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In this paper, using a large database from the Long Term Pavement Performance program, the authors
developed an Artificial Neural Network (ANN) to estimate the structural performance of asphalt pave-
ments from roughness data. Considering advantages of modern high-performance survey devices in
the acquisition of road pavement functional parameters, it would be of practical significance if the struc-
tural state of a pavement could be estimated from its functional conditions. To differentiate various road
section conditions, several significant input parameters, related to traffic, weather, and structural aspects,
have been included in the analysis. The results are very interesting and prove that the ANN represents an
adequate model to evidence this relation. The papers shows the effectiveness of the adoption of a large
database for the analysis of the correlation. ANN provides also better results in comparison with Linear
Regression. Further, the authors trained three different ANNs to analyse the effects of modified datasets
and different variables. The numerical outcomes confirm that, by using this approach, it is possible to cor-
relate with good accuracy roughness and structural performance, allowing road agencies to actually
reduce the deflection test frequency, since they are generally more costly, time consuming, and disrup-
tive to traffic than functional surveys.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Assuring good conditions to the pavement allows users to drive
with acceptable comfort and safety levels. However, in order to
guarantee high quality standard, road agencies have to monitor
the performance parameters of the entire network frequently and
to adopt the most proper maintenance operations where needed.
Indeed, continuous collection of new data regarding pavement
conditions is a strategical operation to update Pavement Manage-
ment Systems (PMSs) and optimize network maintenance and
agency funds. Pavement performance parameters are also very
numerous and diversified (structural and functional parameters).
Since surveys to be performed are very different and numerous,
this represents a very expensive and time-consuming task. Today
it is relatively economical to perform roughness or distress mea-
surements through high-speed profilometers or laser-lightning
detection systems [31,29]. However, deflection data collection by
means of Falling Weight Deflectometer (FWD) or Heavy Weight
Deflectometer (HWD) is slow, with high unit costs, and adverse
effects on traffic due to the stop-and-go procedure [14,26].

To overpass this limitation, many researchers have tried to
analyse various performance indicator (roughness, distresses,
structural capacity, etc.) and to identify some useful correlation
among them [3,23,32,7,11]. In this way, it would be possible to
estimate the value of some indices performing other surveys,
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reducing then the frequency of the slowest and most expensive
ones. The most interesting and remarkable relationship should
exist between roughness measurements and the pavement struc-
tural performance. It is known that roughness and irregularities
are related to deterioration of the pavement structural capacity
and, if a pavement structure is not designed adequately, roughness
would increase quickly [26]. Moreover, attention should be paid on
overlay and maintenance operations that can alter the relationship,
since they can immediately reduce roughness, without improving
the pavement structural capacity significantly. However, despite
some research attempts, it is not easy to analytically develop this
relationship. In a report for proposing a novel index describing
structural adequacy, Zhang et al. [36] combined data to visualize
a possible trend between some deterioration variables (including
also ride quality) and structural parameters, but they did not
establish any analytical relationship between them through linear
regression or other mathematical methods. The most significant
contribution on the topic was provided by an FHWA report [26],
in which several highway sections were studied to find a numerical
relationship between International Roughness Index (IRI) and
Structural Number (SN). The researchers investigated a perfor-
mance data set from the Long Term Pavement Performance (LTPP)
program, but did not find any relationship neither in the parameter
values nor in their change rates. They concluded that good ride
quality does not mean good structural adequacy and that it is very
hard to find a simple relationship between IRI and SN excluding
most other factors. Bianchini and Bandini [6] suggested a Neuro-
Fuzzy model for prediction of pavement performance (in terms
of Pavement Serviceability Index) in Minnesota asphalt pavement
roads, considering deflection and distress data, with acceptable
results, but the study did not analyse directly the correlation
between roughness and SN.

In this paper, the authors propose a different approach to attest
the relationship existing between roughness and structural perfor-
mance on asphalt pavement. In detail, analysing and combining a
large set of data from the LTPP program, the authors have trained
an Artificial Neural Network (ANN) to find an analytical and reli-
able correlation between roughness and structural capacity.
Roughness has been measured using IRI, while the structural per-
formance of the pavement has been evaluated through the effec-
tive SN (SNeff). According to the procedure proposed in the
AASHTO Guide [1], SNeff has been calculated from deflection mea-
surements. The ANN has been trained using a large data set of
input parameters, to differentiate various scenarios and take into
account numerous relevant aspects, such as traffic, weather, and
structural conditions. In the paper, for more clarity, various net-
works are presented, considering several data samples and differ-
ent groups of sections. For all the networks, training results and
numerical validations are provided. In general, the numerical out-
comes are useful to analytically demonstrate the connection
between structural performance and roughness and the ANN
resulted an adequate method for studying the problem, with better
results than a classical linear regression approach.

2. Theoretical notes on ANNs

ANNs are recent computational models defined in analogy with
the biological characteristics to simulate the decision process in
the brain. They are useful to approximate and estimate unknown
functions depending on various and numerous input values. One
of the main characteristics of this approach is that it represents a
way to solve very complex and nonlinear problems using only very
simple mathematical operations [25,18]. In particular, ANN can be
considered as a ‘‘black-box” approach, since the results are pro-
duced with no regards to the causal relationships between input
and output [28]. The method potentiality is fully exploited when
adopted for big data analysis and it can be used to develop gener-
alized solutions to problems using large set of example data [15].
Like the brain, the ANN is made up of various interconnected neu-
rons, which receive input, process the information, and produce
output for other linked neurons.

Many papers presented application of ANNs in different areas of
civil engineering with good results. Among all, ANNs were adopted
for structural, construction, environmental, geotechnical and
infrastructure engineering. Adeli [2] reviewed the ANN state of
the art in the 900s. Concerning the infrastructures, Ceylan et al.
[10] presented a recent survey on ANN application in pavement
engineering. Eldin and Senouci [13] proposed an ANN for rating
highway pavement conditions, while Terzi [30] presented a model
for predicting PSI considering distresses. Roberts and Attoh-Okine
[27] used different kinds of ANNs to produce prediction of pave-
ment performance in terms of IRI, while Kirbas� and Karas�ahin
[20] compared ANN to regression analysis and multiadaptive
regression slides for determining pavement performance models
in terms of PCI. Attoh-Okine [5] adopted an ANN model to evaluate
pavement conditions from distresses grouping different relevant
pavement condition variables, while Owusu-Ababia [22] suggested
a procedure to estimate evolution of crackings. Plati et al. [24]
adopted an ANN to evaluate pavement structural condition from
FWD data. La Torre et al. [21] tried to predict roughness on high-
way pavements by means of ANN, but this technique can be also
adopted for crack recognition [35]. Other interesting approaches
in infrastructure engineering were proposed for the analysis of
the factors influencing the compaction phase [4], for the evaluation
of the driver’s visual perception [8], for maintenance cost estima-
tion and prioritization [16,9,33], for pavement friction manage-
ment of airport runways [17], and for the aging analysis of
asphalt binders [34].

Multilayer Feed-forward Neural Network (MFNN) is the most
widely used type of ANN. An MFNN is characterized by three kinds
of layers of interconnected neurons: input, hidden, and output lay-
ers (Fig. 1a). Each neuron processes the received inputs and,
according to a properly defined activation function, produces an
output (Fig. 1b) that is transmitted to neurons in the following
layer through specific connections defining the network topology.
Each connection is associated to a specific weight (wi) that ampli-
fies or reduces the input. For the single neuron, the relationship
existing between inputs (xi) and output (yi) is defined using a
specific transfer function that usually has the logistic sigmoidal
shape (Eq. (1), Fig. 1c).

f ðIÞ ¼ 1
1þ e�I

ð1Þ

where I = R wi xi is the sum of the weighted inputs xi produced by
the previous neurons.

In a ‘‘supervised approach” – such as MFNN -, given a large set
of input and output data, the training procedure consists in the
modulation of the various weights to produce acceptable outputs.
The results should be very similar to the output provided for
training. Usually, the training phase is performed using a back
propagation model [19,12] that allows the network to adjust
the weights in a reverse direction, distributing the error among
the various neurons and minimizing it after each iteration.
Levenberg-Marquardt is the most used training algorithm and,
generally, the error is evaluated in terms of Mean Square Error
(MSE). If a set of N records is considered MSE can be evaluated
using Eq. (2).

MSE ¼ 1
N

Xn
i¼0

ðeiÞ2 ¼ 1
N

Xn
i¼0

ðti � piÞ2 ð2Þ



Fig. 1. a) Layers of a MLP ANN and network topology. b) Perceptron structure. c) Sigmoidal transfer function.
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where ei is the error for each set of input, ti is the expected out-
put, and pi represents the output provided by the network.

3. Training database

Considering the aim of the research, in order to produce a gen-
eral model and have enough examples for training the ANN, there
has been a need of analysing a very large data set of highway sec-
tions. For this reason, the authors decided to derive the perfor-
mance and structural information from the LTPP database. The
LTPP program was established as a part of the Strategic Highway
Research Program (SHRP) and has been widely used as a reference
database for analytical model definition and validation
([21,23,32,26]. This database contains records on structural charac-
teristics, monitoring, maintenance, climatic features, and traffic
details for over 2500 test sections located in North-American high-
ways for more than 25 years. The analysis has been focused on
asphalt concrete (AC) pavements. Maintenance and rehabilitation
operations have been excluded from the dataset – i.e. measure-
ments have been considered for each section until the first mainte-
nance operation was performed. This was useful to simplify the
research, avoiding the introduction of further unknown relation-
ships between the parameters. Networks have been trained using
various parameters (in different combinations for different net-
works) related to the main aspects that affect structural perfor-
mance and, thus, its relationship with roughness. The authors
examined records related to 342 different test sections from
almost all different LTPP states. They have been analysed, aver-
aged, and combined to produce a reliable and exhaustive data
set. Traffic and climatic measurements have been averaged by
the number of observation years in the database, providing a speci-
fic and stable information for each section. In detail, the authors
considered 13 different parameters, listed in the following:

a) Structural parameters:

� pavement total thickness (H) in inches, including asphalt

layers and eventual subbase;
� asphalt layer thickness (Ha) in inches;
b) Traffic parameters:

� average of annual ESALs (Equivalent Single Axle Load) in

thousands in the LTPP lane (kE);
� average of estimated annual average daily number of
trucks in the LTPP lane (Tr);
c) Climatic parameters:

� average temperature (Tm), i.e. the mean of the annual

average temperatures on the selected section in Celsius
degrees;

� standardized temperature range (T⁄), as a measurement
of the temperature oscillation; this parameter has been
evaluated using Eq. (3), where Tmax and Tmin are respec-
tively the mean values of the annual maximum and the
annual minimum temperature in Celsius degrees;

T� ¼ Tmax � Tmin

Tm
ð3Þ

� average number of days with average annual tempera-
ture over 32� C in a year (D32);

� average number of days with average annual tempera-
ture below 0� C in a year (D0);
d) Performance parameters:

� time passed (Y) since the first profilometer survey in

years for each section;
� first measured IRI for each section (IRI0) – i.e. the IRI mea-

sured at year 0 -, as starting reference value;
� IRI value at a specific time for each section (average of left

and right wheel path IRI);
� SNeff at a specific time, according to the formulation pro-

vided by the AASHTO Pavement Design Guide (1993) as a
function of deflection test measurements and pavement
thickness, as explained in Section 3.1;

� average pavement surface temperature (Tt) of the section
during the deflection test phase in Celsius degrees.
Table 1 provides an example of records from the data set built
for this research (the ‘‘Code” column represents ‘‘State Code” and
‘‘SHRP ID” form LTPP). After value checking and data validation,
the authors selected 1021 total records. When pavement perfor-
mance indices (IRI and deflections) were not collected at the same
time, available IRI measurements were linearly interpolated for
obtaining IRI values at a specific time Y (related to FWD tests),
using the closest effective profilometer results. Table 2 show the
variation ranges for all the selected parameters.



Table 1
Data set example.

# Code Y H Ha Tr kE Tm T⁄ D32 D0 IRI0 IRI Tt SNeff

1 01_1011 0,6 16 2 166 42 15,5 0,83 42 71 0,841 0,841 28,6 4,1
2 01_1011 5,9 16 2 166 42 15,5 0,83 42 71 0,841 0,961 1,9 3,8
3 01_1019 0,5 12 4 193 93 18,9 0,68 72 33 1,373 1,395 27,7 2,9
4 01_1019 2,1 12 4 193 93 18,9 0,68 72 33 1,373 1,422 41,9 2,8
5 01_1019 7,6 12 4 193 93 18,9 0,68 72 33 1,373 1,763 12,9 2,7
6 01_1021 4,3 25 3 289 127 17,6 0,74 57 43 0,962 0,994 33,0 5,9
7 01_1021 8,7 25 3 289 127 17,6 0,74 57 43 0,962 1,150 17,3 6,2
8 01_4073 0,4 19 2 356 57 15,3 0,86 40 73 0,853 0,861 24,9 5,0
9 01_4073 2,4 19 2 356 57 15,3 0,86 40 73 0,853 0,891 30,4 5,0
10 01_4126 1,8 31 12 2396 629 15,6 0,88 46 72 0,815 0,836 24,7 8,1
11 01_4126 8,2 31 12 2396 629 15,6 0,88 46 72 0,815 0,995 14,9 8,3
12 01_4155 0,3 14 4 391 48 18,7 0,70 71 31 0,946 0,951 35,7 3,5
13 01_4155 1,1 14 4 391 48 18,7 0,70 71 31 0,946 0,955 40,0 3,5
14 01_4155 1,3 14 4 391 48 18,7 0,70 71 31 0,946 0,955 16,5 3,1
15 01_4155 7,7 14 4 391 48 18,7 0,70 71 31 0,946 1,061 22,5 2,9
16 01_6012 4,4 17 5 2141 606 17,7 0,72 69 45 1,192 2,116 36,5 4,6
17 01_6012 5,3 17 5 2141 606 17,7 0,72 69 45 1,192 2,422 32,6 4,3
18 01_6012 6,1 17 5 2141 606 17,7 0,72 69 45 1,192 2,481 26,5 4,4
19 02_1002 5,0 17 3 71 21 3,4 2,35 0 172 1,705 1,897 19,8 3,2
20 02_1002 7,9 17 3 71 21 3,4 2,35 0 172 1,705 1,528 30,8 3,2
21 04_1006 1,9 15 2 1980 2334 22,0 0,82 174 16 0,759 0,944 19,4 4,4
22 04_1006 3,2 15 2 1980 2334 22,0 0,82 174 16 0,759 1,120 49,1 4,1
23 – – – – – – – – – – – – – –
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3.1. Sneff calculation

In the research for the relationship between roughness and
structural performance, deflection tests have been considered to
evaluate the pavement structural adequacy. Directly involving
the deflection values is not a proper choice, because the structural
adequacy depends on many different parameters. Then, the
authors have preferred to numerically describe the pavement
structural performance in terms of SN. In detail, the AASHTO Guide
[1] provided an accurate procedure for determining the SNeff of an
existing pavement using deflection test results, as a function of the
total thickness of the pavement H (in inches) and the effective
pavement modulus Ep (Eq. (4)).
SNeff ¼ 0:0045H
ffiffiffiffiffi
Ep

3
q

ð4Þ

Ep can be calculated through an iterative procedure (Eq. (5))
considering the deflection (in inches) at center of load (d0) cor-
rected to 68 �F (20 �C), the pressure applied by the FWD plate in
psi (p), the load plate radius in inches (a), the total thickness of
the pavement in inches (H) and the subgrade resilient modulus
in psi (MR).
d0 ¼ 1:5pa
1

MR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ H

a

ffiffiffiffiffi
Ep
MR

3
q� �2r

0
BB@

1
CCAþ

1� 1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ H

að Þ2
q
Ep

0
BB@

1
CCA

2
6664

3
7775 ð5Þ

MR can also be evaluated using the FWD deflection results.
Since at large distance from the load the deflections are due to
the subgrade deformation only, it is possible to back-calculate
the subgrade resilient modulus considering one deflection
Table 2
Parameter variation ranges.

# Y H Ha Tr kE Tm T

Min 0,0 6 1 6 1 2,4 0
Max 21,9 46 20 6069 3093 25,4 4
measurement only. In particular, if P is the applied load in pounds,
dr (in inches) is the deflection measured at a distance r (in inches)
from the load, MR can be calculated using Eq. (6).

MR ¼ 0:24P
drr

ð6Þ

In order to produce accurate results, dr should be related to a
sufficiently far geophone from the load. In practice, r is related to
the radius of the stress bulb at the subgrade-pavement interface
(ar, in inches), as evidenced in Eq. (7).

r P 0:7ar ¼ 0:7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ H

ffiffiffiffiffiffiffi
Ep

MR

3

s !22
4

3
5

vuuut ð7Þ

Deflection at the center of the load vary with temperature, then
d0 has to be adjusted to a standard temperature of 68 �F (20 �C),
using specific chart as function of effective temperature and of
asphalt layer thickness. Fig. 2 represents different curves for the
evaluation of the temperature adjusting factor, interpolated form
those provided by the AASHTO Guide [1].
4. Numerical results

To evidence the relationship between IRI and SNeff the authors
have trained some specific ANNs. In particular, in order to under-
line various significant aspects, results of three different networks
are presented in this paper. N1 represents the reference network of
the paper. For better studying the methodology potential, the
authors have trained also networks N2 and N3. In particular, N2

has been designed to evaluate results produced using a smaller
and homogeneous sample, while N3 has been considered to evalu-
⁄ D32 D0 IRI0 IRI Tt SNeff

,3 0 0 0,575 0,000 �20,0 0,7
,8 174 232 3,184 4,034 56,8 14,4



Fig. 2. Temperature adjusting factor for d0 for granular and bituminous base.

Fig. 3. Network architecture for N1 and N2 (a), N3 (b).
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ate changes in the accuracy due to the factors included in the net-
work as input values.

The trained ANNs are listed in the following (for more clarity,
Fig. 3 represents their network architecture):

- N1: general network, with SNeff as the target value; it
includes all the available factors (12) for all the selected records
(1021);

- N2: records with similar Tm, with SNeff as the target value; it
was trained using only records with Tm between 15 �C and
25 �C (375 records) and all the available factors (12);
- N3: no climatic factors, with SNeff as the target value; it was
trained using all the selected records (1021) using only struc-
tural, traffic, and performance factors (8); Tm, T⁄, D32, and D0

were not considered for N3.

Each ANN contains 25 hidden neurons, and the related records
were randomly divided in the training (70 %), validation (15 %), and
test (15 %) groups. Trainings were performed using the Levenberg-
Marquardt algorithm, measuring performance by means of MSE.

Fig. 4 represents the regression charts for N1 for training phase
(a), validation (b), test (c), and total sample (d). Fig. 5 shows the



Fig. 4. Regression charts for N1. a) Training sample; b) validation sample; c) test sample; d) total sample.

Fig. 5. Regression charts for N1 (a), N2 (b), and N3 (c).
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total regression chart for N1, N2, and N3, while Fig. 6 provides the
related error histograms. Finally, Table 3 lists all the performance
results for the four ANNs.
5. Discussion

Numerical results presented in the paper are very worthwhile
to validate the approach and prove the relationship between IRI
and SNeff. First, in order to better understand the outcomes pro-
duced by the ANN method, it is significant to represent the rela-
tionship between IRI and SNeff (considering the 1021 records
used for N1 and N3) on a regression chart (Fig. 7). As previously
said, although both performance indicators should be strongly
related from a theoretical point of view, nothing appears from this
representation.

On the contrary, ANN approach has easily evidenced the corre-
lation and results related to N1 can numerically demonstrate this.
As proved by the charts presented in Fig. 4, the same records com-
bined with the other relevant parameters allowed the authors to



Fig. 6. Error histogram for N1 (a), N2 (b), and N3 (c).

Table 3
ANN performance results.

Network Factors Phase Records MSE R2

N1 12 Training 715 0.565 0.891
Validation 153 0.560 0.877
Test 153 0.701 0.850
Total 1021 0.585 0.880

N2 12 Training 263 0.033 0.992
Validation 56 0.244 0.939
Test 56 0.551 0.862
Total 375 0.142 0.965

N3 8 Training 715 0.721 0.851
Validation 153 0.723 0.837
Test 153 1.331 0.729
Total 1021 0.813 0.829
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obtain high accuracy in the structural performance estimation
through ANN. The R2 value is always higher than 0.85 for all the
three samples (training, validation, and test), with an overall value
of 0.88 and a peak for the training sample of almost 0.9. This is sig-
nificant to prove the existence of the sought correlation. Moreover,
the effectiveness of the method is further attested considering the
MSE, which varies around 0.5, assuring great accuracy and preci-
sion, as confirmed also by Fig. 6a that shows a Gaussian shape
for the error distribution with average almost equal to 0. For fur-
ther validation, a Linear Regression (LR) model has been performed
with the same records of N1. Fig 8 compares the regression charts
provided by the two approaches. As shown in Table 4, ANN can
assure better results in terms of both R2 and MSE values. Although
some of the records have been used only for testing in the ANN
approach, LR provides an R2 value 20% lower than ANN, while
the MSE for LR is more than two times larger than ANN. This evi-



Fig. 7. Regression chart IRI/SNeff.

Fig. 8. ANN (a) vs LR (b) with N1 records.

Table 4
LR vs ANN.

Model Factors Phase Records MSE R2

ANN 12 Training 715 0.565 0.891
Validation 153 0.560 0.877
Test 153 0.701 0.850
Total 1021 0.585 0.880

LR 12 Total 1021 1.308 1.308
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dences the advantages of the ANN method that can better general-
ize trends in noisy data and handle eventual non-linear behaviours.
Then, Table 5 represents the correlation matrix of the different
variables included in the analysis. Despite the obvious great influ-
ence of the total thickness on SNeff, the influence of IRI is still
evidenced.

Obviously, the authors believe that this is only a first step for
studying the correlation between roughness and structural perfor-
mance from a different perspective. Although the result is very
interesting, they think it can be corrected and further improved.
For simplifying future applications and evidencing advantages,
limitations, and possible improvements of the method, the authors
have trained networks N2 and N3.
In particular, N2 has been designed to evaluate results produced
using a smaller sample made up of more similar sections. As
expected, considering only records from sections with similar cli-
matic conditions (mean temperature between 15 �C and 25 �C),
the ANN can produce more precise outcomes (Fig. 5b). Although
only 36 % of records used for N1 were considered for training and
testing N2, the accuracy significantly increased: the overall R2

value is higher than 0.96 (with a peak for training of 0.992) and
the overall MSE decreased from 0.585 to 0.142. Advantages related
to the adoption of homogeneous sections can be evidenced also by
analysing the error histogram reported in Fig. 6b, where more than
80 % of the errors are included in the two central bins (�0.160 and
0.127). This test proves that considering more homogeneous and



Table 5
Correlation matrix.

Y H Ha Tr kE Tm T⁄ D32 D0 IRI0 IRI Tt SNeff

Y 1,000 0,073 �0,050 �0,060 �0,129 �0,006 �0,019 �0,024 0,013 �0,136 0,047 0,119 0,074
H 0,073 1,000 0,032 0,146 0,050 �0,244 0,141 �0,252 0,229 �0,218 �0,216 �0,083 0,814
Ha �0,050 0,032 1,000 0,182 0,231 �0,207 0,090 �0,235 0,214 0,100 0,106 �0,103 0,223
Tr �0,060 0,146 0,182 1,000 0,770 0,130 �0,133 0,017 �0,134 �0,048 �0,018 0,080 0,201
kE �0,129 0,050 0,231 0,770 1,000 0,082 �0,088 0,004 �0,085 �0,006 0,002 0,027 0,131
Tm �0,006 �0,244 �0,207 0,130 0,082 1,000 �0,836 0,851 �0,964 �0,092 �0,107 0,378 �0,144
T⁄ �0,019 0,141 0,090 �0,133 �0,088 �0,836 1,000 �0,603 0,835 0,082 0,124 �0,341 0,054
D32 �0,024 �0,252 �0,235 0,017 0,004 0,851 �0,603 1,000 �0,767 �0,040 �0,043 0,305 �0,154
D0 0,013 0,229 0,214 �0,134 �0,085 �0,964 0,835 �0,767 1,000 0,074 0,085 �0,361 0,144
IRI0 �0,136 �0,218 0,100 �0,048 �0,006 �0,092 0,082 �0,040 0,074 1,000 0,825 �0,068 �0,189
IRI 0,047 �0,216 0,106 �0,018 0,002 �0,107 0,124 �0,043 0,085 0,825 1,000 �0,031 �0,203
Tt 0,119 �0,083 �0,103 0,080 0,027 0,378 �0,341 0,305 �0,361 �0,068 �0,031 1,000 �0,130
SNeff 0,074 0,814 0,223 0,201 0,131 �0,144 0,054 �0,154 0,144 �0,189 �0,203 �0,130 1,000
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similar samples can assure very high precision and, naturally,
equal results can be obtained grouping similar data in terms of
structure, weather, traffic, etc. Then road agencies may feed and
train their own ANNs, including data from their own road sections
and surveys, obtaining very accurate and productive structural
performance estimations using roughness measurements and
reducing frequency of deflection tests.

Another way to improve the method and the estimation accu-
racy is related to the factors included in the network as input val-
ues. Results can be easily affected by number and quality of
considered factors and, especially, by their connection with the
studied relationship. N3 has been defined to prove this statement.
For simplicity, reverse approach has been used; then, as shown in
Fig. 3b, four of the previously considered factors have been
excluded (the climatic variables) with the aim of produce worse
numerical outcomes. Results listed in Table 3 and Fig. 5c prove this
assumption. Despite the same number of records of N1, excluding
weather variables caused a remarkable decrease of accuracy. The
R2 value fluctuates around 0.8 (an overall value of 0.829, with a
reduction of almost 0.05 compared to N1). MSE raised up to
0.813 (overall value) with almost twice value for the testing phase,
in comparison with N1. (1.331 versus 0.701). Then, since excluding
relevant factors as the climatic ones produced lower precision esti-
mations, method accuracy can be affected by the quality and the
characteristics of the considered factors. Consequently, future
researches can improve the method including in the analysis other
significant parameters (like raining variables, subgrade stiffness,
etc.) and other performance indicators (as cracking, rutting, etc.)
or increasing the accuracy of the considered ones (using different
and more reliable equations).

Finally, it is important to underline that this kind of prediction
model should be used in similar scenarios only. Adopting the
trained ANN for different contexts and larger time periods cer-
tainly affects the estimation quality, reducing the result accuracy
and reliability in a very significant way.
6. Conclusion

In this paper, the authors have proposed a different approach
for finally evidencing in a clear and statistically accurate way the
theoretical relationship between roughness and structural perfor-
mance in asphalt pavements. Using a large data set from the LTPP
database, the authors have trained an ANN to numerically estimate
that relationship. In detail, combining parameters concerning
structural characteristics, weather, traffic, and performance fea-
tures, roughness has been correlated to results of deflection tests,
examined in terms of SNeff. The provided results show high accu-
racy both in the testing and in the validation phase. For more clar-
ity and to better highlight the model efficiency, various ANNs have
been defined in this paper, considering different groups of
parameters or of road sections. The numerical application assess
that ANN can effectively be used as a powerful tool for estimating
structural performance using roughness data, especially if com-
pared to LR. This achievement would be useful for estimating pave-
ment structural condition where structural surveys are not
available or not conducted regularly. Obviously, although IRI-
SNeff correlation seems to be reliable, deflection tests must not
be avoided, since structural capacity needs to be directly assessed
increase the model accuracy and verify – and eventually correct –
structural performance predictions. However, this paper can repre-
sent only a preliminary approach to the problem and the model
may be further enhanced. Further studies should include in the
data set distress ratings collected through the innovative high-
performance survey devices and more precise or different climatic
and traffic variables. Training various sub-networks for more sim-
ilar pavement types or climatic areas can also provide more reli-
able and significant analytical correlation to actually improve
PMSs.
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