexity of the technology set

- model orientation :

   variance minimization

          risk and return

        - input : initial investment

        - outputs : risk and return measures

        - free disposability on the return measure

Portfolio

(5) (6)

Variation in 

inefficiency score

Variation in 

ranking



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 Figures

Figure 1  Feasible combinations of three funds in a mean-standard deviation space

 

Figure 2   Portfolio possibility sets under various approaches
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 Input variables

Risk 
 measures

Output 
 variables

Return 
 measures

 Model  Data
Convexity 

 of the set
Considers 

 correlations?
Superior 

 moments

Murthi, Choi & 
 Desai (1997)

Risk measure 
Expense ratio 

Front-end Load 
 Turnover

Standard 
deviation of 

 returns

Return 
 measure

 Excess return
Input-

oriented DEA 
 CCR

MUTUAL 
 FUNDS

 YES  NO  NO

McMullen & 
 Strong (1998)

Risk measure 
Expense ratio 
Sales charges 

Minimum initial 
 investment

Standard 
deviation of 

 returns

Return 
 measures

Return before 
 tax

Input and 
output-

oriented DEA 
 BCC

MUTUAL 
 FUNDS

 YES  NO  NO

Premachandra, 
Powell & Shi 

 (1998)

Initial 
investment 

 (dollar value)
 -

Portfolio's 
total market 

 value

Difference 
between 

market value 
and a 

benchmark 
 return

Input 
oriented 

SDEA based 
on DEA CCR 

 with slacks

Portfolios of 
 stocks

 YES  NO  N/A

Morey & Morey 
 (1999)

Risk measures 
(systematic and 
non-systematic 

 risks)

Variance of 
 returns

Return 
 measures

 Mean returns

Input and 
output-

oriented DEA 
 BCC

MUTUAL 
 FUNDS

 YES  YES  NO

Basso & Funari 
 (2001)

3 risk measures 
2 investment 

 costs

Standard 
deviation of 

returns, 
standard 

semi- 
deviation of 
returns, beta 

 coefficient

Return 
measure 

Stochastic 
dominance 

 indicator

Expected 
(excess) 

 return

Input-
oriented DEA 

 CCR

MUTUAL 
 FUNDS

 YES
Indirectly, in 

the beta 
 coefficient

Indirectly 
(stochastic 
dominance 
indicator of 

 degree 3)

Choi & Murthi 
 (2001)

Risk measure 
Expense ratio 

Loads 
 Turnover ratio

Standard 
deviation of 

annualized 3-
 year return

Return 
 measure

Gross returns 
(before any 

deduction of 
 expenses)

Input-
oriented DEA 

BCC with 
 slacks

MUTUAL 
 FUNDS

 YES  NO  NO

Wilkens & Zhu 
 (2001)

Risk measure 
% of neg. 

 Returns

Standard 
deviation of 

 returns

Return 
measures 

 Skewness

Average 
return 

Minimum 
 return

Input-
oriented DEA 

 BCC
 CTAs  YES  NO

YES 
 (of order 3)

Galagedera & 
Silvapulle 

 (2002)

Risk measures 
Expense ratio 

Minimum initial 
investment 

Sales charges 
 Entry fee

Standard 
deviation of 

 returns

Return 
 measures

 Gross returns
Input-

oriented DEA 
 BCC

MUTUAL 
 FUNDS

 YES  NO  NO

Sengupta 
 (2003)

Risk measures 
Load 

Expense ratio 
 Turnover

beta 
 coefficient

Return 
measures 

 Skewness

Mean return 
 Skewness

Input-
oriented DEA 

 BCC

MUTUAL 
 FUNDS

 YES  NO
YES 

 (of order 3)

Basso & Funari 
 (2003)

Risk measures 
Subscription 

and 
redemption 

 costs

Standard 
deviation of 

returns, 
standard 

semi-
deviation of 
returns, beta 

 coefficient

Return 
measure 
Ethical 

 indicator

Expected 
(excess) 

 return

Input and 
Output-

oriented DEA 
CCR with 

 slacks

Ethical 
MUTUAL 

 FUNDS
 YES  NO  NO

Gregoriou 
 (2003)

 Risk measures

Lower partial 
moments of 

orders 
 1, 2 and 3

Return 
 measures

Higher partial 
moments of 

orders 
 1, 2 and 3

Input-
oriented DEA 

BCC, cross 
and super 

 efficiency

HEDGE 
 FUNDS

 YES  NO
YES 

 (of order 3)

Andersen, 
Brockman, 

Risk measure 
Front Load, 

Standard 
deviation of 

Return 
 measure

Actual 
 returns

Input-
oriented DEA 

Real Estate 
MUTUAL 

 YES  NO  NO
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Giannikos & 
 McLeod (2004)

Deferred load, 
Marketing & 
distribution 

fees 
 Other expenses

 returns  CCR  FUNDS

Briec, Kerstens 
& Lesourd 

 (2004)
 Risk measure

Variance of 
 returns

Return 
 measure

3-year rate of 
 return

Directional 
distance DEA 

 model

INVESTMENT 
 FUNDS

NO, 
but free 

disposability 
makes it 

 convex

 YES  NO

Gregoriou, 
Rouah, Satchell 

 & Diz (2005)
 Risk measures

Lower partial 
moments of 

orders 
 1, 2 and 3

Return 
 measures

Higher partial 
moments of 

orders 
 1, 2 and 3

Input-
oriented DEA 

BCC and 
cross 

 efficiency

 CTAs  YES  NO
YES 

 (of order 3)

Gregoriou, 
Sedzro & Zhu 

 (2005)
 Risk measures

Lower partial 
moments of 

orders 
 1, 2 and 3

Return 
 measures

Higher partial 
moments of 

orders 
 1, 2 and 3

Input-
oriented DEA 

BCC, Cross 
and super 

 efficiency

HEDGE 
 FUNDS

 YES  NO
YES 

 (of order 3)

Daraio & Simar 
 (2006)

Risk measure 
Expense ratio 

Turnover 
 Fund size

Standard 
deviation of 

 returns

Return 
 measure

 Total return
Output-

 oriented FDH
MUTUAL 

 FUNDS
NO 

 (FDH)
 NO  NO

 Eling (2006)  Risk measures

Standard 
deviation of 

returns, 
Lower Partial 
Moments of 

 ranks 1 to 3

Return 
 measures

Excess return, 
Higher Partial 
Moments of 
ranks 1 to 3, 

average 
return, 

skewness, 
minimum 

 returns

CCR and BCC 
models, 2 

super 
efficiency 

 models

HEDGE 
 FUNDS

 YES  NO  YES

Basso & Funari 
 (2007)

Risk measure 
Initial fee 

 Exit fee

Standard 
deviation of 

 returns

Return 
measure 

Initial capital 
invested (= 1) 

Ethical 
 indicator

Mean return, 
capitalization 

 factor

Input-
oriented CCR 
model with 

 slacks

MUTUAL 
 FUNDS

 YES  NO  NO

Nguyen-Thi-
 Thanh (2007)

Risk measure 
 Excess Kurtosis

Standard 
deviation of 

 returns

Return 
measure 

 Skewness

Average 
 return

Input-
oriented DEA 

CCR with 
 slacks

HEDGE 
 FUNDS

 YES  NO
YES 

(of orders 3 
 & 4)

Glawischnig & 
Sommersguter-
Reichmann 

 (2010)

 Risk measures

Standard 
deviation, 

Lower partial 
moments of 

orders 0 to 3, 
Maximum 
drawdown 

 period

Return 
 measures

Average and 
compounded 
returns, Max. 
consecutive 
gain, Upper 

partial 
moments of 

 orders 1 to 4

Input-
oriented DEA 

BCC with 
 slacks

MANAGED 
 FUTURES

 YES  NO
YES 

(of orders 3 
 & 4)

Branda & Kopa 
 (2012)

 Risk measures

Standard 
deviation, 

Value-at-Risk, 
Conditional 

and 
drawdown 

 Value-at-Risk

Return 
 measure

Gross mean 
 returns

Mean-Risk, 
Input-

oriented DEA 
CCR and 

Stochastic 
 Dominance

 Stock Indices  YES  NO

no, but use 
1st & 2nd 

order 
Stochastic 

 Dominance


