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y is the most common cause of respiratory chain dysfunction. Defects in human
complex I result in energy generation disorders and they are also implicated in neurodegenerative disease
and altered apoptotic signaling. Complex I dysfunction often occurs as a result of its impaired assembly. The
assembly process of complex I is poorly understood, complicated by the fact that in mammals, it is composed
of 45 different subunits and is regulated by both nuclear and mitochondrial genomes. However, in recent
years we have gained new insights into complex I biogenesis and a number of assembly factors involved in
this process have also been identified. In most cases, these factors have been discovered through their gene
mutations that lead to specific complex I defects and result in mitochondrial disease. Here we review how
complex I is assembled and the factors required to mediate this process.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction
In most eukaryotes, the mitochondrial respiratory chain consists of
fourmulti-subunit complexes (complexes I–IV) and twoelectroncarriers;
ubiquinone and cytochrome c. Oxidative phosphorylation (OXPHOS)
begins with the entry of electrons into the respiratory chain through
either complex I or II (Fig.1). Electrons enter fromNADH via complex I, or
fromsuccinate via complex II and are transferred toubiquinone. Complex
III carries electrons from reduced ubiquinone to cytochrome c, and com-
plex IV completes the sequence by transferring electrons from cyto-
chrome c to oxygen. The transport of electrons is coupled to translocation
of protons across the inner membrane into the intermembrane space,
creating a transmembraneprotongradient that provides thedriving force
of ATP production by complex V (ATP synthase). The dependence on
OXPHOS and energy consumption for humans was summarized by Rich
[1], where it was reported that the average person turns over 65 kg ATP/
day. Given the high dependence on OXPHOS for such energy, it comes as
no surprise that defects in the OXPHOS system lead to disease.

Representing an incidence of ~1 in 5000 live births, disorders of the
mitochondrial OXPHOS system are the most common of inborn meta-
bolic diseases [2,3]. They result in a wide variety of clinical phenotypes
that may initially present in infancy or early adulthood. A number of
different organs or tissues may be affected, especially brain, heart and
skeletalmuscle, which rely heavily onOXPHOS for ATP. Isolated complex
I deficiency is the most common cause of respiratory chain dysfunction
[3,4], with patients displaying varying clinical manifestations that range
from single tomultiple tissue involvement (Table 1). For example, muta-
1 3 94792467.
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tions in mtDNA-encoded complex I subunits are associated with Leber
HereditaryOpticNeuropathy (LHON), a formof blindnesswhere only the
optic nerve is affected [5,6]. Conversely, other complex I mtDNA muta-
tions can result in Mitochondrial Encephalomyopathy, Lactic Acidosis
and Stroke-like episodes (MELAS), a clinically and genetically hetero-
geneous disorder comprised of myopathy, encephalopathy, and central
nervous system involvement that results in seizures, paralysis, blindness,
andepisodic vomiting [7]. Complex I defects are also associatedwith fatal
childhood disorders such as Leigh Syndrome, an early-onset progressive
neurodegenerative disorder with a characteristic neuropathology con-
sisting of focal, bilateral lesions in one or more areas of the central
nervous system [8]. This disease can present with a variety or combina-
tion of other clinical features, including; hypertrophic cardiomyopathy,
hypotonia, ataxia and deafness. The etiology underlying the variety of
clinical phenotypes in complex I deficiency is not well understood, but
may be due to different genemutations that exert variable effects on the
stability, assembly and activity of the enzyme complex.

Biochemically, defects in complex I appear to oftenoccur as a result of
impaired assembly of the enzyme. However the biogenesis of complex I
is notwell understood and this is complicated by its large size, regulation
by twogenomes and lackof adetailed crystal structure. Furthermore, the
model yeast Saccharomyces cerevisiae lacks a true complex I and this has
prevented suchdetailed analyses into assembly seen forother complexes
of the respiratory chain (see other reviews in this issue for details).

2. Mammalian complex I

Complex I is the largest and least understood component of the res-
piratory chain. It consists of 45different subunits that assemble together
into a structure of ~1 MDa [9]. Mitochondrial DNA (mtDNA) encodes 7
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Fig. 1. The mitochondrial OXPHOS machinery. Residing in the inner mitochondrial
membrane, the mitochondrial OXPHOS machinery is comprised of 5 complexes.
Electrons enter complex I from the oxidation of NADH to NAD+, or complex II from the
oxidation of succinate, and exit at complex IV resulting in the reduction of O2 to 2H2O.
Ubiquinone and cytochrome c act as electron carriers. Coupled to the flow of electrons
between complexes I–IV is the pumping of protons across the inner membrane, creating
an electrochemical gradient that is utilized by complex V to generate ATP. Inset: the
number of nuclear and mtDNA-encoded subunits within each complex is shown.
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complex I subunits. The remaining 38 subunits are encoded by nuclear
genes, and following their translation are imported into the organelle
through the import machineries [10,11]. Electrons from the oxidation of
NADH are transferred to a non-covalently bound flavinmononucleotide
(FMN) and are subsequently passed through a series of iron–sulfur
clusters (Fe–S) to thefinal acceptor ubiquinone,which is then reduced to
ubiquinol. The transfer of every pair of electrons is energetically coupled
to the pumping of 4 protons into the intermembrane space.
Table 1
Complex I activity and assembly status in patients with mutations in genes known to cause

Human gene Gene product description Disease

mtDNA ND1 CI subunit, P module LHON, MELAS
ND2 CI subunit, P module Leigh S.
ND3 CI subunit, P module Leigh S., LIMD
ND4 CI subunit, P module LHON , Leigh S.
ND4L CI subunit, P module LHON
ND5 CI subunit, P module Leigh S., MELAS, L
ND6 CI subunit, P module Leigh S., LHON, M

Nuclear NDUFA1 CI subunit, Q module Leigh S.
NDUFA11 CI subunit, Q module Cardioencephalom
NDUFS1 CI subunit, Q module Leigh S., leukodys
NDUFS2 CI subunit, Q module Cardioencephalom
NDUFS3 CI subunit, Q module Leigh S.
NDUFS4 CI subunit, Q module Leigh S.
NDUFS6 CI subunit, Q module LIMD
NDUFS7 CI subunit, Q module Leigh S.
NDUFS8 CI subunit, Q module Leigh S.
NDUFV1 CI subunit, N module Leigh S.
NDUFV2 CI subunit, N module Cardioencephalom

NDUFAF1 CI assembly protein (CIA30) Cardioencephalom
NDUFA12L CI assembly protein (B17.2L) Encephalomyopat
C6ORF66 CI assembly protein Encephalomyopat

Abbreviations: LHON, Leber's Hereditary Optic Neuropathy; MELAS, Mitochondrial Enceph
Infantile Mitochondrial Disease, N.D., Not determined.
aFor some genes, certain mutations cause milder biochemical defects and the data shown a
bAssembly status was scored as + modest decrease in amount of holocomplex I, ++ marked
decrease in amount of holocomplex I and subcomplexes.
cActivity status was scored as + modest decrease, ++ marked decrease, and +++ gross decrea
3. Modular architecture of complex I

Homologs of mammalian complex I can be found in bacteria,
archaea and plants. E. coli complex I consists of 14 subunits, all of
which have orthologous subunits in the eukaryotic counterpart [12].
The bacterial complex is ~550 kDa and can be broken down into three
functional modules – the electron input module (N Module), electron
output module (Q Module), and the proton translocation module
(P Module) – which have been evolutionarily conserved [13,14].

The functional modules of complex I are depicted in Fig. 2. The N
module binds and oxidizes NADH resulting in the liberation of electrons
that are transferred via flavin mononucleotide (FMN) onto a series of
Fe–S clusters. This functional module has been traced back to two
separate origins. The first is from the soluble NAD+-reducing hydro-
genases as found in the chemolithotrophic purple bacterium Alcaligenes
eutrophus [15]. The other is from the bacterial formate dehydrogenase
complex, an enzyme that couples the oxidation of formate with proton
reduction [16]. The Q module receives electrons that have been
transferred through the Fe–S clusters of the N module and transfers
them to ubiquinone. This module shows homology to the water soluble
Ni–Fe hydrogenases [17]. While the N and Q modules lie in the mito-
chondrial matrix (or bacterial cytoplasm), the P module is membrane
embedded. The P module is believed to be involved in proton pumping
and some of its components seem to have evolved frombacterial Na+/H+

and K+/H+ antiporters [18]. Furthermore, components of this module
also showhomology to themembrane boundNi–Fe hydrogenases. It has
been suggested that a common ancestor of complex I lost the Ni–Fe
active site in its subunit(s) and gained the ability to react with quinones
[19].

4. Structure of complex I

While crystal structures for the other OXPHOS complexes have been
solved, only low resolution 3D structures of complex I are available
[20–22]. The general consensus for the overall shape of complex I from
complex I deficiency

Complex I defecta

Assembly/stabilityb Enzymaticc References

+++ +++ [6,7]
++ + [133]
+ ++ [134,135]
++ ++ [136–138]
N.D. + [5]

HON + ++ [78,81,83,139]
ELAS +++ +++ [80,140,141]

+ + [142]
yopathy, LIMD N.D. +++ [143]
trophy ++ ++ [144,145]
yopathy, Leigh S. +++ ++ [146]

N.D ++ [147]
++ ++ [85,148]
++ +++ [86]
+ ++ [149]
+++ ++ [8,75]
++ ++ [87,144]

yopathy N.D. ++ [150]

yopathy ++ ++ [91]
hy ++ ++ [87]
hy ++ +++ [96]

alopathy, Lactic Acidosis, Stroke-like episodes; Leigh S., Leigh Syndrome; LIMD, Lethal

re for the most severe defects reported for each gene.
decrease in amount of holocomplex I or accumulation of subcomplexes, and +++ gross

se.



Fig. 2. Complex I modules and activity. A. Complex I is made up of three conserved functional modules; the electron input module (N Module), electron output module (Q Module),
and the proton translocation module (P Module). B. Schematic depicting complex I electron-transfer pathway and proton pumping activity. Electrons from the oxidation of NADH are
transferred through complex I via flavin mononucleotide (FMN) and a series of iron–sulfur (Fe–S) clusters (blue circles) to ubiquinone (Q), forming ubiquinol (QH2). The main
pathway of electron transfer is indicated by purple arrows and diversions by green dashed lines. For a detailed summary of the electron-transfer pathway see [151]. Cluster N1a is
thought to be located in subunit NDUFV2; N3 and FMN in NDUFV1; N1b, N4 and N5 in NDUFS1; N6a and N6b in NDUFS8; and N2 in NDUFS7.
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bacteria and mitochondria is of an L-shaped boot [23]. This structure
consists of a hydrophilic peripheral armwith a hydrophobic membrane
arm lying perpendicular to it (Fig. 3). Work carried out by Sazanov et al.
[24] demonstrated that in E. coli, this conformation of complex I is
maintained in a native lipid bilayer as an active enzyme. This contradicts
the observationby Bottcher et al. [25] describing complex I as adopting a
‘horseshoe’ conformation. It has since been suggested that the ‘horse-
shoe’may represent dimers of complex Iwith insufficient stainingof the
peripheral arms [24]. Alternatively, the peripheral arm may have some
conformational flexibility and the ‘horseshoe’ shape represents a con-
formational extreme [23].

Recently, the atomic structure of the hydrophilic peripheral arm of
complex I from the thermophilic bacterium Thermus thermophiluswas
solved using X-ray crystallography [26,27]. The structure has provided
insights into the electron transduction pathway of complex I and also
the relative positions of the core subunits present in the matrix arm.
As the core subunits are evolutionarily conserved, the electron trans-
duction pathwaymay be applied tomitochondrial complex I. However
since mitochondrial complex I contains many additional subunits of
unknown function, the bacterial model cannot provide a complete
picture.

5. Core subunits of complex I

Prokaryotic complex I is made up of 14 subunits that are conserved
through evolution. These subunits represent the ‘core’ of complex I
and compose the minimal structural unit required for the enzyme's
primary function, i.e. electron transfer coupled to proton transloca-
tion. In mammals, half of the core subunits are encoded by nuclear
genes and all of these are located in the peripheral matrix arm.

The subunit composition of bovine complex I has been extensively
studied [28–33] with the nomenclature of subunits based on subunit
size in kDa. With the increasing importance of complex I in human
disease being realized, research has shifted its focus on the human
complex where the nomenclature differs with subunits adopting the
gene name. Nuclear gene-encoded subunits are termed NADH dehy-
drogenase ubiquinone (“NDU”) followed by a description of predicted
function/location (FS–iron–sulfur protein region, FV-flavoprotein
region, FA-subcomplexα, FB-subcomplexβ, FC-undefined subcomplex).
mtDNA-encoded subunits are termed NADH dehydrogenase (ND)
followed by the subunit number. The core subunits NDUFS1, NDUFS2,
NDUFS3 NDUFS7, NDUFS8, NDUFV1 and NDUFV2 are encoded by the
nuclear genome and are highly conserved in eukaryotes. These subunits
are involved in the oxidation of NADH and subsequent transfer of
electrons to ubiquinone. The seven remaining core subunits ND1–6 and
ND4L, are encoded by mtDNA. They are all very hydrophobic and are
located in the membrane arm of the complex. The mtDNA-encoded
subunits, along with ~13 integral membrane proteins encoded by the
nuclear genome, contribute more than 60 transmembrane segments to
form the membrane arm of complex I [34]. Subunit ND1 harbors a
quinone binding site and is therefore predicted to be involved in
ubiquinonebinding. SubunitsND4andND5mayalsoharbor ubiquinone
binding sites [35]. Sequence analysis comparisons of ND2, ND4 andND5
show that they are related to K+/H+ or Na+/H+ antiporters, highlighting
their likely function in proton pumping [13].

6. Nuclear DNA-encoded supernumerary subunits

Of the 45 subunits that comprise mammalian complex I, 38 are
encoded by the nuclear genome. Of these, seven are core subunits
with the remainder, termed “supernumerary” subunits, having no
bacterial counterparts [36]. Some supernumerary subunits have
functions that are unrelated to electron transfer and proton pumping,
however most have no known function. They may have general roles
including stabilizing the complex, preventing the generation of
damaging reactive-oxygen species (ROS), or protecting the complex
from oxidative damage [30]. More specific roles for supernumerary
subunits in the regulation of activity or for the assembly of other
subunits into complex I have also been suggested. For example,
subunits of 10 and 18 kDawere found to be phosphorylated in a cAMP-
dependent manner. The 10 kDa subunit is NDUFA1 and the 18 kDa
subunit was originally thought to be NDUFS4, although it has more
recently been suggested to be NDUFB11 [37].

Some complex I subunits also appear to be involved in distinct
biochemical functions beyond the scope of complex I enzymatic
activity. For example, GRIM-19 was first described as a cell death-
regulatory protein induced by interferon-β and retinoic acid [38,39],
but was later identified as a subunit of complex I, termed NDUFA13
[38], where it is required for electron-transfer activity [40]. It is not
clear how GRIM-19/NDUFA13might be released frommitochondria as



Fig. 3. Proposed organization of subunits in mammalian complex I. Complex I forms an L-shaped structure in the inner membrane, with a large peripheral arm protruding into the
matrix. Through the use of mild chaotropic agents, complex I can be dissociated into subcomplexes Iα, Iβ, Iγ and Iλ. The subunit composition of these subcomplexes is shown (both
human and bovine nomenclature) [29]. Subunits in subcomplex Iγ are believed to separate from other subcomplexes during the dissociation process. The predicted location of
selected core ‘NDU’ and ‘ND’ subunits within complex I is as indicated.
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part of apoptotic initiation given that it is a subunit of complex I
which, unlike other apoptotic inducing factors, does not reside in the
intermembrane space. Nevertheless, reports on GRIM-19 playing a
role in cell death continue. This includes the recent finding that
induction of mitochondrial-stress and subsequent apoptosis by the
complex I inhibitor rotenone can be abrogated by expression of
cytomegaloviral-encoded RNA [41]. This RNA (β2.7) was reported to
interact with complex I where it prevents apoptosis-mediated re-
localization of GRIM19 and maintenance of cellular ATP production
required for viral replication. How such a viral RNAmight be imported
into mitochondria to target complex I remains to be determined.

How do the core and supernumerary complex I subunits fit
together into a functional enzyme? The subunit composition and
general topology of complex I has been defined through its dissection
into four subcomplexes (Iα, Iβ , Iλ and Iγ) using mild chaotropic
agents [42–44]. As shown in Fig. 3, subcomplex Iα is made up of
subunits from both the peripheral arm and a portion of the hydro-
phobic membrane arm, while subcomplex Iβ consists of subunits that
make up the majority of the membrane arm. Subunits not found in
either of these subcomplexes are located in subcomplex Iγ. Altering
the conditions can further dissociate subcomplex Iα to produce
subcomplex Iλ. This subcomplex represents the hydrophilic periph-
eral arm and contains the 15 subunits that provide all the redox
cofactors [30]. Subunit NDUFA13 represents the only membrane pro-
tein of subcomplex Iλ.

7. Interactions between complex I and other respiratory chain
complexes

In bacteria, some fungi, plants and mammals, respiratory chain
complexes have been found to be organized into supramolecular
structures termed “supercomplexes” or “respirasomes” [45–47]. By
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employing different detergents respiratory chain complexes can be
differentially dissected from these supercomplexes [47,48]. In mam-
mals, respirasomes are present in two major supercomplexes —- the
complete respirasome made of complexes I,III,IV, in a 1:2:4 ratio and
an additional smaller supercomplex containing complex III2:complex
IV4,. Complex II is thought to exist as a monomer and complex V as a
dimer although a larger form exists in yeast [47,49]. The “respiratory
string” model proposed by Schagger [47] posits that the respiratory
chain exists as a string of interconnected I1III2IV4 and III2IV4 in a 2:1
ratio. The functional benefits of supercomplex formation include: (1)
channeling of ubiquinol and cytochrome c, avoiding competition for
these substrates from other enzymes; (2) enhanced catalytic activity
from reduced diffusion times of substrates; and (3) the ability to
sequester ubisemiquinone thereby preventing the generation of
damaging superoxides [50]. Supercomplexes of dimeric complex V
have also been suggested to play a role in cristae formation [51,52].
The presence of respirasomes has also been shown to be essential for
the assembly/stability of complex I (see below).

8. Supercomplex structure

The projection structure of the bovine CI/CIII2/CIV supercomplex
was determined by single particle image analysis [53], and more
recently a 3D map was determined using random conical tilt electron
microscopy [54]. The crystal structures of dimeric complex III [55,56]
and complex IV [57], together with the cryo-EM structure of complex I
[20], were fitted into the 3D map. In the model, complex III2 occupies
the central area of themembrane arm of complex I while complex IV is
localized at the tip of the membrane arm where it shares a small
contact surface with complex III2. Only one of the complex III
monomers in the dimer is attached to complex I while the other
faces the lipid. In this configuration, all of the electron carrier binding
sites within the complexes are on the same face, thus supporting the
idea of reduced diffusion rates for substrates. Of note, the matrix arm
of complex I in the supercomplex is bent toward themembrane giving
it a different shape from that of isolated complex I [20].

9. Assembly of complex I

The assembly of subunits into complex I has proved to be a very
puzzling problem to address, complicated by the size of the enzyme
and its dual genomic control. Newly imported subunits, encoded by
the nuclear genome must assemble in coordination with the highly
hydrophobic subunits encoded by mtDNA. This coordinated process
also requires regulation and signaling between the mitochondrion
and nucleus [58–60]. Add to this the poorly understood role of
assembly proteins and lack of a detailed crystal structure and it
becomes clear why the assembly pathway of the so-called ‘behemoth’
of the respiratory chain has remained largely elusive. This is despite
the fact that a number of model systems have been employed to study
complex I assembly including fungi such as Neurospora crassa and
Yarrowia lipolytica [61–63], the nematode Caenornabditis elegans
[64], the protist Chlamydomonas reinhardtii [65,66] and cultured
mammalian cell lines [67–70].

10. Assembly of complex I in N. crassa

The first detailed model of mitochondrial complex I assembly was
derived from the aerobic fungus N. crassa. This model was developed
through pulse-chase labeling of assembly intermediates coupled with
the characterization of subcomplexes in mutant strains [61,71,72].
Mutants lacking subunits of the matrix arm could not assemble and
accumulated the membrane arm of the complex [73]. Conversely, a
mutant lacking a nuclear encoded subunit of the membrane arm
accumulated thematrix arm, and two subcomplexes of themembrane
arm [71]. From such studies, it was proposed that complex I in
N. crassa is assembled via evolutionarily conserved modules [16]. In
this model, the hydrophilic matrix arm is formed separately while the
membrane arm is constructed from ~200 kDa and ~350 kDa
intermediates [61]. The ~350 kDa intermediate was found to contain
two complex I intermediate associated proteins, CIA30 and CIA84,
which are essential for the assembly of the membrane arm and
dissociate prior to the formation of the holoenzyme [72]. Loss of either
protein prevents the formation of the ~350 kDa intermediate and
results in accumulation of the ~200 kDa intermediate and the
hydrophilic matrix arm. While the assembly of complex I in N. crassa
provides a useful model, its application to mammalian systems is
limited due to evolutionary divergence.

11. Piecing together the assembly pathway of mammalian
complex I

Most of the current knowledge obtained for the assembly of
mammalian complex I has been compiled from observations made in
systems where the assembly process is disturbed [34,67,69,74–77].
These studies have allowed for the identification of complex I subunits
that are essential for assembly and stability of the holoenzyme. Loss of
mtDNA-encoded subunits ND1, ND2, ND4, ND5 and ND6 affect
complex I assembly/stability to varying degrees. Mutations in ND1
and ND6 affect the levels of assembled complex I [78], with ND4 and
ND6 essential for the integration of other ND subunits into the
complex [79,80]. In addition, cells from a patient with a mutation in
ND2 were found to be defective in complex I assembly and
accumulated subcomplexes [69]. The absence of ND5 leads to a
lower efficiency of assembly/stability of the membrane arm [81],
however it is not essential for the assembly of the holoenzyme. Given
that ND5 lies at the periphery of the membrane it may be the last of
the ND subunits to assemble [42,82].

In the absence of mtDNA-encoded subunits, the levels of some
nuclearDNA-encoded subunits of theperipheral armremainunchanged
[83]. Therefore it has been suggested that the presence of mtDNA-
encoded subunits is not required for the formation of a peripheral arm
subcomplex [34]. Indeed, cells lacking mtDNA (ρ0), contain a sub-
complex of the peripheral arm consisting of at least NDUFS2, NDUFS3
and NDUFS8 [83]. This subcomplex is suggested to link the membrane
arm to the peripheral arm, and may therefore represent an early
assembly intermediate. While NDUFS7 is thought to reside next to
NDUFS2 in the holoenzyme, it was not found in the subcomplex of the
peripheral arm in ρ0 cells [83]. Its absence from this subcomplex
suggests that NDUFS7 may be located near the membrane domain and
requires the presence of integral membrane proteins (e.g. ND subunits)
for its incorporation [83,84]. Subcomplexes have also been identified
from patients with complex I defects. Analysis of mitochondria from
patients with mutations in subunits NDUFS4, NDUFV1 and NDUFS6, all
revealed an accumulation of an ~800 kDa subcomplex [69,85–87].

Another supernumerary subunit, NDUFA1 has also been shown to
be important for complex I assembly [88]. Insertion and stabilization
of NDUFA1 in the mitochondrial inner membrane was shown to be
reliant on the presence of mtDNA-encoded subunits, in particular ND4
and ND6 [74]. Furthermore, using a conditional complex I assembly
system developed in Chinese hamster fibroblasts, NDUFA1 was
suggested to form part of an assembly intermediate consisting of
both mtDNA- and nDNA-encoded subunits [74].

12. Current models of human complex I assembly

A number of recent studies have increased our understanding into
the assembly of complex I in humans. Many studies have utilized cell
lines from patients with mutations in subunits or assembly factors of
complex I (Table 1). One study involved the analysis of a cohort of four
patients presenting with isolated complex I deficiency and resulted in
the identification of sevenputative assembly intermediates [69]. These
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intermediates contained a combination of both peripheral and
membrane arm subunits. Another study used an inducible complex I
assembly system. The approach involved depleting cells of complex
I by inhibiting translation of mtDNA with doxycycline, followed by
removal of the drug and monitoring assembly of newly synthesized
complex I subunits using 2D blue-native polyacrylamide gel electro-
phoresis (BN-PAGE) and western analysis. It was concluded that
complex I assembly involves a semi-sequential pathway involving
functional modules, similar to N. crassa [67]. The same group recently
refined this model by analyzing the assembly of GFP-tagged NDUFS3
within intermediate subcomplexes before maturation into complex I
[68]. The final andmost recent studymonitored the assembly of newly
imported nDNA-encoded subunits into isolated mitochondria that
contained pre-existing complex I as well as performing chase studies
of radiolabeled mtDNA-encoded subunits [70]. While these studies
contain some differences with respect to the entry of specific subunits,
a general consensus of the subunit assembly pathway in human
mitochondria can be drawn. An early subassembly of the Q module is
anchored to the membrane by ND1 and other membrane embedded
subunits. This is followedbyexpansion of both theQ and Pmodules via
the addition of subunits/subassemblies and completion of complex I
assembly by addition of the N module. While most of the models
suggest a progressive pathway of complex I assembly, it was addi-
tionally proposed that assembly is a dynamic process in which sub-
units and/or subassemblies may be exchanged with pre-existing ones
[70].

13. Complex I assembly proteins

Given the subunit composition of complex I and its regulation by
two genomes, it is expected that many factors are required in its
biogenesis. Indeed, as a point of comparison, mammalian complex IV,
consisting of only 13 subunits, requires the assistance of at least 14
assembly factors for its correct biogenesis [89]. The role of such factors
in complex I biogenesis will include involvement in subunit matura-
tion (e.g. folding/co-factor attachment), chaperoning intermediate
assemblies, subunit synthesis and turnover. Only in recent years have
a number of assembly factors for complex I been validated while
others have been implicated in the process.

13.1. Human CIA30

Functional studies of CIA30 by Vogel et al. [90] found that knockdown
of the assembly factor using RNA interference led to reduced levels of
both enzymatic activity and assembled complex I. The role of CIA30 in
complex I assemblywas further demonstratedwith the identification of a
patient presenting with cardioencephalomyopathy as a result of muta-
tions in the gene encoding CIA30 (NDUFAF1) [91]. Low levels of CIA30 in
patient mitochondria correlated with decreased levels of assembled
complex I and also decreased enzymatic activity. The assembly process of
complex Iwas shown tobedisturbed at an early stage. Restorationofwild
type CIA30 levels in the patient using a lentiviral-inducible transfection
system restored complex I levels [91]. CIA30 is not found with fully
assembled complex I, but instead resides within two complexes of ~460
and ~830 kDa [91,92].

CIA30 was originally identified in N. crassawithin a subassembly of
complex I [72]. Another factor termed CIA84 was also identified in this
subassembly, but does not associate with CIA30. The putative human
homolog of N. crassa CIA84, identified recently via comparative
genomics [12], awaits further characterization into its potential role in
complex I assembly.

13.2. Ecsit

Ecsit, originally identified as a cytosolic adaptor protein essential
for the inflammatory response and embryonic development [93,94],
has been shown to interact with CIA30 in complex I assembly [95].
Ecsit was identified through co-purification with CIA30 using a
tandem affinity purification system on mitochondrial lysates [95].
Although predominantly cytosolic, a small proportion of Ecsit is found
in mitochondria where it co-localizes in high molecular weight
complexes with CIA30. Knockdown of Ecsit reduces CIA30 levels and
leads to impaired complex I assembly. In contrast to CIA30 knock-
down, decreased levels of Ecsit lead to the accumulation of complex I
intermediates which indicates that although both proteins are present
in ~400–830 kDa complexes, their mechanism of action may differ
[95].

13.3. B17.2L

Whole genome subtraction studies between fermentative yeasts
lacking complex I (e.g. S. cerevisiae) and aerobic yeasts that harbor
complex I (e.g. Y. lipolytica) led to the identification of B17.2L [87]. A
mutation in exon 2 resulting in a premature stop codonwas identified
in the gene encoding B17.2L in a patient with progressive encephalo-
pathy [87]. The patient presented with severe enzymatic deficiency of
complex I that also correlated with reduced assembly of the
holoenzyme. Re-introduction of B17.2L cDNA in patient fibroblasts
rescued complex I assembly and activity. B17.2L was subsequently
identified to associate with an ~830 kDa subcomplex in several
patients with complex I assembly defects but was not found in the
mature holoenzyme [70,87]. This intermediate appears to represent
complex I lacking the matrix-located NADH dehydrogenase portion of
complex I. Furthermore, given that B17.2L was shown to associatewith
complex I subunits ND1, NDUFS1, NDUFS2, NDUFS7 and NDUFS4 in
normal mitochondria, it has been attributed to play a direct role in
complex I assembly [70,87].

13.4. C6ORF66

Homozygosity mapping of patients with isolated complex I
deficiency led to the identification of a novel assembly factor encoded
by the C60RF66 gene [96]. A missensemutation in a conserved residue
of C6ORF66 led to a decrease of the protein in muscle and severely
reduced levels of complex I activity. BN-PAGE analysis revealed
diminished levels of assembled complex I, with the accumulation of
two smaller intermediates, one of which resembles the ~830 kDa
intermediate associated with B17.2L. Patient cells stably transduced
with C6ORF66 displayed a return to normal levels of complex I activity
and therefore correction of the defect.

Interestingly, both C6ORF66 and B17.2L were initially identified as
proteins involved with cancer. It was reported that C6ORF66 promotes
breast cell cancer invasiveness [97], while B17.2L is a transcriptional
target of c-myc, and reduction of its levels leads to inhibition of
tumorigenesis [98]. Given that C6ORF66 and B17.2L, along with Ecsit
[93,94], have been implicated with roles outside that of complex I
biogenesis, it is possible that mitochondrial function and complex I
activity may be linked to these processes. These findings outline the
need for further studies on the biochemical functions of these proteins.

13.5. Apoptosis inducing factor (AIF)

The normal function performed by apoptosis-inducing factor (AIF)
appears to be in complex I maintenance [99,100]. AIF is a flavoprotein
with NADH oxidase activity, which is normally located in the
mitochondrial intermembrane space, or loosely associated with the
inner membrane [101,102]. Induction of apoptosis results in the
translocation of AIF from mitochondria to the cytosol and nucleus
where it interacts with cyclophilin A to become an active DNAse [103].
The apoptotic function of AIF is not dependant on its NADH oxidase
activity [104,105]. An important step towards elucidating AIF's role in
complex I maintenance was made with the discovery of the Harlequin
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(Hq) mouse [106]. Expression levels of AIF are reduced to ~20% of wild
type levels in Hq mice, and mice exhibit increased degeneration of
certain neurons accompanied by oxidative stress [106]. Hq mouse
retinal and cerebellar granule neurons show reduced levels of complex
I subunits and decreased enzyme activity [99]. Complex I deficiency
has also been identified in AIF-deficient cardiac and skeletal muscle
from conditional knockout mice [107], in HeLa cells with knocked
down AIF [99], and AIF-null embryonic mouse stem cells [99,108]. Loss
of AIF activity in cells causes dysfunction of complex I due to failure of
proper subunit synthesis or assembly [99]. How AIF, a protein that is
normally located in the mitochondrial intermembrane space, func-
tions in complex I maintenance remains unresolved.

14. General assembly proteins and disease

In addition to assembly proteins that appear to have a direct role in
complex I assembly, a number of proteins also exist that have general
roles in the biogenesis of the OXPHOS machinery. These include Oxa1
[109], prohibitins [110,111]. [83], paraplegin [112,113], and frataxin
[114]. Such proteins have broad functions in mitochondrial biogenesis
including maturation of protein subunits and protein degradation.

15. Supercomplex involvement in complex I assembly/stability

The formation of respiratory chain supercomplexes is critical for the
stability and possibly assembly of complex I. Loss of either complex III or
IV in the bacterium Paracoccus dentitrificans leads to a decrease in
complex I levels [46]. For human mitochondria it has been well
established that complex I is stabilized in the mitochondrial membrane
by association with dimeric complex III. Genetic defects in humans
affecting complex III assembly, such as mutations in the mtDNA
cytochrome b gene [115] or the nuclear gene encoding the complex III
assembly factor BCS1L [116], can lead to secondary defects in complex I.
Metabolic labeling ofmtDNA products in cells harboring a cytochrome b
mutation shows that while complex I assembly is unaffected, the
stability of complex I is impaired due to failure of supercomplex
formation [115]. Mutations in cytochrome b that only affect complex III
activity, but not assembly, have no effect on complex I [115].

Likewise, observationsmade inpatient cellswithmutations inBCS1L
show that the physical presence of complex III (but not its enzymatic
activity), is required for complex I stability [116,117]. Complex IVhas also
been implicated in theassembly/stabilityof complex I although its role is
not as clear [118,119]. A knockout mouse cell line of the complex IV
assembly factor COX10, resulting in no detectable levels of complex IV,
also presentedwith decreased levels of assembled complex I [118]. It has
been suggested that complex IV may have a role in complex I assembly
since pulse-chase experiments in COX10 knockout cells could not detect
any newly assembled complex I [118]. However it appears that unlike
complex III, even residual complex IV levels are adequate for complex I
assembly/stability as patients with missense mutations in COX10 have
normal levels of complex I [120]. Furthermore, complex I is unaffected in
patient fibroblasts with almost undetectable levels of complex IV [48].
The exact role of complex IV in the assembly/stability of complex I awaits
further clarification.

It is now apparent that supercomplexes aid in the stability of
complex I. However, it is not knownwhether the stability provided is a
result of assistance during assembly of complex I or stability after
assembly. As discussed earlier, complexes III and IV share a large contact
surface with the membrane portion of complex I while only sharing
minimal contact with each other. Given that the major contact site
contributedby complex I is through themembrane arm, it can be argued
that only once a significant portion of this arm has formedwill it be able
to interact with complexes III and IV to form supercomplexes. Indeed, a
late stage ~830kDa intermediate of complex I that is associatedwith the
assembly protein B17.2L was identified in a supercomplex with dimeric
complex III [70,87]. Furthermore, a membrane arm portion of complex I
in N. crassa was found to be in association in respirasomes with
complexes III and IV [121]. These results indicate that complex I may
associate into supercomplexes prior to completion of its assembly. Even
in the absence of an assembled complex I, supercomplexes of CIII2/CIV
can form [121]. In yeast mitochondria, where complex I is absent,
intermediates of complex IV associate with complex III during the
assembly process [122], suggesting that supercomplex formation is
likely to occur in conjunction with respiratory chain biogenesis. Other
respiratory chain complexesmay therefore act as scaffolds for complex I
intermediates during later stages of complex I assembly while also
providing stabilization/protection fromdegradation followingassembly.

A number of other factors influence the stability of supercomplexes
following their formation. In particular, cardiolipin, a phospholipid
unique to the mitochondrial inner membrane, has been reported to
play an important role in promoting and/or stabilizing respiratory
chain supercomplexes [123–126]. Mutations in the taz1 gene that
encodes Tafazzin, a putative phospholipid acyltransferase involved in
cardiolipin remodeling, lead to destabilization of the complex III2/
complex IV supercomplex in yeast [127]. In humans, defective Tafazzin
is associated with Barth Syndrome, an often fatal disease that presents
with cardiomyopathy, neutropenia and 3-methylglutaconic aciduria
[128]. Cardiolipin defects in lymphoblast mitochondria from Barth
Syndrome patients cause instability of the complex I/complex III2/
complex IV supercomplex, resulting in the liberation of complex IV
monomer [129]. The supramolecular association of complexes I and III
was additionally found to be destabilized in Barth Syndrome patient
mitochondria [129]. This suggests that defects in supercomplex
assembly and/or stability may contribute to pathogenesis in mito-
chondrial disease.

16. Model for the assembly of complex I in mammalian
mitochondria

Piecing together what we know about human complex I assembly
allows us to propose an updatedmodel for its biogenesis (Fig. 4). Older
models of complex I assembly describe a unidirectional pathway in
which complex I is built from a starting block that continues to
completion. However, since nuclear DNA-encoded subunits are likely
to be continuously imported intomitochondria, not every subunit that
is imported must be incorporated into new assemblies. Instead a
subunit may assemble with pre-existing subunits that undergo dy-
namic transitions between intermediate and fullyassembled complex I
forms [70]. An exchange process of protein complex components has
also been observed in photosystem I (PSI) [130] and the bacterial
flagellamotor [131]. It appears that nuclear DNA-encoded subunits can
integrate rapidly into complex I while mtDNA-encoded subunits first
assemble into intermediate complexes that require significant time for
their integration into the holoenzyme [70,132]. These findings point
toward a mechanism of complex I biogenesis involving both synthesis
of mtDNA-encoded subunits to seed new complex I assemblies and
exchange of pre-existing subunits with newly imported ones to main-
tain complex I homeostasis. The model posits that newly imported,
nuclear DNA-encoded subunits incorporate into subassemblies of
functional modules via a dynamic process. While the exact order of
subassembly integration in the biogenesis pathway is enigmatic given
its dynamic nature, differentiations can be made between modules
that are assembled at early or late stages.

In the model (Fig. 4), subunits NDUFS2 and NDUFS7 incorporate
into a subassembly of the Q module. It has been suggested that this
subassembly is one of the first complex I assembly intermediates
formed and additionally contains subunits NDUFS3 and NDUFS8
[67,83,92]. The mtDNA-encoded subunit ND1, possibly in conjunction
with other subunits, may anchor the subassembly of the Q module to
the inner membrane, thereby forming an ~400 kDa intermediate [70].
CIA30 is involved in the initial assembly of a separate ~460 kDa
membrane subcomplex that likely contains ND2, ND3 and ND6 (as



Fig. 4. Model of complex I assembly via dynamic cycling between intermediates and fully assembled complex I. (1) An early subassembly of the Q module consisting of NDUFS2,
NDUFS7 and other subunits, is anchored to themembrane by ND1 and othermembrane embedded subunits forming an ~400 kDa subcomplex. (2) CIA30, in conjunctionwith Ecsit, is
involved in the assembly of a ~460 kDa subcomplex of the P module that likely contains ND2, ND3 and ND6. (3) The ~400 kDa and ~460 kDa intermediates combine to form a stable
~830 kDa intermediate that is associated with B17.2L and possibly C6ORF66. This intermediate is in a supercomplex with complexes III and IV. Additional nDNA-encoded subunits
such as NDUFB8, NDUFA9 andNDUFA10may be added at this stage. (4) The latter stages of complex I assembly involve the addition of the Nmodule consisting of subunits NDUFV1–3,
NDUFS1, NDUFS4, NDUFS6 and NDUFA12, and the completion of the P module via the addition of ND4 and ND5. The assembly of subunits into the matrix arm of complex I correlates
with the release of CIA30/Ecsit and B17.2L resulting in (5) the holoenzyme. The role of AIF in the assembly process is unknown and awaits further clarification.
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well as other subunits) [91]. Ecsit may act in conjunctionwith CIA30 at
this stage. The membrane arm intermediates come together to form
an ~830 kDa intermediate that is associated with B17.2L and perhaps
C6ORF66. It is possible that B17.2L, Ecsit, CIA30 and C6ORF66 may be
associated with complex I at the same time during a certain stage of
the assembly process, however, such an occurrence is likely to involve
independent roles of these factors in complex I assembly. At some
stage in the course of assembly, complexes III and IV combine with a
complex I intermediate to form a supercomplex. This can occur at the
stage of the ~830 kDa intermediate, however it is currently unknown
if supercomplex association occurs earlier. Additional subunits such as
NDUFA9, NDUFA10 and NDUFB8 may be added to the ~830 kDa
intermediate during, or subsequent to, its formation [68,70]. Follow-
ing the formation of the ~830 kDa intermediate, a subassembly of the
N module or ‘cap’ of complex I is added. The ‘cap’ consists of subunits
NDUFV1, NDUFV2, NDUFV3, NDUFS1, NDUFS4, NDUFS6 and other
subunits. The assembly process is likely to be completed by the
addition of ND4 and ND5 to the large membrane arm which finalizes
assembly of the transporter module [70,91].

17. Concluding remarks

We are in an emerging age of systems biology where biochemists
are aware that biological processes are extremely complex, interlinked
and interdependent. Complex I assembly is not a unidirectional
pathway as initially thought. In fact, it is a regulated interplay of
protein import, mtDNA protein translation, membrane protein
insertion and stabilization, assisted by assembly factors and super-
complexes. Thus, there is still a long way to go in understanding the
biogenesis of complex I. Much of this will come down to elucidating
the molecular mechanisms of the various assembly proteins. In
addition, an improved understanding of complex I assembly will also
require studies on the formation of supercomplexes and the factors
involved. With continuing research and the speed of identification of
new assembly factors increasing, the complex I assembly puzzle can
be slowly pieced together.
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