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Abstract 
In this paper the concept of chaos in manufacturing systems is briefly introduced and tools used in the 
characterization of a chaotic system are discussed. The scheduling of a simple manufacturing system, with 
the help of commonly used assignment rules, has been simulated first. The results have been studied with the 
help of phase portraits. Some conclusions have been drawn and a new method for scheduling is proposed. 
The method is tested against conventional rules and the results are evaluated and discussed. 
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1 INTRODUCTION 
Application of the chaos theory to production systems is 
considered as a relatively new area [ I ] .  In process type 
(continuous) production systems, the models considered, 
usually involve a system of liquid tanks with a switched flow 
server. In this model, fluid continuously flows out of each 
tank and the server can fill one tank at a time with a 
constant rate to compensate for the loss of fluid. Statistical 
analysis was used over a model of differential equations in 
order to show the chaotic behavior of such a system [2]. In 
another approach [3], it was argued that the chaos can be 
controlled to minimize some cost function of a similar three- 
funnel model with chaotic behavior and continuous flow. 
Chaotic behavior of a discrete-event model, involving a 
paint spraying installation, has been demonstrated in [4]. A 
model has been investigated, consisting of an order release 
unit, a buffer, two parallel machines, a switch, and an exit 
[ I ] .  In another paper [5], where a simple reentrant model is 
explored with one machine and two basic types of items to 
be processed, complex but not chaotic behavior was 
observed in the case of small processing capacity, where 
the queue grows continuously. 
A different approach involves the analysis of the structural 
stability of a dynamic system, where parameters, such as 
scheduling rules and WIP-levels, are perturbed to 
investigate qualitative changes in the behavior of the 
system [ I ] .  According to [6-81, in some cases, when 
production becomes very heavily loaded, performance may 
become unpredictable in unexpected ways: a number of 
discrete-event simulation models showed that optimum 
schedules for heavily loaded semiconductor production 
units, changed dramatically with only slight changes in the 
input [6, 71. 
In a strict theoretical sense, chaotic behavior in simple 
discrete production models has not been solidly proven [ I ] .  
One of the commonly acclaimed characteristics of chaotic 
behavior, i.e. sensitivity to initial conditions, seems to be 
present in real manufacturing systems. Empirical evidence 
on such behavior has been reported [6-81. 

Most of the research related to chaos and manufacturing, 
investigates if and how a manufacturing system exhibits 
chaotic character. However, there are a number of tools 
and methods used to detect and measure chaos in a 
system that can be of interest in studying the behavior of a 
manufacturing system [9]. A phase space represents all 
variables of a system. The dimension of the phase space 
depends on the number of the system's variables. The 
graphical representation of a phase space, a phase portrait, 
enables the view of a system's behavior in geometric form, 
without directly representing the variable of time. 

Figure 1: Phase portrait of a pendulum: angular 
displacement at time t (abscissa) and time t-T/8 (ordinate). 

A special subset of this form of graphical representation - 
often used in nonlinear time series analysis, [ l o ]  - plots 
each value of a data series on the Y-axis (abscissa) against 
the previous value on the X-axis (ordinate). According to 



[ I  I ]  and [12], such plots capture the topology of the system, 
for which there is no direct access. In case of a perfect 
pendulum (Figure 1) one can derive the angular 
displacement 8 at time t versus the angular displacement at 
a previous point of time t-T/8, where T, the pendulum's 
period. 
The work reported in this paper focuses on the use of 
phase portraits in studying dispatching rules in a 
manufacturing system and on devising a different 
dispatching policy, based on the analysis of phase portraits. 
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2 DISPATCHING RULES AND PHASE PORTRAITS 
In order to examine the behavior of different dispatching 
policies with the help of phase portraits, a set of 
experiments has been executed, using three dispatching 
rules that were selected and applied on a single machine 
model under heavy processing load. The three rules that 
were selected were: 

Shortest Processing Time (SPT) 
First-Come-First-Serve (FCFS). 
Earliest Of Due Dates (EODD) 

The experiments were conducted by dispatching a string of 
5,000 jobs in a single resource according to each rule. The 
5,000 jobs were characterized by their arrival time, 
processing time and due date. The arrival times were 
randomly generated, following an exponential distribution 
with mean inter-arrival time of 62.5 time units. The 
processing times were generated following a normal 
distribution with a mean value of 100 time units and a 
standard deviation of 30 time units. Finally, the due dates 
were calculated following a uniform distribution of random 
values within the range [0, PTA], where PTA is the 
Processing Time Average for all the jobs in the string. 
The performance of the rules was evaluated using four 
performance indicators, namely: 

Mean Tardiness, which, for each job, is given by: 
T,=max[O,ET,-DD,], where T,, ET, and DD, represent 
the tardiness, the completion (end) time and the due 
date of job n, respectively. 

Mean Lateness, which, for each job, is given by: 

Mean Flowtime, which, for each job, is given by: 
F,=ET,-AT,, where AT, is the arrival time of job n. 

rn Fraction Tardy, which is the fraction of delayed jobs, 
expressed as percentage. 

For each set of arrival times, processing times and due 
dates, the experiment was conducted, for statistical 
reasons, 20 times (i.e. 20 strings of 5,000 jobs) and the 
mean values of the performance indicators were calculated 
(Table 1). 

L,= E T,-D D, . 

FCFS EODD 

I Tayi;:ss I 75,529 I 94,338 I 94,338 I 
I I I I I I 75,529 I 94,338 I 94,338 I I Lateness Mean 
I I I 75,579 I 94,388 I 94,388 I I Flowtime Mean 
I I I 99.0% I 99.9% I 99.9% I Fraction 

Tardy 
I I I I I 

Table 1: Results of scheduling experiments for each rule. 
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Figure 2: FCFS phase portrait. 
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Figure 3: SPT phase portrait. 

The results show that SPT in general has a better 
performance. Following these results a phase portrait was 
developed for each rule and for the 5,000 jobs, with job 
flowtime as a variable, where the abscissa is the value of 
the flowtime of the job n, and the ordinate the flowtime of 
the job n + l .  The lines connecting successive points have 
been removed from these diagrams in order to facilitate the 
observation of the spreading of the points across the plane. 
One can easily see that in the phase portrait of FCFS 
(EODD has an almost identical phase portrait) all points are 
very closely located to the diagonal, meaning that the 
flowtimes of all the jobs follow a steadily increasing pattern. 
On the other hand, SPT tends to demonstrate not only a 
diagonal band of points but also many more points near the 
two axes, 'producing' some extremely large flowtimes, while 
in general, the flowtimes are kept rather low. FCFS (and 
EODD) keep the flowtimes of successive jobs very close to 
each other, resulting in much lower maximum values, but 
also 'producing' a rather poor performance. 



3 PHASE PORTRAIT BASED RULE 
Since SPT seems to produce better results by 'spreading' 
most of the flowtimes near both axes, a reasonable 
argument can be made that at each decision point, from all 
the available jobs, one can select the one which. if 
executed, will have a flowtime as close as possible to the 
average processing time of all the jobs that have arrived so 
far. Following this rule, whenever the jobs waiting in the 
queue are characterized - if selected - by flowtimes of high 
value, points far away from the diagonal are avoided. When 
there are job(s) in the queue characterized by flowtimes of 
value comparable to the average processing time, points 
near axes are favored. Thus, it is expected that the 
proposed rule will produce dispatching of good quality 
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4 CONCLUSIONS AND FUTURE WORK 
Concepts related to nonlinear dynamics and chaos theory, 
such as phase portraits, reveal interesting geometric 
patterns for the variables, associated with the dispatching 
problem in production systems. However, the work is still 
preliminary and needs further verification on more complex 
systems under real production conditions. The use of phase 
portraits to test other performance measures such as 
fraction tardy, tardiness, lateness, completion time, and 
waiting time may also be a subject for future research. 
Since there is no dispatch rule that has been found to 
perform best in all situations [9], different settings will have 
to be examined. It may be possible in the future, and after 
adequate experimentation, to study various attractors or 
patterns in the phase portraits, corresponding to different 
conditions of ma nufact uri ng systems. 
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Figure 4: Phase portrait based rule (PPR) 

The new rule, Phase Portrait Rule (PPR) was tested, 
against the three already mentioned rules, with different 
sets of values for the workloads. Figure 4 shows the phase 
portrait of the rule (connecting lines have been omitted) for 
a mean inter-arrival time of 83.3 time units (exponential 
distribution), mean processing time 120 time units and a 
standard deviation of 20 time units. The performance of all 
the rules for this set of values may be seen in Table 2. 
Other sets of values produced similar results. 

I T:dEks I 75,621 I 92,413 I 92,413 I 88,863 I 
I I I I I I I L:::ss I 75,621 I 92,413 I 92,413 I 88,863 I 
I Fl:zme I 75,681 I 92,473 I 92,473 I 88,923 I 
I I I I I I I Fraction I 99.3% I 99.9% I 99.9% I 99.4% I Tardy 

Table 2: Results of scheduling experiments for each rule 
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The phase portrait in Figure 4, shows that there are still 
points close to the diagonal, but there are many more on 
either side of it. As expected, this rule behaves quite 
differently than the three rules tested so far. Its results tend 
to be somewhere between SPT and EODD / FCFS. 




