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Abstract

This paper reports a numerical study of the thermal and fluid-dynamic behaviour of laminar mixed convection in a non-Newton
inside a vertical duct enclosed within two vertical plates that are plane and parallel, having linearly varying wall temperatures. The o
conditions consist of a parabolic distribution of the velocity field and a constant fluid temperature. The problem is assumed to be s
two-dimensional. The formulation of a mathematical model in dimensionless co-ordinates and the discretisation of the governing equa
by means of the finite difference method, have made it possible to create a numerical code developed in Matlab environment.
was focused on the simultaneous presence and on the mutual interaction of natural and forced convection, starting from the effects of
re-circulation on the heat transfer. The quantitative results of the analysis, which are strongly affected bythe variation of the Grashof numbe
and of the exponent of the power law, are given in terms of graphic visualisations of the fluid velocity profiles and, when the g
parameters vary, of the various geometries characterising the heat transfer.
 2004 Elsevier SAS. All rights reserved.
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1. Introduction

Combined forced and free convection (mixed convec
flow) is encountered in many technical and industrial ap
cations, which include solar central receivers exposed to
wind currents, electronic devices cooled by fans, nuclea
actors cooled during emergency shutdown and (espec
for the dynamic inlet conditionshere adopted) heat exchan
ers placed in low-velocity-environments. Various recent re
searches on mixed convection are significant with part
lar reference to the above-mentioned industrial applicati
in [1] a study of mixed convection heat and mass tra
fer along a vertical wavy surface has been carried out
merically. Ref. [2] deals with a procedure for rapidly e
timating the flow-rate and heattransfer for laminar free
and mixed convection in inclined ducts. The problem
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1290-0729/$ – see front matter 2004 Elsevier SAS. All rights reserved.
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comes more difficult when it is unsteady [3], or in the ca
of a porous medium [4]. Mixed convection problems ha
been widely studied: going ahead to the beginning of
1960’s, researchers began to undertake studies in geo
rical conditions similar to the ones considered here, reg
ing solutions of forced convection [5], completely develop
mixed convection [6] or cases [7,8] that questioned the o
directionality of the flow, neglecting the effects of the buo
ancy forces. In many applications, the effects of natural c
vection, again associated with the presence of temper
gradients, may be compared to those of forced convec
This is why it is necessary to introduce a criterion of eval
tion capable of quantifying the contribution of both mech
nisms. In Refs. [9,10], for instance, the following criteria a
suggested:

(1) Pr = 1 fixed, an estimate of the ratio between the eff
of natural and forced convection is given by the value
Gr/Re2:
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Nomenclature

Bo Boussinesq number
d half-width of the duct . . . . . . . . . . . . . . . . . . . . . m
f friction factor
g gravitational acceleration . . . . . . . . . . . . . . m·s−2

Gr Grashof number
H size of the mesh pitch in transversal direction m
K size of the mesh pitch in axial direction . . . . . m
n power-law index
Nx,y number of grid points in the transversal and axial

direction
NNN length of the duct expressed in half-width units
Nu Nusselt number
Pr Prandtl number
Re Reynolds number
T fluid temperature . . . . . . . . . . . . . . . . . . . . . . . . . K
V fluid velocity vector
u transversal component of velocity . . . . . . m·s−1

U transversal component of the non-dimensional
velocity

x transversal co-ordinate . . . . . . . . . . . . . . . . . . . . m
X non-dimensional transversal co-ordinate
y axial co-ordinate . . . . . . . . . . . . . . . . . . . . . . . . . m
Y non-dimensional axial co-ordinate

Greek symbols

α thermal molecular diffusion coefficient of the
fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2·s−1

β thermal expansion coefficient of the fluid . K−1

θ non-dimensional temperature
Ψ non-dimensional stream function
Ω non-dimensional vorticity

Subscripts

i transversal direction
j axial direction
m average value
0 boundary values
w wall
∞ values fory → ∞
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• Gr/Re2 � 1 ⇒ the buoyancy forces are negligible
comparison to the ones of inertia and therefore
mechanism of forced convection is prevailing;

• Gr/Re2 ≈ 1 ⇒ the motion is affected to the sam
extent by the two types of forces and therefore
convection is mixed;

• Gr/Re2 � 1 ⇒ the preponderant influence of th
buoyancy forces makes the effects deriving fr
the accumulative motion of the fluid negligible and
therefore natural convection appears to prevail.

(2) Pr > 1, an estimate of the ratio between the effect
natural and forced convection is given by the value
Ra1/4

y /(Re1/2
y Pr1/3):

• Ra1/4
y /(Re1/2

y Pr1/3) < O(1) ⇒ Forced convection;

• Ra1/4
y /(Re1/2

y Pr1/3) > O(1) ⇒ Natural convection.
(3) Pr < 1, an estimate of the ratio between the effect

natural and forced convection is given by the value
Bo1/4

y /Pe1/2
y :

• Bo1/4
y /Pe1/2

y < O(1) ⇒ Forced convection;

• Bo1/4
y /Pe1/2

y > O(1) ⇒ Natural convection.

The Eckert–Diaguila diagram [11] defines a represent
tion of the different fluid-dynamic combinations with the r
spective field of influence of the types of convection. Wh
making progress with research and consequently with
formulation of increasingly complex mathematical mode
the need to validate experimentally the results obtained
considered of primary importance. In this context is includ
the numerical and experimental analysis [12] in which
heat transfer is consideredin a mixed convection regim
of air flow between two parallel plates that are uniform
heated. Correlations related to Nu are proposed with re
ence to the region in which the flow is fully developed,
correspondence to the establishment of the secondary
and to the zone in which a first increase in heat tran
is detected (which clearly follows the secondary flow).
Ref. [13], the problem of convective heat transfer in lam
nar motion, although limited to the region in which the m
tion is fully developed, is generalised to the case of a
tical channel to which heat is asymmetrically exchang
Different combinations, consisting of the fact that the t
walls are characterised alternatively by constant thermal
or constant temperature, are studied separately as bou
conditions. Considering the same range of boundary co
tions, the above-described study is extended in Ref. [14
the mixed convection, with reference to the inversion of
locity flow. This phenomenon is encountered whenever
Re/Gr ratio proves to be lower than a particular thresh
value (a function of the boundary conditions adopted), in
region adjacent to the lower temperature wall. In Ref. [1
an analytical survey is presented on the forced convectio
of a fluid that flows in laminar motion inside tubes havi
circular shaped fins, computing the presence of such fins,
the descriptive mathematical model, with a harmonic v
ation of the Biot number along the duct. In Ref. [16] t
study considers non-finned ducts and the determinatio
the geometric parameters optimising the heat transfer. In
background, the present paper presents a numerical inv
gation based on finite difference method, in which a po
low fluid, having inlet parabolic velocity profile and consta
temperature, is considered inside a vertical duct with linearly
varying temperature along the channel axis direction.
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Fig. 1. Schematization of the model.

2. Description of the physical model

With reference to Fig. 1, we consider a power-law flu
in laminar flow inside a vertical duct with walls of sem
infinite length (0� y < ∞; y increasing downwards) place
at a distance from the axis, which is equal tox = +d and
x = −d . An inlet parabolic velocity profile is also assume

�V0 = (u0, v0) = (0, v0) (1)

v0 = vm

[
(−3/2)(x/d)2 + 3/2

]
(2)

The flow is steady and two-dimensional. The walls
assumed to have a linear variation of temperature,

Tw = T0 − (λ/d)y (3)

in which λ represents the constant rate of tempera
change along the walls. The entrance temperature of the flu
is considered constant and equivalent toT0:

T (x,0) = T0 (4)

This pattern of constant inlet temperature of the cross sec
guarantees the absence of buoyancy forces prior to ent
the channel, so that the eventual occurrence of the l
can be attributed only and exclusively to the tempera
gradient along the walls.

3. Description of the mathematical model

The laws governing the phenomenon are the contin
equation, the equations of Navier–Stokes and the en
equation, in which the approximation of Boussinesq w
used. Accordingly, the fluid is considered incompressibl
except in the evaluation of the buoyancy terms: all
properties of the fluid are independent of temperat
except for density, which has a linear dependence.
governing equations may be expressed in the following n
dimensional form,

Ω = ∂2Ψ

∂X2
(5)

∂Ψ

∂X

∂Ω

∂Y
− ∂Ψ

∂Y

∂Ω

∂X
= ∂2

∂X2

(|Ω |n−1Ω
) − Gr

∂θ

∂X
(6)

Pr

(
∂Ψ

∂X

(
∂θ

∂Y
− 1

)
− ∂Ψ

∂Y

∂θ

∂X

)
= ∂2θ

∂X2
(7)

where

Pr = ν0

α

∣∣∣∣νm

d

∣∣∣∣
n−2(

νm

d

)
(8)

Gr = gβλd2n+1|νm|1−2nνm

ν2
0

(9)

Starting from the physical model examined and using
symmetry with respect tox = 0 and 0� y < ∞ typical
of the geometry being considered, one can determine
boundary conditions for the non-dimensional functions
These may be expressed, with reference to the var
“significant” locations, as follows:
Duct axis

Ψ (X = 0, 0 � Y < ∞) = 0 (10)

Ω(X = 0, 0 � Y < ∞) = 0 (11)
∂θ

∂X

∣∣∣
0,Y

= 0 (12)

Duct entrance

Ψ (0 � X < 1, Y = 0) =
(

−1

2
X3 + 3

2
X

)
(13)

Ω(0� X < 1, Y = 0) = −3X (14)

θ(0 � X < 1, Y = 0) = 0 (15)

Duct wall

Ψ (X = 1, 0 � Y < ∞) = 1 (16)

θ(X = 1, 0 � Y < ∞) = 0 (17)
∂Ψ

∂X

∣∣∣
1,Y

= 0 (18)

4. Description of the numerical method

Here a procedure is defined based on the finite dif
ence method to solve the parabolic equations with backw
differences in the direction of the flow and central dif
ferences in the cross direction. The governing equati
written with the finite difference method, take on the f
lowing form:
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Ωi,j+1 = 1

H 2 (Ψi+1,j+1 − 2Ψi,j+1 + Ψi−1,j+1) (19)

1

2HK

[
(Ψi+1,j+1 − Ψi−1,j+1)(Ωi,j+1 − Ωi,j )

− (Ωi+1,j+1 − Ωi−1,j+1)(Ψi,j+1 − Ψi,j )
]

= 1

H 2

[|Ωi+1,j+1|n−1Ωi+1,j+1 − 2|Ωi,j+1|n−1Ωi,j+1

+ |Ωi−1,j+1|n−1Ωi−1,j+1
]

− Gr

2H
(θi+1,j+1 − θi−1,j+1) (20)

1

2HK

[
(Ψi+1,j+1 − Ψi−1,j+1)(θi,j+1 − θi,j )

− (θi+1,j+1 − θi−1,j+1)(Ψi,j+1 − Ψi,j )
]

− 1

H
(Ψi+1,j+1 − Ψi,j )

= 1

Pr H 2
(θi+1,j+1 − 2θi,j+1 + θi−1,j+1) (21)

WhereH andK are the pitch in the transversal and ax
direction; the indexes(i, j) indicate the point of co-ordinate
[X = (i − 1)H, Y = (j − 1)K]. Indicating with Nx the
number of nodes in theX direction andNy in the Y

direction, we havei = 1, . . . ,Nx +1 andj = 1, . . . ,Ny + 1.
As far as the boundary conditions are concerned,
vorticity atX = 1 is evaluated by developing a Taylor ser
of Ω andΨ up to the second order in the proximity ofX = 1,
just as the temperature condition atX = 0 is evaluated with
the accuracy of O(H 4), using the Taylor series forθ in the
proximity of X = 0, thus obtaining as a final result:

3θ1,j+1 − 4θ2,j+1 + θ3,j+1 = 0 (22)

Eqs. (19)–(22), together withinitial conditions and (first-
kind) boundary conditions, constitute a system of 3N − 1
equations in 3N − 1 unknowns. Such equations have be
discretised with the finite difference method at the no
j + 1 in order to use Gauss’ method of elimination:
this reason, the cross derivatives ofΨ,θ andΩ in Eqs. (20)
and (21) are evaluated at thej th node rather than at th
(j + 1)th. The term of vorticity of the power-law in th
momentum equation (20) is evaluated by referring to
previous loop. The accuracy of the solution may suffer fr
such a procedure; however, this problem can be mitig
by reducing the number of nodes in the Y direction, and
evaluating at the same time the effect of this feature on
stability of the algorithm.

Once the equations are discretised, moving gradu
ahead inside the duct, one can evaluate the variables i
(j + 1)th location in the flow direction, employing Gaus
elimination method. The calculation ofNu at the first pitch
of the grid (j = 1) requires separate mention; in fact, at
inlet of the channel, one has:
∂θ
∂X

|X=1

θm

∣∣∣
Y=0

= 0

0
(23)

This indeterminate form must be resolved in order to av
discontinuity in the value ofNu: by using a finite difference
calculation scheme,it becomes natural to use l’Hopital
rule, from which we obtain:

Nu1 = lim(Y → 0)

∂θ
∂X

|X=1

θm

= lim(Y → 0)

∂
∂Y

( ∂θ
∂X

|X=1)

∂θm/∂Y
(24)

Bearing boundary conditions in mind, one obtains:

Nu1 = θN,2

θm,2h
= Nu2 (25)

This means that the numerical scheme is not capabl
evaluatingNu for 0 < Y < H ; therefore, when wishing
to determine its value in proximity to the entrance, it
necessary, leaving aside the convergence problems, to
a mesh with a very fineY pitch.

5. The effect of the Grashof number and the power-law
exponent

The solution of the system is an O(H 2) in the entire
domain, whereas at the inlet it is an O(K); consequently, in
order to obtain a better approximation of the input zone,
could consider decreasing the value ofK. Such an operatio
cannot in any case be computed without reducingH at
the same time with a heavy slow-down of computatio
time requested. This suggests two different methods
conducting the research: one could look for values ofH

andK as a compromise which give a good approximation
the entire domain or, as an alternative, conduct two sepa
analyses relative to the entrance region and the fu
developed region. In this study, an attempt will be ma
within the limits of possibility, to consider both possibilitie
the first to have a global vision of the phenomenon,
the second for a more detailed comparison with the res
existing in literature.

The analysis of the influence ofGr was conducted
while considering the value of the exponentn fixed at 0.7
(or 1); in this way, a choice was made to neglect, a
first approximation, the variation ofn. This choice was
made because varying n does not change the qualit
shape of the obtained curves, while it changes only
detailed numerical values. With reference to the diagram
Figs. 2 and 3, negative values have been found for the a
velocities in the proximity to the walls forGr dTw

dy
< 0 and

at the centre forGr dTw

dy
> 0 (because of the system chos

and in coherence with the physical model utilised, the ab
conditions becomeGr < 0 and Gr > 0, respectively). In
agreement with the necessary re-distribution of the velo
profiles (Figs. 4 and 5), for negativev values at the centre
we have positive cross-section velocity peaks, and neg
peaks for positivev. The heat transfer is generally assis
by velocity inversion in the central zone, a phenomenon
fact, that occurs in occasion of a flow increase that laps
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Fig. 2. Trend of the axial velocity forGr = −50, Pr = 1, n = 1, λ = −1,
Nx = 100 andNy = 4000.

Fig. 3. Trend of the axial velocity forGr = 450, Pr = 1, n = 1, λ = −1,
Nx = 100 andNy = 1000.

Fig. 4. Trend of the transversal velocity forGr = −50, Pr = 1, n = 1,
λ = −1, Nx = 100 andNy = 4000.

the walls. This is also highlighted in the diagrams reporte
Figs. 6, 7, 8 and 9, relative to the patterns, within the len
of the channel expressed in equivalent diameters, of
temperature, of the non-dimensional average tempera
Fig. 5. Trend of the transversal velocity forGr = 450, Pr = 1, n = 1,
λ = −1, Nx = 100 andNy = 1000.

Fig. 6. Comparison, asGr varies, of the output temperature forPr = 1,
n = 0.7, To = 100,λ = −1, Nx = 60 andNy = 300.

Fig. 7. Comparison, asGr varies, ofθm for Pr = 1, n = 0.7, λ = −1,
Nx = 60 andNy = 300.

θm and of Nu. The temperature proves to be higher
Gr > 0 on the entire section, and has a flatter pattern in
transversal direction, as well as the average non-dimens
temperature, measuring the difference of temperature o
the fluid and of the wall (averaged temperature in a gi
section), which is constantly lower forGr > 0. The indicator
of the global heat transfer,Nu, takes on values that kee
on growing asGr increases. The pressure losses (Fig.
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Fig. 8. Comparison, asGr varies, ofNu for Pr = 1, n = 0.7, λ = −1,
Nx = 60 andNy = 300.

Fig. 9. Comparison, asGr varies, ofNu for Pr = 1,n = 1,λ = −1,Nx = 60
andNy = 300.

are analysed with reference to the friction factorf : this is
affected considerably, as far as the module is concerne
the derivative ofv in transversal direction calculated on t
wall, while the sign is in accordance withv.

We have analysed how the variation of the power-
exponent affects the results for two values ofGr, one
higher than zero and one lower, which are equivalen
Gr = 450, Gr = −50, respectively. We did this in orde
to verify whether the influences ofn were regardless o
the sign of Gr or not. First of all, an observation mu
be made on the variation, generated byn, of the length
of the entrance region that, as one will be able to s
will prove to be indispensable in order to establish
accuracy of the following considerations. From the anal
of the diagrams in Figs. 11 and 12 of the mean n
dimensional temperatures, which are certainly the m
significant ones for establishing the depletion of the entra
region, one assumes that for decreasingn, its length tends
to decrease forGr > 0, and vice-versa forGr < 0. With
reference to the diagrams of Figs. 13 and 14, the transv
velocity gradients tend to be amplified as n decreases
for Gr < 0 and Gr > 0, generating an increase in th
value (in module) of the extreme points, i.e., the points
minimum and maximum. This characteristic is confirm
l

Fig. 10. Comparison, asGr varies, ofRe · f for Pr = 1, n = 0.7, λ = −1,
Nx = 60 andNy = 300.

Fig. 11. Comparison, asn varies, ofθm for Gr = −50, Pr = 1, λ = −1,
Nx = 80 andNy = 300.

Fig. 12. Comparison, asn varies, ofθm for Gr = 450, Pr = 1, λ = −1,
Nx = 200 andNy = 700.

and almost emphasised by the analysis of the other
quantities being examined: from Table 1, which synthes
the correspondences that can be deduced from the resp
graphic patterns, it is shown that when n decreases,
behaviour differences betweenGr > 0 andGr < 0, relative
to Nu, Re ·f , velocity and temperature, become increasin
evident.
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Table 1
Table of comparison atY = 10

Nu Re · f v(min) v(max) θm t [◦C], X = 0

Gr Gr Gr Gr Gr Gr

n −50 450 −50 450 −50 450 −50 450 −50 450 −50 450
1 1.58 4.3 −18 170 −0.1 −0.04 2.2 2.07 0.64 0.17 1028 1067
0.9 1.5 4.6 −25 205 −0.18 −0.06 2.3 2.2 0.67 0.2 1025 1070
0.8 1.4 5 −37 255 −0.28 −0.09 2.5 2.3 0.72 0.215 1021 1073
0.7 1.25 5.4 −64 325 −0.51 −0.1 2.75 2.5 0.82 0.23 1015 1075
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Fig. 13. Comparison, asn varies, of axial velocity forGr = −50, Pr = 1,
λ = −1, Nx = 80 andNy = 300.

6. Conclusions and future developments

Several conclusions and ideas for future research eme
from this study. The study focused on the interaction
tween natural and forced convection: particular care
been posed to the effects of the re-circulation of the stre
lines on the heat transfer. The Grashof number as well a
power law exponent, that have been considered separ
proved to be the parameters that greatly affect the quan
tive results of the numerical investigation. The originality
the numerical scheme employed consists of its extreme
plicity and the fact that is does not need a stabilisation p
cedure. Moreover it is sufficiently exact with regard to t
objective of this research: the results obtained in the c
presenting inverse flow zones, in the fully developed p
tion, match closely those obtained by other authors [17].
work reported in this paper can be considered as a sta
point for further developments in research that may reg
both more detailed analyses of the results obtainable f
the program and the improvement of the code as an ex
sion of the application of the latter to more general ca
The first step to take in the direction towards a bigger v
satility in the fields of use of the code is represented by
adoption of a variable grid that would avoid the problem
carrying out different analyses between the entrance re
and the fully developed region, at the same time decr
ing the computational load. In order to create a developm
hypothesis that allows for further generalisation of the pr
lem, such as introducing in input any variation of temp
ature along the walls, one should not neglect a new n
d

,

-

Fig. 14. Comparison, asn varies, of axial velocity forGr = 450, Pr = 1,
λ = −1, Nx = 200 andNy = 700.

dimensionalisation of the equations. One may demons
that the utilisation of the kernel of this code would entail,
such a case, an error in the evaluation of the energy equa
which is equivalent to:

∣∣∣∣
(T − Tw)d2Tw

dY 2

Re2(dTw

dY
)2

∣∣∣∣ (26)

Consequently, if the model developed should be reu
without making any substantial modifications, the res
would be reliable only if, for a determined trend ofTw, this
factor were equivalent, in order of magnitude, to the e
made by discretising the equations.
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