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Mitochondrial biology and oxidative stress  
in Parkinson disease pathogenesis
Claire Henchcliffe* and M Flint Beal

INTRODUCTION
Parkinson disease (PD) is a chronic, and often 
devastating, progressive neurodegenerative 
disease. Loss of dopaminergic neurons in the 
substantia nigra leads to the characteristic motor 
features of tremor, rigidity and bradykinesia, 
while more-widespread neuronal changes lead 
to complex and variable nonmotor symptoms. 
Strong evidence now exists to support a role for 
aberrant mitochondrial form and function, as well 
as increased oxidative stress, in the pathogenesis 
of PD.1,2 A complex interplay occurs between 
mitochondria and other cellular machinery that 
affects cell survival, as mitochondria not only 
have a key role in electron transport and oxidative 
phosphorylation, but they are also the main cellu-
lar source of free radicals, and they are involved 
in calcium homeostasis and in the regulation and 
instigation of cell-death pathways (Figure 1). The 
products of a number of PD-associated genes are 
involved in these pathways and have recently been 
found to influence the balance of mitochondrial 
fission and fusion, thus affecting the maintenance 
of dynamic networks of mitochondrial tubular 
structures. In addition, studies of mitochondrial 
function in PD underscore a pathophysiological 
heterogeneity within this disorder; mitochondrial 
dysfunction is not detected in all individuals with 
PD, a factor that will be of critical importance in  
the development of individualized therapies in the 
years ahead. In this article, we highlight impor-
tant recent advances in mitochondrial biology 
that have contributed to our understanding of 
PD pathogenesis and will aid in the development 
of future treatment strategies. 

MITOCHONDRIAL DYSFUNCTION  
AND OXIDATIVE DAMAGE 
The most direct evidence for disrupted mito-
chondrial metabolism has come from studies 
of autopsy tissue and other tissue samples and 
in vitro cell cultures derived from patients with 
PD. One finding at autopsy is that the activity of 
complex I, a major component of the electron 
transport chain, is decreased in the substantia 
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nigra3 and frontal cortex4 in patients with PD, 
and sophisticated immunocapture techniques 
have demonstrated increased oxidative damage 
and reduced electron transfer rates through com-
plex I subunits in these individuals.5 This abnor-
mality is predicted to render cells more vulnerable 
to Bax-induced apoptosis and conceivably con-
tributes to the demise and dysfunction of cells 
during the PD disease process. Electron transport 
chain impairment might actually be systemic, as 
decreased complex I activity has been demon-
strated in platelets,6 and defective oxidative 
phosphorylation has been suggested to occur in 
skeletal muscle.7 Moreover, fusion of platelets 
from individuals with PD and known complex I 
deficiency with mitochondria-deficient rho0 
cell lines produces cell cybrids with complex I 
deficiency.8,9 In addition to the in vitro findings, 
magnetic resonance spectroscopy studies, by 
examining high-energy phosphate levels in the 
temporoparietal region10 and occipital lobe11 
and by measuring increased cerebral lactate 
levels in PD,12,13 have demonstrated metabolic 
 abnormalities consistent with mitochondrial 
dysfunction and a shift to anaerobic metabolism 
in vivo in humans with PD. 

Mitochondrial dysfunction leads to increased 
oxidative stress. Oxidative damage to lipids, pro-
teins and DNA,14,15 as well as a decrease in the 
levels of the important antioxidant reduced gluta-
thione,16 has been detected in autopsy tissue from 
the brains of individuals with PD. These findings 
provide a plausible link between oxidative damage 
and formation of the Lewy body protein aggre-
gates that are characteristic of PD, as oxidative 
damage induces α-synuclein aggregation and 
impairs proteasomal ubiquitination and degrada-
tion of proteins.17 A recent study demonstrated 
higher mean plasma 8-hydroxydeoxyguanosine 
levels in patients with PD than in controls,18 pro-
viding yet more evidence of systemic effects of 
the disease. Interestingly, increased serum levels 
of uric acid, a potent antioxidant, are associ-
ated with a lower risk of PD in men.19 Recent 
advances in metabolomic, proteomic and tran-
scriptomic approaches are anticipated to permit 
further identification of alterations at the mole-
cular level that are relevant to mitochondrial 
metabolism in PD. 

What are the consequences of abnormal 
mitochondrial function in PD? Mitochondria 
have an integral role in the apoptotic cell death 
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Figure 1 Mitochondrial dysfunction affects diverse cellular processes that can culminate in cell death. 
Mitochondrial dysfunction affects a number of cellular pathways, leading to damage of intracellular 
components and to cell death. Abnormal metabolic function, abnormal morphology, and impaired 
fission–fusion balance have all been observed in mitochondria in at least some forms of Parkinson disease. 
Mitochondria are a major source of free radicals in the cell, resulting in oxidative stress, but mitochondria 
are also integral to the oxidative stress response. Increased oxidative stress can lead to impaired function 
of the UPS, thereby further affecting cell survival. Mitochondria also sequester calcium when intracellular 
calcium levels rise during the excitotoxic process. The threshold for excitotoxicity might decrease  
if mitochondrial ATP production is impaired. Mitochondria also have a pivotal role in apoptotic cell death. 
Mitochondrial release of cytochrome c and other ‘pro-apoptotic factors’, such as AIF, into the cytoplasm 
triggers a cascade of events, culminating in cell death. Abbreviations: AIF, apoptosis-initiating factor;  
UPS, ubiquitin–proteasomal system.
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pathway; when the outer mitochondrial mem-
brane is rendered permeable by the action of 
‘death agonists’, such as Bax, cytochrome c is 
released into the cytosol, leading to caspase acti-
vation and apoptosis.20 Similar pathways are 
also activated by opening of the mitochondrial 
permeability transition pore, an event that can 
occur under conditions of oxidative stress or 
electron transport chain inhibition, leading to 
collapse of the mitochondrial membrane poten-
tial. Mitochondrial dysfunction and oxidative 
stress might, therefore, ‘reset’ the threshold for 
activation of apoptotic pathways in response to 
Bax and other pro-apoptotic molecules. Impaired 
energy metabolism resulting from mitochondrial 
dysfunction has also been proposed to render 
cells vulnerable to ‘weak excitotoxicity’, which is 
proposed to result from changes in the energy-
dependent cell membrane potential. This weak 
excitotoxic injury could potentially increase free 
radical generation and add to cellular injury.21 
Mitochondrial dysfunction and increased oxi-
dative stress is also predicted to overload the 
ubiquitin–proteasomal system (UPS) of pro-
tein degradation, leading to accumulation of 
misfolded or damaged proteins.

ENVIRONMENTAL INFLUENCES  
ON MITOCHONDRIA AND COMPLEX I 
Several complex I inhibitors replicate some of 
the key motor features of PD and cause death 
of dopaminergic neurons. For example, parkin-
sonism in humans has been reported to result from 
unintentional exposure to 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP).22 Chronic 
infusion of the pesticide rotenone reproduces 
a parkinsonian syndrome in rats that is associ-
ated with selective loss of dopaminergic neurons 
and Lewy body-like fibrillar cytoplasmic inclu-
sions containing ubiquitin and α-synuclein.23 
Administration of rotenone to Drosophila melano
gaster results in levodopa-responsive locomotor 
deficits and loss of dopaminergic neurons.24 
Paraquat, a free radical generator, causes loss 
of dopaminergic neurons and motor deficits in 
rodents,25 with a corresponding dramatic increase 
in free radical formation by mitochondria. The 
precise role of environmental complex I inhibitors 
in PD remains to be defined, but these results help 
to corroborate concerns over other environmental 
toxins. For example, a link has been suggested to 
exist between PD and workplace exposure to the 
industrial solvent trichloroethylene, which inhibits 
complex I and causes nigral cell loss in animals.26 

GENETIC INFLUENCES ON 
MITOCHONDRIA AND COMPLEX I 
Mitochondrial genetic alterations 
Maternally inherited mutations in mitochondrial 
DNA (mtDNA) are rarely linked to PD, although 
one kindred with maternally inherited PD and 
complex I deficiency27 and five families with a 
probable maternal PD inheritance pattern have 
been reported.28 A missense mutation in the ND4 
subunit of complex I has led to atypical parkin-
sonism and loss of nigral neurons in one kindred, 
although this mutation is more typically associated 
with Leber hereditary optic neuropathy.29 Mutation 
in the gene encoding human mtDNA polymerase 
subunit γ (POLG) leads to clinical parkinsonism 
associated with multiple mtDNA deletions.30 
Parkinsonism is also seen as a feature of several 
well characterized mitochondrial disorders, inclu-
ding myoclonic epilepsy with ragged red fibers 
(MERRF) and mitochondrial encephalomyopathy 
with stroke-like episodes (MELAS). As is the case 
in individuals with POLG mutations, however, the 
diagnosis of MERRF and MELAS is almost always 
aided by other features not typically found in PD, 
such as progressive external ophthalmoplegia,  
seizures, neuropathy, and myopathy. 

A clear mitochondrial genetic contribution 
is evident in cases of idiopathic PD, and this 
contribution is most probably attributable to 
acquired somatic mutations. Acquired mtDNA 
deletions have now been demonstrated in PD 
by long-range polymerase chain reaction studies 
of pooled laser microdissected neurons from 
brain tissue samples isolated at autopsy.31 More-
extensive mtDNA deletions, which are associated 
with cytochrome c oxidase deficiency, occur in 
patients with PD compared with age-matched 
controls, and oxidative damage leading to double-
strand breaks in mtDNA might be instrumental 
in the acquisition of these somatic mutations.32 In  
addition to these acquired mutations, studies 
have suggested that specific haplogroups, such as 
UJKT, might affect PD risk,33 although the effects 
of these haplogroups are likely to vary between 
different populations. 

Nuclear gene alterations affecting 
mitochondrial function and oxidative stress 
A growing body of evidence indicates that the 
products of PD-associated genes have important 
effects on mitochondrial morphology, function 
and oxidative stress (Table 1, Figure 2). The effects 
of dysfunction of these genes are summarized  
in the sections that follow. 
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αsynuclein 
The α-synuclein protein is an abundant protein 
found particularly in axonal termini and is also 
a component of Lewy bodies. Certain mutations 
in the α-synuclein gene (SNCA; also known as 

PARK1), including those causing the Ala53Thr 
and Ala30Pro substitutions, as well as gene 
triplication (the triplicated locus is also known 
as PARK4), lead to autosomal dominant PD. The 
wild-type function of α-synuclein is not well 

Table 1 Involvement of Parkinson disease-associated genes in mitochondrial dysfunction and oxidative stress. 

Gene Function of 
gene product

observations references

α-synuclein
(SNCA or 
PARK1)

Not known ■ Wild-type protein: reduces mitochondrial function, increases 
oxidative stress; overexpression plus MPTP administration leads to 
abnormal mitochondria; overexpression leads to association with 
mitochondrial membrane and cytochrome c release (in SHSY cells) 
or increased free radicals (in GT-17 cells)

■ Knockout mutant: increased resistance to MPTP (in mice)

■ Mutation (overexpression of the Ala53Thr form of α-synuclein): 
abnormal mitochondria, damage to mitochondrial DNA  
(in mice); increased cytochrome c release (in PC12 and SHSY cells); 
association with mitochondrial membrane (in SHSY cells); increased 
markers of oxidative stress (in NT-2/D1 and SK-N-MC cells)

Martin et al. (2006)37

Parihar et al. (2008)38

Song et al. (2004)41

Ko et al. (2000)84

Ostrerova-Golts et al. (2000)85

Smith et al. (2005)86

Paxinou et al. (2001)87

Parkin
(PARK2)

Ubiquitin E3 
ligase

■ Partially associated with the mitochondrial outer membrane 

■ Localized to mitochondria in proliferating cells

■ Interacts with PINK1 to promote mitochondrial fission

■ Mutation: abnormal mitochondria, increased sensitivity to oxidative 
stress (in Drosophila melanogaster); decreased complex I and IV  
(in mice and humans); increased oxidative stress (in mice)

■ Wild–type protein: involved in mitochondrial biogenesis and 
mitochondrial DNA replication; rescues PINK1 mutant phenotype

Kuroda et al. (2006)42 
Greene et al. (2003)43

Pesah et al. (2004)44

Palacino et al. (2004)45

Muftuoglu et al. (2004)46

Poole et al. (2008)47

Clark et al. (2006)51

West et al. (2005)65 
Darios et al. (2003)88

Park et al. (2006)89

PINK1
(PARK6)

Serine–
threonine kinase

■ Mitochondrial membrane localization

■ Targeting by small interfering RNA: increased sensitivity to 1-methyl-
4-phenylpyridinium and rotenone

■ Mutation: abnormal mitochondria, increased sensitivity to oxidative 
stress (in D. melanogaster); reduced complex I activity and increased 
oxidative damage (in individuals with PD who carry the Gly309Asp 
substitution) 

■ Wild–type protein: reduces mitochondrial cytochrome c release, 
reduces apoptosis (in cell cultures); overexpression promotes 
mitochondrial fission

Silvestri et al. (2005)48

Clark et al. (2006)51 
Yang et al. (2008)52

Petit et al. (2005)53

Park et al. (2006)89

Gandhi et al. (2006)90

DJ-1
(PARK7)

Oxidative 
stress sensor, 
chaperone

■ Oxidative stress causes relocalization to mitochondria (in the matrix 
and/or intermembrane space), is oxidized in the brains of patients 
with PD

■ Protects against oxidative stress

■ Targeting by small interfering RNA: increased sensitivity to oxidative 
stress (in D. melanogaster)

■ Mutation: increased sensitivity to rotenone, paraquat, and hydrogen 
peroxide (in D. melanogaster); increased sensitivity to oxidative 
stress (in mice)

Bonifati et al. (2003)56

Yokota et al. (2003)57

Zhang et al. (2005)58

Meulener et al. (2005)60

Park et al. (2005)61

Yang et al. (2005)62 
Shendelman et al. (2004)63

Meulener et al. (2005)64

Taira et al. (2004)91

Choi et al. (2006)92

Menzies et al. (2005)93 

LRRK2
(PARK8)

Serine–
threonine kinase 

■ Around 10% are located in outer mitochondrial membrane; kinase 
activity affects mitochondrial function

West et al. (2005)65 

HTRA2
(PARK13)

Serine protease ■ Localized to mitochondria, released during mitochondrial membrane 
permeabilization in programmed cell death

■ Mutation: mitochondrial swelling, reduced membrane potential, 
reduced neuroprotection

Martins et al. (2004)66

Strauss et al. (2005)67

Abbreviations: HTRA2, high temperature requirement protein A2; LRRK2, leucine-rich repeat kinase 2; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine;  
PD, Parkinson disease; PINK1, PTEN-induced putative kinase 1.
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understood, but there seems to be a reciprocal 
relationship between the activity of this protein 
and mitochondrial function. 

Oxidative damage to α-synuclein affects the 
protein’s aggregation—an effect that might par-
tially explain the cellular toxicity of the protein. 
The α-synuclein protein contains an amino-
 terminal mitochondrial targeting sequence,34 
and acidification of the cytosol or overexpression 

of α-synuclein can cause the protein to become 
localized to mitochondria.35,36 Moreover, when 
exposed to rotenone, human embryonic kidney 
cells that overexpress α-synuclein are more suscep-
tible to cell death and have lower measurable 
levels of ATP than control cells.36 Degenerating 
and dysmorphic mitochondria with evidence of 
DNA damage are present in brainstem neurons 
of mice that overexpress the human Ala53Thr 
form of α-synuclein.37 The α-synuclein protein 
also seems to induce oxidative damage and mito-
chondrial release of cytochrome c.38 In aging 
yeast, functional mitochondria are required for 
α-synuclein toxicity.39 Mice with a knockout of 
the Snca gene demonstrate increased resistance 
to MPTP through modulation of complex I 
activity,40 whereas administration of MPTP to 
mice that overexpress α-synuclein leads to swollen, 
 morphologically abnormal mitochondria.41 

Parkin 
A number of mutations in the Parkin gene (also 
known as PARK2) lead to autosomal recessive PD. 
Parkin acts as a ubiquitin E3 ligase within the UPS, 
and this activity is vulnerable to oxidative damage. 
Parkin also seems to have a fundamental role in 
mitochondrial function, and the protein has been 
detected in mitochondria in replicating cells.42 
Parkin-null D. melanogaster mutants develop 
prominent apoptotic muscle degeneration with 
mitochondrial pathology and decreased resistance 
to oxidative stress.43,44 Parkin-deficient mice 
have reduced striatal mitochondrial respiratory 
capacity, with decreased levels of the subunits of 
the mitochondrial electron transport complexes I 
and IV.45 In addition, in humans with PD and in 
those who are homozygous for Parkin mutations, 
leukocyte mitochondrial complex I and IV activi-
ties are reduced.46 A link between Parkin and oxi-
dative stress is demonstrated by the finding that 
Parkin-null mice manifest increased protein and 
lipid peroxidation.45 

A recent and intriguing finding is that Parkin is 
involved in the regulation of mitochondrial mor-
phology.47 Parkin affects mitochondrial biogene-
sis in conjunction with PTEN-induced putative 
kinase 1 (PINK1; see below), and overexpression of  
Parkin enhances transcription and replication  
of mitochondrial DNA.42 

PTENinduced putative kinase 1 
Mutations in PINK1 (also known as PARK6) 
lead to a rare autosomal form of PD. The PINK1 
protein is a serine–threonine kinase localized to 

ncpneuro_2008_153f2.eps
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Figure 2 Products of PD-associated genes that affect mitochondrial function 
and oxidative stress. Acquired somatic mutations affect mitochondrial electron 
transport chain function, and such mutations are increased in the substantia nigra 
in patients with PD. Rare inherited mutations in genes encoding electron transport 
chain components have been associated with parkinsonism. Parkin, α-synuclein, 
PINK1, DJ-1, LRRK2 and HTRA2, are all encoded by nuclear genes, mutations in 
which can lead to PD, and all show a degree of localization to the mitochondria. 
Parkin is partially localized to the outer mitochondrial membrane, protects 
against oxidative stress, and has a hypothesized role in mitochondrial biogenesis. 
LRRK2 associates, at least in part, with the outer mitochondrial membrane; its 
precise function in that location is unclear, but it is thought to interact with Parkin. 
HTRA2 is a mitochondrial serine protease, the release of which might be involved 
in apoptotic cell death. PINK1 is a mitochondrial serine–threonine kinase that 
affords protection against oxidative stress and acts with Parkin to regulate the 
balance of mitochondrial fission and fusion. DJ-1 is relocated to mitochondria 
under conditions of oxidative stress and is thought to be neuroprotective under 
such conditions. The α-synuclein protein has an amino-terminal mitochondrial 
targeting sequence and, when overexpressed or under conditions of acidification, 
is at least partially associated with the inner mitochondrial membrane, where it 
might cause direct damage. Abbreviations: HTRA2, high temperature requirement 
protein A2; LRRK2, leucine-rich repeat kinase 2; PD, Parkinson disease;  
PINK1, PTEN-induced putative kinase 1.
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the mitochondrial membrane via an 8 kDa amino-
terminal mitochondrial targeting sequence.48 
The mitochondrial chaperone protein TRAP1 
is a PINK1 substrate,49 but PINK1 might not 
be exclusively mitochondrial and is probably 
dynamically distributed between various cellular 
compartments, including the cytosol. Cells iso-
lated from individuals with a PINK1 mutation 
that causes a Gly309Asp substitution have reduced 
complex I activity and evidence of increased oxi-
dative damage compared with cells from control 
individuals.50 In addition, a Pink1 deficiency in  
D. melanogaster results in loss of dopaminergic 
cells, as well as enhanced susceptibility to oxi-
dative stress and reduced ATP levels.51 These 
D. melanogaster mutants also demonstrate 
reduced mitochondrial mass with disorganized 
morphology, similar to the effects of Parkin 
mutations. Such morphological changes could 
result simply from a dependency on oxidative 
phosphorylation for maintenance of intact 
mitochondrial networks, although there is evi-
dence that PINK1 itself also regulates mito-
chondrial fission and fusion. Overexpression of 
PINK1 in mammalian or D. melanogaster cells 
results in increased mitochondrial fission. In  
D. melanogaster, altered function of Drp1, a 
component of the mitochondrial fission–fusion 
apparatus, modifies the Pink1-null phenotype.52 

PINK1 also seems to possess neuroprotective 
properties. For example, wild-type, but not 
mutant, PINK1 attenuates staurosporine-induced 
apoptosis and reduces mitochondrial cyto-
chrome c release when overexpressed in SH-SY5Y 
cells.53 Expression of a small interfering RNA 
(siRNA) that targets PINK1 increases susceptibility 
to 1-methyl-4-phenylpyridinium (MPP+) or 
rotenone,53 and in human dopaminergic neurons 
expression of this siRNA leads to reduced long-
term survival, along with mitochondrial dysfunc-
tion, abnormal mitochondrial morphology, and 
increased oxidative stress.54 

Intriguingly, overexpression of Parkin in HeLa 
cells55 can rescue some features of the PINK1-
deficient phenotypes,51 including altered mito-
chondrial membrane potential and morphology, 
indicating that PINK1 and Parkin function via a 
common pathway. 

DJ1 
DJ-1 (also known as PARK7) has multiple func-
tions, but its overall wild-type function seems to 
be to protect cells from oxidative-stress-related 
death.56,57 Under conditions of oxidative stress, 

the DJ-1 protein relocalizes from the nucleus  
to the mitochondrial matrix and intermembrane 
space.58 A mutation affecting the cysteine 106 
residue prevents this process and attenuates the 
protection afforded by DJ-1 against oxidative 
stress and mitochondrial damage.59 

Normal DJ-1 function protects cells against 
a variety of insults; D. melanogaster double 
knockout mutations of the DJ1 homologs 
DJ1α and DJ1β are exquisitely sensitive to 
rotenone and paraquat,60 and DJ-1β-deficient 
flies display a locomotor deficit that is exacer-
bated by oxidative stress.61 DJ1 knockout mice 
have enhanced sensitivity to MPTP, and their 
embryonic cortical neurons are more suscepti-
ble than wild-type neurons to oxidative stress.61 
Furthermore, introduction of an siRNA that 
targets DJ1α into D. melanogaster increases levels 
of reactive oxygen species, increases sensitivity 
to oxidative stress, and results in degeneration 
of dopaminergic neurons.62 DJ-1 might reduce  
α-synuclein aggregation,63 and it might physically 
associate with α-synuclein.64 In D. melanogaster, 
DJ-1 functions as a PTEN suppressor.61 

Leucinerich repeat kinase 2 
Mutations in the leucine-rich repeat serine–
threonine-protein kinase 2 gene (LRRK2; also 
known as PARK8) represent the most common 
known cause of familial PD; these mutations also 
account for cases of sporadic, late-onset PD. LRRK2 
has a conserved serine–threonine kinase mitogen-
activated protein kinase kinase kinase (MAPKKK) 
domain, and is a member of the Roc GTPase family. 
The commonly occurring Gly2019Ser substitu-
tion takes place in the MAPKKK domain, and the  
mutation augments kinase activity.65 Although 
the majority of LRRK2 is present in the cyto-
plasm, approximately 10% of these proteins are 
associated with the outer mitochondrial mem-
brane,65 raising the question of whether mutant 
LRRK2 kinase hyperactivity might directly affect 
mitochondrial function.

HTRA2 
High temperature requirement protein A2 
(HTRA2; also known as OMI or PARK13) is a 
mitochondrial serine protease. Mutations in the 
gene encoding this protein are rare in individuals 
with PD, and mutations in HTRA2 are suggested 
to be a susceptibility factor for PD. Homozygous 
HtrA2 knockout mice develop striatal degenera-
tion and parkinsonism66 in the context of 
more-widespread neuronal loss. Expression of a 
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mutation that causes the Gly399Ser substitution 
or a polymorphism that produces an Ala141Ser 
substitution, both of which have been found 
in individuals with PD, leads to mitochondrial 
swelling, decreased mitochondrial membrane 
potential, and increased risk of staurosporine-
induced cell death.67 Permeabilization of the 
mitochondrial membrane by pro-apoptotic 
molecules might result in release of HTRA2 as 
part of the programmed cell death pathway.68 
The protease activity of HTRA2 is controlled 
by PINK1-dependent phosphorylation, and 
HTRA2 phosphorylation is decreased in brain 
tissue from individuals with PD who carry 
PINK1 mutations.69 A PINK1 mutation that has 
been proposed to be pathogenic has also been 
found in individuals without PD, however, so its 
significance requires further clarification.70 

Clearly, there is more to learn regarding the 
functions of the PD-associated genes and gene 
modifiers that have been identified to date. The 
data described above, however, support a direct 
or indirect role for several of these genes in both 
mitochondrial function and the cellular response 
to oxidative stress. 

THERAPEUTIC IMPLICATIONS
The concept of ‘mitochondrial therapy’ is a new 
approach in PD, but it is being intensively tested. 
Coenzyme Q10 (CoQ10) is a naturally occurring 
antioxidant that affects mitochondrial depolariza-
tion and acts as an electron transporter for mito-
chondrial complexes I and II.71 CoQ10 levels 
are low in mitochondria that have been isolated 
from individuals with PD, and the ratio of oxi-
dized to reduced CoQ10 is greater in patients 
with PD than in controls, suggesting increased 
oxidative stress in the former. In mice and pri-
mates, CoQ10 protects against paraquat-induced 
oxidative stress, loss of dopaminergic neurons 
resulting from rotenone exposure, and both 
acute and chronic MPTP-induced dopaminergic 
cell death.72–75 

The effects of CoQ10 in PD are not fully 
understood, but a recent magnetic resonance 
spectroscopy study in patients with progressive 
supranuclear palsy demonstrated a significant 
increase in the ratio of high-energy to low-
energy phosphates (suggesting improved oxi-
dative phosphorylation) in the occipital cortex 
after short-term administration of CoQ10.76 
In a small, randomized, double-blind, placebo-
controlled study in untreated individuals 
with early PD, high-dose supplementation  

with CoQ10 at a dose of up to 1200 mg daily, in 
conjunction with α-tocopherol, was suggested 
to slow progression of disease in the absence 
of symptomatic benefit.77 When administered 
at a dose of 2400 mg daily in early PD as part 
of the Neuroprotection Exploratory Trials in 
Parkinson Disease (NET-PD) program, the use 
of CoQ10 could not be rejected as futile on the 
basis of the prespecified criteria.78 Much discus-
sion has taken place, however, regarding the 
validity of these criteria. A large phase III trial 
comparing placebo, 1,200 mg, and 2,400 mg 
CoQ10 daily is now underway in an attempt to 
dispel this controversy. 

Creatine, in the form of phosphocreatine, a 
high-energy phosphate, buffers cellular ATP 
and prevents opening of the mitochondrial 
permeability transition pore. Creatine attenu-
ates MPP+-mediated toxicity in embryonic 
ventral mesencephalic neurons and is pro-
tective against MPTP. In individuals with PD 
who participated in the NET-PD investigation, 
 creatine was well tolerated and its use could not 
be rejected as futile.79 A large clinical trial is 
now planned to test the potential of CoQ10 as a  
disease-modifying agent. 

Rasagiline is a monoamine oxidase type B 
inhibitor that produces a mild symptomatic 
benefit in patients with PD. The drug has multi-
ple effects on mitochondrial function, including 
stabilization of the mitochondrial membrane 
potential,80 and evidence from a delayed-start 
clinical trial of rasagiline suggests that the agent 
might have a disease-modifying effect.81 Results 
from another delayed-start design phase III 
clinical trial are awaited. 

Recent advances in the dissection of the 
complex cellular pathways that influence mito-
chondrial structure and function have expo-
sed new potential therapeutic targets. The 
peroxisome-proliferator-activated receptor 
gamma coactivator (PGC)-1α is a transcrip-
tional coactivator that regulates mitochondrial 
biogenesis and energy metabolism, thereby 
aiding in the maintenance of energy homeo-
stasis. Resveratrol, a polyphenolic compound 
abundant in grape skins, induces expression of 
genes involved in mitochondrial biogenesis and 
oxidative phosphorylation by activating NAD-
dependent deacetylase sirtuin-1 (SIRT1) and 
PGC-1α.82 Although the effects of resveratrol 
in PD are unclear, the agent seems to protect 
against MPTP-induced dopaminergic neuron 
loss in mice.83
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CONCLUSIONS AND FUTURE PROSPECTS 
A growing body of evidence now indicates that 
mitochondrial dysfunction and oxidative stress 
have central roles in PD pathogenesis. Recent 
advances in understanding the genetics of PD in 
humans, as well as the use of animal models of 
PD, have enabled us to make important steps not 
only in identifying the proteins involved in the  
pathways of PD pathogenesis, but also in deter-
mining how these proteins interact, both of 
which have enabled us to link oxidative stress 
and mitochondrial dysfunction with abnormal 
UPS function. 

Commercial genetic testing is now available 
for SNCA, Parkin, PINK1 and LRRK2 gene 
mutations, as well as for mutations in certain 
mitochondrial genes. Until the consequences 
of these mutations are better understood, the 
decision of whether to test for PD-associated 
gene mutations remains a matter of clinical 
judgment and should be made on the basis of a 
full and informed discussion between clinician 
and patient. In the future, however, a patient’s 
genotype might conceivably have value in pre-
dicting the individual’s response to treatments 
and disease-modifying interventions. We feel, 
therefore, that it is imperative for patients be 
encouraged to participate in research studies 
where appropriate, so that such questions can 
be addressed. 

Strategies to block oxidative stress are effec-
tive in animal models of PD, and some encour-
aging data now exist to suggest that agents that 
affect mitochondrial function might slow down 
PD progression. To date, however, most of the 
promising data on neuroprotective agents in 
PD animal models have not adequately trans-
lated to patients in clinical trials. A lack of 
biomarkers that would be useful as surrogate 
end points and as measurements of intended 
therapeutic effects has markedly hampered 
trial design and the interpretation of results. 
We suggest that a better understanding of how 
mitochondrial function is altered in vivo in 
brain tissue in PD might be an important step 
in developing potential PD biomarkers. Rather 
than using these as diagnostic biomarkers in the 
conventional sense, they could provide a means 
of identifying endophenotypes. The suscepti-
bility of an individual to developing PD prob-
ably involves a complex interplay of genetic 
factors, environmental factors, and aging, with 
the consequence that within a population of 
individuals with PD, considerable heterogeneity 

exists with regard to function of specific cellu-
lar pathways. A biomarker designed to detect 
mitochondrial dysfunction would enable an 
‘enriched’ population—those with more-severe 
defects in mitochondrial metabolism—to 
be identified, and these individuals could be 
preferentially enrolled into neuroprotective 
trials of mitochondrial therapy. This would be a 
first step towards the rational individualization 
of neuroprotective regimens. 

Importantly, the role of mitochondrial func-
tion and oxidative stress in disease pathogenesis 
is not specific to PD. There is evidence that 
these pathways are also involved in other neuro-
degenerative diseases such as Friedreich ataxia, 
Alzheimer disease, amyotrophic lateral sclerosis, 
and Huntington disease, among others. Potential 
exists, therefore, for considerable ‘cross-talk’ in 
the development of improved treatments for 
each of these conditions.

KEY POINTS 
■ Defective mitochondrial function and 

increased oxidative stress have been 
demonstrated in a subset of people with 
Parkinson disease (PD)

■ The products of several nuclear genes 
associated with PD are linked to mitochondrial 
function

■ Mitochondrial activity can also be affected by 
environmental factors that possibly contribute 
to PD pathogenesis 

■ Novel therapies that target mitochondrial 
function and oxidative stress, such as 
coenzyme Q10, are now in clinical trials to test 
whether they modify PD progression
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