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Abstract

For a vast class of discrete model families with cdf’s Fy, and for estimating y under squared error loss under a constraint

of the type y 2 ½0;m�, we present a general and unified development concerning the minimaxity of a boundary supported

prior Bayes estimator. While the sufficient conditions obtained are of the expected form mpmðFÞ, the approach presented

leads, in many instances, to both necessary and sufficient conditions, and/or explicit values for mðF Þ. Finally, the scope of

the results is illustrated with various examples that, not only include several common distributions (e.g., Poisson, Binomial,

Negative Binomial), but many others as well.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In many statistical problems, there exists bounds on the values that unknown parameters can take.
Correspondingly, a large body of work concerned with estimation problems in restricted parameter spaces has
emerged, as reviewed for instance by van Eeden (1996) or Marchand and Strawderman (2004). One influential,
much studied, and useful criterion to select or to evaluate a procedure is minimaxity (e.g., Brown, 1994;
Strawderman, 2000).

We are concerned here with minimax estimation, under squared error loss, of an unknown parameter y for
certain kinds of discrete families of distributions under a constraint of the type y 2 ½0;m�. More specifically, we
focus on explicit conditions for the minimax estimator to be Bayes with respect to a boundary supported prior.
It follows here from the work of DasGupta (1985) that the least favourable prior is quite generally supported
on the boundary f0;mg of the parameter space; and that the corresponding Bayes estimator is minimax; for
e front matter r 2005 Elsevier B.V. All rights reserved.

l.2005.09.007

ing author. Tel.: +1819 821 8000; fax: +1 819 821 7189.
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small enough m, say mpm� with m�40. Since the phenomenon also extends in various univariate and
multivariate settings (DasGupta, 1985), and to other strictly convex loss functions (e.g., Bader and Bischoff,
2003), it has lead researchers to analytical investigations of m� in many specific settings. In particular for
discrete models, analytical investigations of m� appeared in: (i) Marchand and MacGibbon (2000) for the
Binomial model under both scaled and unscaled squared error losses, in (ii) Wan et al. (2000) for a Poisson
model and Linex loss, and in (iii) Johnstone and MacGibbon (1992) for a Poisson model and scaled squared
error loss.

But, such analytical investigations often focus on either a single model and/or sufficient conditions for the
least favourable prior to be boundary supported, in other words lower bounds for m�. Our work provides a
general and unified development applicable to a large class of discrete models. Members of this class include
Poisson and Consul’s (1989) Generalized Poisson, Binomial, Negative Binomial, Waring, many members of
the ‘‘Power Series’’ family of distributions, and various types of mixtures and ‘‘Stopped Sum’’ distributions.
Moreover, we are able to specify not only sufficient conditions, but also in many cases necessary and sufficient
conditions for least favourable priors to be supported on the boundary of the parameter space. Finally, in
Section 3, we give explicitly these conditions for various cases.

2. Preliminaries

Our results apply to observable random vectors X ¼ ðX 1; . . . ;X nÞ; nX1; where: (i) the X i’s are identically,
but not necessarily independently distributed, discrete random variables with joint probability function
pyðxÞ ¼ PyðX ¼ xÞ, and (ii) to situations where the support of PyðX 1 ¼ x1Þ is lower bounded (say by s). We
will be concerned with minimax estimation of y, under squared error loss, in situations where y is constrained
to a known, and small enough interval ½a; b�, and where the distribution of X under y ¼ a is degenerate at
ðs; . . . ; sÞ. Without loss of generality, given that we can reparametrize and translate, we assume hereafter that
½a; b� ¼ ½0;m� and s ¼ 0. In contrast to this constrained parameter space, we will refer to the unconstrained
parameter space as Y ¼ fy : pyð�Þ is a valid probability functiong. The degenerate property of X at y ¼ 0
renders possible the minimaxity results below, but it is hardly an unusual or exceptional property as it is
shared by many common discrete distributions.

2.1. Distributional assumptions

It will be convenient to set A ¼ fx 2 Rn :
Pn

i¼1 xi ¼ 0g, and denote Gðn; yÞ as follows.

Definition 1. We define Gðn; yÞ ¼ PyðX 2 AÞ; and in cases where the X i’s are independent with common cdf F,
we will sometimes denote Gðn; yÞ by GF ðn; yÞ; (recall that our above conditions imply that Gðn; 0Þ ¼ 1).

We will assume throughout this paper that Gðn; yÞ is three times differentiable for y 2 Y. We now describe
the class C of families of distributions for which the main result of this paper, Theorem 1, applies.

Definition 2. We define C as the class of families py for X such that Gðn; 0Þ ¼ 1, and

ð�1Þk
qk

qyk
Gðn; yÞ40; y 2 Y for k ¼ 1; 2; 3.

Here are some immediate examples of families py that are members of C (other examples follow later in this
section). Various properties of these families, as well as additional examples, can be found in the excellent
reference book on discrete distributions by Johnson et al. (1993).

Example 1. (a) X i’s are independently distributed PoissonðyÞ, with Gðn; yÞ ¼ e�ny.
(b) X i’s are independently distributed BernoulliðyÞ with Gðn; yÞ ¼ ð1� yÞn.
(c) X i’s are independently distributed as Negative Binomial ðNBIða; pÞÞ with parameters ða; pÞ; a40

(known), 0opp1; reparametrized such that EyðX iÞ ¼ y ¼ að1=p� 1Þ, and PyðX i ¼ xÞ ¼ ðGðaþ xÞ=x!GðaÞÞ
ða=ðyþ aÞÞaðy=ðyþ aÞÞxI f0;1;...gðxÞ. In such a case, we have Gðn; yÞ ¼ ða=ðaþ yÞÞna. Observe here that the
constraint ypm is equivalent to a lower bound constraint for p (i.e., pXa=ðaþmÞ).
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(d) X i’s are independently distributed ‘‘Generalized Poisson’’ (as denoted by Consul, 1989; or Lagrangian
Poisson as denoted by others including Johnson et al., 1993) with parameters ðy; lÞ; lX0, and yX0. Here
PyðX i ¼ xÞ ¼ ðyðyþ xlÞx�1e�y�xlÞ=x!I f0;1;...gðxÞ, and Gðn; yÞ ¼ e�ny as in the above Poisson case.

(e) X i’s are independently distributed Waring ðk;rÞ, with PyðX i ¼ xÞ ¼ rðkÞx=ððk þ rÞxþ1ÞI f0;1;...gðxÞ,
k40;r40 and y ¼ k=r. Whenever: (i) k is known and r is unknown, (which includes the Yule distribution
for k ¼ 1), or (ii) k is unknown and r is known, the families of py’s belong to C with Gðn; yÞ ¼ ð1=ð1þ yÞÞn.
Observe that this expression matches the Negative Binomial Gðn; yÞ above for a ¼ 1.

Observe that the above Gðn; yÞ are also examples of completely monotone (CM) functions, which possess
alternating derivative signs of all positive order. Now, completely monotone functions (see Feller, 1966,
Section XIII.4) are perhaps best known for their usefulness in characterizing functions which are Laplace
transforms, but we draw the connection here mostly because they possess rather interesting properties; for
instance that the product of completely monotone functions is completely monotone. The next lemma
provides a springboard, or a method of identifying or generating easily new members in C from others.

Lemma 1. (a) If X 1; . . . ;X n are independent (with common cdf F), then

GF ð1; yÞ is CM ) GF ðn; yÞ is CM.

(b) For the hierarchical (or mixture) model such that,

PðX 2 AjlÞ ¼ G0ðn; lÞ; ljy�f yðlÞ ¼
1

y
f 1

l
y

� �

with E1½l
k
� ¼

R1
0

lkf 1ðlÞdlo1; k ¼ 1; 2; . . . ; then

G0ðn; lÞ is CM in l) Gðn; yÞ is CM in y.

(c) If X 1; . . . ;X n are independent with

PðX i ¼ 0jlÞ ¼ G0ð1; lÞ; and ljy�f yðlÞ ¼
1

y
f 1

l
y

� �

with E1½l
k
� ¼

R1
0 lkf 1ðlÞdlo1; k ¼ 1; 2; . . . ; then

G0ð1; lÞ is CM in l) Gðn; yÞ is CM in y.

Proof. Part (a) follows given that the product of completely monotone functions is completely monotone (see
Criterion 1, p. 417, Feller, 1966). Observe for part (b) that the given representation implies

Gðn; yÞ ¼
Z 1
0

G0ðn; ylÞf 1ðlÞdl (1)

from which the result follows by the assumed completely monotonicity of G0 and the finiteness conditions on
E1½l

k
�. Finally, part (c) is a direct consequence of parts (a) and (b). &

Remark 1. The Negative Binomial representation as a Poisson mixture is well known, and its Gðn; yÞ actually
arises as particular instances of both models (b) and (c) of Lemma 1. Indeed, denoting T ¼

Pn
i¼1 X i and

referring to Example 1(c), we have as illustrations of Lemma 1’s part (b) and part (c) respectively:
(i)
 T�NBIð�; p ¼ ð1þ nyÞ�1Þ, (with Gðn; yÞ ¼ ð1þ nyÞ��Þ, whenever X 1; . . . ;X njl are independent PoissonðlÞ,
with ljy� Gammað�; yÞ.
(ii)
 T�NBIðn�; p ¼ ð1þ yÞ�1Þ, (with Gðn; yÞ ¼ ð�=ð�þ yÞÞn�Þ, whenever X 1; . . . ;X n are independent with X ijl�
PoissonðlÞ, and ljy� Gammað�; yÞ.
Observe that the X i’s are not independent in (i), while scenario (ii) reduces directly to the situation in part (c)
of Example 1 given the independence of the X i’s and their Poisson mixture representation.

Many members of the class of families of distributions C, including those in parts (a), (b), and (c) of
Example 1, can be found among the family of power series distributions, where X 1; . . . ;X n are independent
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with a common probability function given by

PyðX i ¼ xÞ ¼
ax½gðyÞ�x

cðgðyÞÞ
I f0;1;...gðxÞ (2)

with a0 ¼ 1 (without loss of generality), gðyÞ being a positive and nondecreasing function of y, and
cðgÞ ¼

P
xX0 axgx. Here Gðn; yÞ ¼ ð1=ðcðgðyÞÞÞÞn. For such families to belong to C, it will suffice, as remarked

upon in part (a) of Lemma 1, that 1=ðcðgðyÞÞÞ be completely monotone in y. Finally, further interesting
examples of classes of families of distributions which belong to C are provided in Marchand and Parsian
(2004).
2.2. Minimaxity

Our results rely on a following well-known criteria for minimaxity applied to boundary two-point priors. In
the spirit of Kempthorne (1987, Theorem 2.2), the condition is presented as necessary and sufficient.

Lemma 2. A two-point boundary prior p on f0;mg is least favourable, and the corresponding Bayes estimator

dpðX Þ is minimax, iff

Rð0; dpÞ ¼ Rðm; dpÞ ¼ supfRðy; dpÞ; 0pypmg. (3)

Now, for our discrete models, Bayes estimators dpðX Þ corresponding to two-point boundary supported
priors p are of a simple form; and, as we now show, exactly one of these is an ‘‘equalizer’’ rule (i.e.,
Rð0; dpÞ ¼ Rðm; dpÞ).

Lemma 3. Among two-point boundary priors p exactly one of them leads to an equalizer Bayes rule under

squared error loss, and it is given by

d�ðxÞ ¼ y�½x 2 A� þm½xeA� (4)

with

y� ¼ m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gðn;mÞ

p
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gðn;mÞ

p . (5)

Proof. Given that P0ðX 2 AÞ ¼ 1 and PmðX 2 AÞ ¼ Gðn;mÞ, the expected posterior loss E½ðd � yÞ2jx�
becomes, for the prior with pð0Þ ¼ 1� pðmÞ:

ðd �mÞ2 if xeA

and

pð0jxÞd2
þ ð1� pð0jxÞÞðd �mÞ2 if x 2 A, (6)

where pð0jxÞ ¼ ð1þ ½pðmÞ=pð0Þ�Gðn;mÞÞ�1. From this, it follows that Bayes estimators dpðX Þ corresponding to
two-point boundary priors p are of the form

dpðxÞ ¼ y½x 2 A� þm½xeA�

with y minimizing (6) in d. Furthermore, observe that y is a continuous and strictly decreasing function of
pð0jxÞ, and hence of pð0Þ, taking values on ½0;m� as pð0jxÞ (or pð0Þ) varies on ½0; 1�. Now, evaluating the
difference in risks of dpðX Þ at y ¼ 0 and y ¼ m, we have Rð0; dpÞ � Rðm; dpÞ ¼ y2 � ðy�mÞ2Gðn;mÞ, which
clearly admits the unique root y� in y. &
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Remark 2. It is not too difficult to see that the above development giving the uniqueness of an ‘‘equalizer’’
two-point boundary Bayes rule also remains valid for general losses rðd � yÞ with strictly convex r. This was
observed for a Linex loss r by Wan et al. (2000, Theorem 2.1).

3. Main results

The general development that follows with Lemma 4, Lemma 5, and Theorem 1 capitalizes on:
(i)
 The necessary condition

q
qy

Rðy; d�Þjy¼0p0 (7)

for (3) to hold with dpðX Þ ¼ d�ðX Þ; and

(ii)
 the condition

q2

q2y
Rðy; d�Þ nondecreasing in y; y 2 ½0;m� (8)

which is shown in Lemma 5 below to be sufficient for (3) to hold, with dpðX Þ ¼ d�ðX Þ, in cases where (7) is
satisfied.
Lemma 4. For a family py 2 C and squared error loss, a necessary condition for (3) to be satisfied with dpðX Þ ¼
d�ðX Þ is mpm0, where m0 is the unique (positive) solution in m of the equation TðmÞ ¼ 0 with

TðmÞ ¼ mþ
2

q
qy

Gðn; yÞjy¼0

0
B@

1
CA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gðn;mÞ

p� �
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gðn;mÞ

p� �
1þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gðn;mÞ

p . (9)

Proof. We use (7). Given representation (4) of d�ðX Þ, we obtain directly

Rðy; d�Þ ¼ ðm� yÞ2 þ Gðn; yÞ½ðy� � yÞ2 � ðm� yÞ2�,

q
qy

Rðy; d�Þ ¼ 2ðy�mÞ þ 2Gðn; yÞðm� y�Þ þ
q
qy

Gðn; yÞfðy� � yÞ2 � ðm� yÞ2g (10)

and

q
qy

Rðy; d�Þjy¼0 ¼
q
qy

Gðn; yÞjy¼0ðy
�2 �m2Þ � 2y�, (11)

since Gðn; 0Þ ¼ 1. Now, substituting y� as in (5), and solving (7) with the help of (11) yields the necessary
condition

mp
�2

q
qy

Gðn; yÞjy¼0

0
B@

1
CA

y�

m

1�
y�

m

� �2
()mp

�2

q
qy

Gðn; yÞjy¼0

0
B@

1
CA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gðn;mÞ

p� �
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gðn;mÞ

p� �
1þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gðn;mÞ

p . (12)

Finally, the result follows since, for py 2 C, Gðn;mÞ is decreasing in m implying that the rhs of (12) is
decreasing in m. &

Lemma 5. For a family py 2 C, with mpm0, condition (8) is sufficient (and necessary by virtue of Lemma 4) for

(3) to hold, under squared error loss.

Proof. Condition (8) tells us that Rðy; d�Þ is, as y varies on ð0;mÞ, either: (i) convex, (ii) concave then convex,
or (iii) concave. Now, given that mpm0 by assumption, it must be the case that (7) holds. This renders (iii)
impossible given that Rð0; d�Þ ¼ Rðm; d�Þ. Otherwise, both (i) and (ii) do not allow for the risk function Rðy; d�Þ
to be maximized at an interior point y0 2 ð0;mÞ. Therefore, we infer that (3) must hold, yielding the result. &
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Before pursuing, we define zðyÞ ¼ y½q2=qy2�Gðn; yÞ and m1 ¼ inffy 2 Y : z0ðyÞo0g. Observe that for py 2 C,
we must have m140.

Theorem 1. For squared error loss and py 2 C,
(a)
1N
½q2=qy2�Rðy; d�Þ is nondecreasing for y 2 ½0;m1�.

(b)
 d�ðX Þ is minimax whenever mpm0 ^m1.

(c)
 Whenever m0pm1; or equivalently Tðm1ÞX0; d�ðX Þ is minimax iff mpm0.
Proof. Parts (b) and (c) follows from part (a), as well as Lemmas 2, 4 and 5. Hence, there remains only to
prove (a). From (10), we obtain

q2

qy2
Rðy; d�Þ ¼ 2þ 4ðm� y�Þ

q
qy

Gðn; yÞ þ ðm2 � ðy�Þ2Þ �
q2

qy2
Gðn; yÞ

� �
þ 2ðm� y�ÞzðyÞ.

The result follows since py 2 C, y�pm, and zðyÞ is nondecreasing by definition for ypm1. &

We now turn to various illustrations and implications of Theorem 1. Given the generality of Theorem 1,
remaining interest lies in the specification (and properties) of m0 and m1 for various members py 2 C. We do
this below for the families py given in Example 1. Also, observe that whenever Theorem 1’s d�ðX Þ is minimax,
the minimax risk is given by Rð0; d�ðX ÞÞ ¼ y�2, with y� given in (5). In what follows, we will sometimes denote
m0 and m1 as m0ðnÞ and m1ðnÞ to emphasize the dependence on the sample size n.

Example 2 (PoissonðyÞ or Generalized Poissonðy; lÞ). Here Gðn; yÞ ¼ e�ny; zðyÞ ¼ n2ye�ny, and z0ðyÞ ¼ n2e�ny

ð1� nyÞ, which gives m1ðnÞ ¼ 1=n. From (9), we obtain that m0ðnÞ ¼ c0=n with c0 ¼ 2ðe�c0=2

ð1þ e�c0=2ÞÞ=ð1þ 2e�c0=2Þ. With the numerical evaluation c0 � 0:912955, part (c) of Theorem 1 tells us that
d�ðX Þ, given in (4), is minimax iff mpm0ðnÞ � ð0:912955Þ=n. Interestingly, the above minimaxity result still
holds when l is unknown. This is so, because otherwise with both Pðy;lÞðX 2 AÞ and the risk Rððy; lÞ; d�Þ being
independent of l, a contradiction is arrived at.

Example 3 (Binomial; Marchand and MacGibbon, 20001). Here Gðn; yÞ ¼ ð1� yÞn, z0ðyÞ ¼ nðn� 1Þð1� yÞn�3

ð1� yðn� 1ÞÞ, m1ð1Þ ¼ 1, and m1ðnÞ ¼ 1=ðn� 1Þ for nX2. From (9), we may show that Tðm1ðnÞÞ40.
Therefore, part (c) of Theorem 1 applies, and implies that the estimator d�ðX Þ, as given in (4) is minimax iff
mpm0ðnÞ, with m0ðnÞ ¼ T�1ð0Þ. Marchand and MacGibbon (2000) give a graph for m0ðnÞ, and show that
limn!1 nm0ðnÞ � 0:912955 . . . :

Remark 3. The above large sample approximation for a Binomial m0ðnÞ (which follows from Corollary 1
below with gðyÞ ¼ y=ð1� yÞ and a1 ¼ 1) also can be deduced from Example 2 given the limiting Poisson
distribution for a sequence of fBiðn; c=nÞ; nX1g random variables. With the help of the following Poisson
approximation result, the above may be generalized as follows for power series families given in (2) which are
members of C.

Lemma 6 (Pérez-Abreu, 1991). For X 1; . . . ;X n distributed as in (2) with parameter yn, such that ngðynÞ ! l, as

n!1, it follows that Sn ¼
Pn

i¼1 X i converges to a Poissonðla1Þ distribution. In particular, Gðn; ynÞ ! e�la1 as

n!1.

Corollary 1. For power series families as in (2) which are members of C, we have

nm1ðnÞ ! a1; nm0ðnÞ ! c0a1 � 0:912955a1; as n!1.

Moreover, for sufficiently large n, the estimator d�ðX Þ, given in (4) is minimax iff mpm0ðnÞ � ð0:912955a1Þ=n.

Example 4 (NBIða; pÞ and Waringðk;rÞ). Here Gðn; yÞ ¼ ða=ðaþ yÞÞna (as in Example 1 c,e),
zðyÞ / y=ððyþ aÞnaþ2Þ, z0ðyÞ / ð1=ðyþ aÞnaþ3Þða� yðnaþ 1ÞÞ, which gives m1ðnÞ ¼ a=ð1þ naÞ. Now,
ote that their Theorem 2.1 is correct but that some of the derivatives leading up to it are in error.
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we obtain from (9),

TðmÞ ¼ m�
2

n

a
aþm

� �na=2

1þ
a

aþm

� �na=2
 !

1þ 2
a

aþm

� �na=2
(13)

and

Tðm1ðnÞÞ ¼
1

n

na
1þ na

� 2v
1þ na
2þ na

� �na=2
" #( )

with vðyÞ ¼ ðyð1þ yÞÞ=ð1þ 2yÞ. Now, observe that ðð1þ sÞ=ð2þ sÞÞs=2 is decreasing in s; sX0; so that

m0ðnÞXm1ðnÞ () Tðm1ðnÞÞX0 () naXs0,

where s0=ð1þ s0Þ ¼ 2vððð1þ s0Þ=ð2þ s0ÞÞ
s0=2Þ. With the numerical evaluation s0 � 11:876904 we have the

following summaries for both the Negative Binomial and Waring cases.

Corollary 2. For X 1; . . . ;X n independent NBI ða; pÞ (as in Example 1c) with y ¼ EðX iÞ; ypm; the estimator

d�ðX Þ given by (4) is minimax:
(a)
 Whenever naos0 � 11:876904, and mpa=ð1þ naÞ.

(b)
 iff mpm0ðnÞ ¼ T�1ð0Þ whenever naXs0 � 11:876904.
Corollary 3. For X 1; . . . ;X n independent Waringðk; rÞ with y ¼ k=r (as in Example 1e); ypm; the estimator

d�ðX Þ given by (4) is minimax:
(a)
 For mp1=ð1þ nÞ whenever np11 (i.e., nps0).

(b)
 iff mpm0ðnÞ ¼ T�1ð0Þ whenever nX12, with TðmÞ given in (13) with a ¼ 1.
We consider next a Poisson hierarchical model given in part (b) of Lemma 1 with G0ðn; lÞ ¼ e�nl. As
witnessed in the Poisson case above where both nm0ðnÞ and nm1ðnÞ are constants independent of n, we show in
Lemma 7 that this property holds in general for such Poisson mixtures. Consequently, the comparison of
m0ðnÞ and m1ðnÞ, as needed for applications of Theorem 1, does not depend on n and only requires a handling
of the case n ¼ 1.

Lemma 7. For Poisson mixture cases as in (1) with G0ðn; lÞ ¼ e�nl, and E1½l
k
�o1 for kX1, we have m0ðnÞ ¼

c0=n and m1ðnÞ ¼ c1=n, where c0 and c1 are independent of n.

Proof. Here Gðn; yÞ ¼
R1
0 e�nylf 1ðlÞdl, and an easy calculation shows that, for a constant c40,

z0
c

n

� �
¼ n2

Z 1
0

l2e�clð1� clÞf 1ðlÞdl,

which implies that m1ðnÞ (i.e., the solution of z0ðyÞ ¼ 0) is of the form c1=n with c1 independent of n. Similarly,
it is easy to verify by expanding (9) that, for c40, nTðc=nÞ is free of n, implying that Lemma 4’s m0ðnÞ is of the
form c0=n with c0 independent of n. &

Example 5 (The Poisson mixture in Remark 1, part ðiÞ). Referring to Remark 1(i) with n ¼ 1, we have
Gð1; yÞ ¼ ð1=ð1þ yÞÞ�. Since this matches Example 4’s Gðn; yÞ with a ¼ 1 and n ¼ �, we can borrow from that
analysis. Along with Lemma 7, we obtain the following.

Corollary 4. For the model: X 1; . . . ;X njl independent PoissonðlÞ, with ljy�Gammað�; yÞ (as in Remark 1, part

(i)); with ypm; the estimator d�ðX Þ given by (4) is minimax:
(a)
 Whenever �os0 � 11:876904, and mp 1
n
a=ð1þ aÞ.
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(b)
 iff mp1=nm0ð1Þ ¼ 1=nT�1ð0Þ whenever �Xs0 � 11:876904, where T�1 is the inverse of the TðmÞ function

given in (13) with a ¼ 1 and n ¼ �.
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