
Task Assignment Optimization in Geographically
Distributed Data Centers

Bowu Zhang
Marist College

Poughkeepsie, NY, USA
bowu.zhang@marist.edu

Jinho Hwang
IBM T.J. Watson Research Center

Yorktown Heights, NY, USA
jinho@us.ibm.com

Abstract—Recent advance in geo-distributed systems has made
distributed data processing possible, where tasks are decomposed
into subtasks, deployed into multiple data centers and run in
parallel. Compared to conventional approaches that process every
task in a single datacenter resulting in high latency and large data
aggregation, the geo-distributed cloud systems provide a highly
available and more economic platform. However, distributed
application (task) execution introduces extra cost and latency as
data need to be exchanged between data centers. In addition,
task dependency and diverse task constraints make it even
more challenging to choose an appropriate task assignment
strategy. In this paper, we discuss a task assignment problem
in geographically distributed cloud systems. In light of growing
demand from big data processing and storage, we consider data
intensive tasks where a task often requires significant computing
resources and its input data typically located in multiple data
centers. By taking the distributed input, task dependency, hetero-
geneous pricing scheme, and resource constraints into account,
we aim to optimize the performance when deploying tasks in
geo-graphically distributed data centers. A heuristic algorithm
is presented to provide an approximate solution to the proposed
NP-hard problem. We perform an extensive simulation study to
evaluate the performance of our solution under various settings.
The simulation results demonstrate that our approach can
outperform the state-of-the-art strategies, and achieve significant
reduction in cost and latency.

Index Terms—Cloud computing; Geo-distributed deployment;
Task assginment

I. INTRODUCTION

The recent years have witnessed the explosive growth of
data generated by various applications such as web search,
health monitoring, and social networks [1, 2] . To serve the
rising demand of big data storage and processing, major cloud
service providers now build tens of geographically distributed
datacenters. On the other hand, virtualization has evolved
into a more flattened and lighter function layer thanks to
lightweight virtual machines, containers and library OSes
(unikernels), calling for applications with a distributed deploy-
ment by segregating the application in different physical boxes,
or further different data centers. Compared with conventional
cloud systems where all the tasks are executed in a single
data center, geo-distributed cloud systems provide a highly
available and more economic platform where tasks can be
partitioned and executed in multiple data centers in parallel
[3, 4]. Taking advantage of these distributed resources, large-

scale and computation-intensive applications, can be realized
with significantly less resources and time.

However, deploying tasks in distributed data centers intro-
duces extra cost and latency as the data may need to be trans-
ferred between data centers, and the transmission cost (due
to electricity and bandwidth) and latency between servers in
different data centers are far greater than that between servers
in a single data center. Thus to implement big data applications
with optimized performance, we need to strategically design
and follow a rigorous optimization method. Intuitively, we may
want to deploy tasks in the closest data center to the user for
low transmission cost and latency, while it is possible that the
closest data center does not have enough capacity for tasks, or
it is more beneficial to place applications at data centers that
are less close but more efficient in processing. In addition, in
geo-distributed data centers, it has been a growing trend that
a user has his data and replicas saved in multiple data centers.
The performance of running tasks thus critically depends on
how many replicas are maintained, where these replicas are
located, and the choice of replica for input data. Moreover,
as a task can be splitted and its subtasks can be executed
distributedly in parallel, when the task would be finished is
determined by its “longest” subtask. Finishing one subtask fast
does not necessarily result in finishing the entire task fast.

To address the challenges outlined above, in this paper,
we focus on the problem of deploying tasks into distributed
data centers with an objective of optimized performance (i.e.,
minimizing latency/cost). Compared to the traditional all-in-
one single data center scenario, the problem of task assignment
in distributed cloud systems remains largely unexplored. Our
solution to the problem is motivated by the following obser-
vations in geo-distributed cloud services. First, geo-distributed
data centers vary in the pricing scheme and resource capacity
[5, 6]. Thus it is possible that it is more economic to run
tasks in data centers cheaper in price/greater in capacity than
in the closest data center. Second, most users have a number
of replicas stored on different data centers, and these replicas
are updated synchronously whenever there is a change in the
primary replica [7, 8]. When obtaining data, an application can
connect to any replica, not necessarily the primary one. Third,
data processing tasks in geo-distributed cloud systems often
involve significant workloads. These tasks can be decomposed
into subtasks that take input and run in parallel. However,

978-3-901882-89-0 @2017 IFIP 497



Data Center

Central Controller

Fig. 1. Geographically Distributed Data Centers and Central Controller.

Primary Storage Replica Replica

User

Fig. 2. Storage Replication.

there might exist dependency between subtasks such that the
input (or at least part of the input) of one subtask comes
from the output of another subtask [9]. As a result, the
former task has to wait until the latter finishes. Taking these
unique characteristics into account, we seek to design a set of
principles to guide task assignment in geo-distributed cloud
systems in an economic and effective fashion. In general, our
contributions are summarized below:

• We propose a task assignment problem in context of
distributed data centers, task dependency, heterogeneous
pricing scheme and resource constraints, with an objective
of minimizing cost and latency;
• We develope a heuristic algorithm that can deploy tasks
into distributed data centers in an economic and timely
fashion, to solve the proposed NP-hard problem;
• We perform an extensive simulation study to evaluate the
performance of the proposed solution under various settings.
Our simulation results demonstrate that our algorithm out-
performs the existing approaches.
The rest of the paper is organized as follows. In Section II,

we formulate the task assignment problem. A heuristic algo-
rithm is introduced in Section III. Section IV illustrates the
results of our simulation works. Finally, we introduce related
work in Section V, and conclude the paper in Section VI.

II. PROBLEM FORMULATION

A. Notations

Consider a geo-distributed cloud system where N data
centers are placed at different geographical locations and
managed by a central controller. Let D = {d1, d2, . . . , dN}
be the set of data centers, where di, i ∈ {1, . . . , N} represents
the data center in region i. We evaluate the capacity of a data
center di by ni, the number of servers residing in di. Assume

1

5

t

Sub Tasks

Receiver

D
e
p
e
n
d
e
n
t T

a
s
k
s

Independent Tasks

4 6

2

3

Fig. 3. Task Execution with Independent and Dependent Sub-tasks.

all servers considered in this paper are homogeneous, but the
number of servers that each data center contains (ni) may vary
due to energy and location constraints. Servers in a data center
are all connected to a switch, and data centers are connected
through switches. Let G(D,E) be the graph that describes
the data center topology where nodes stand for data centers,
and edges (in edge set E) stand for WAN links between data
centers (Fig.1).

We adopt a multi-cloud service paradigm [10, 11] which has
been widely used when processing big data in geo-distributed
cloud systems. In this paradigm, every user has a primary
replica and multiple secondary replicas while each replica
is stored in a different data center (Fig.2). When there is a
change in the primary replica, all secondary replicas will be
updated accordingly. Let U = {uid} be the set of users where
every user can be identified by an unique number uid. Define
RPuid = [rpuid(1), rpuid(2), . . . , rpuid(N)]T , where rpuid(i)
is 1 if there is a replica of user uid located in data center di,
and 0 otherwise. Let rpmuid ∈ D be the index of the data
center that the primary replica of uid resides in, and kuid
indicates the number of replicas that user uid has.

In this paper, we consider big data processing tasks which
often involves heavy loads of data processing and computation.
Assume that every task that arrives at the central controller
can be decomposed into multiple subtasks that can run in
parallel. As the input data storage spans multiple data centers,
such tasks(sub-tasks) can be deployed on any of input data
replicas, not necessarily the primary replica. By leveraging the
distributed storage of input data and parallel processing, we
can achieve lower latency than that by utilizing servers in a sin-
gle data center. We assign every task an unique identification
number tid. Define Stid = {stid(1), stid(2), . . . , stid(mtid)}
as the set of subtasks that task tid is composed of, where
stid(i), i ∈ {1, 2, . . . ,mtid} is a positive integer that indicates
the number of servers required to process the ith subtask of
tid, and mtid indicates the number of subtasks that task tid
contains. Let r(tid) ∈ U represent the receiver that the task
results will be directed to. In this paper, we assume that results
of a task will be written to receiver’s primary replica. Let
otid ∈ U represent the user/owner of the input data for task
tid. Without loss of generosity, we assume that the input data
of all the subtasks of tid is from the same user, but our model
can be easily extended to the case where a task has multiple

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Mini-Conference498



input data sources.
In addition, there might be task dependency between sub-

tasks in Stid. Let DPMtid be a mtid × mtid matrix, where
DPMtid(i, j) = 1 if there exits task dependency between
stid(i) and stid(j), and DPMtid(i, j) = 0 otherwise. If
DPMtid(i, j) = 1, subtask stid(j) must wait until stid(i)
completes its work, as the input of stid(j) includes both data
from otid and output of stid(i). Let TGtid(V Stid, DPtid) be a
directed task graph where nodes ∈ V Stid stand for the indices
of subtasks in Stid, and edges ∈ DPtid indicate the task depen-
dency between corresponding tasks. An edge dptid(i, j) exists
when DPMtid(i, j) = 1. Define a path in TGtid as a sequence
of nodes that are connected by edges. The starting node of a
path is the node that no edges coming in, i.e., node 1, 4 and 6
in Figure 3, while the ending node of a path is the node that
no edges are going out, i.e., node 3 and 5 in Figure 3. We
add an extra node t to TGtid to represent the receiver of task
tid, and draw an edge from every ending node to t as shown
in Figure 3. Let PTtid = {pttid(1), . . . , pttid(nptid)} be the
set of paths in TGtid, where nptid represents the number of
paths in TGtid, and each path in TGtid is described by a vec-
tor pttid(i) = [pttid(i)[0], pttid(i)[1], . . . , pttid(i)[nstid(i)]]

T

that nodes along the path are inserted to this vector in
order, i.e., pttid(i)[0] ∈ V Stid is the starting node, and
pttid(i)[nstid(i)] = t is the ending node. The number of nodes
along path pttid(i) is denoted by nstid(i). For example, in
Figure 3, there are 3 nodes along the path from node 1 to node
3, and the vector to represent this path would be [1, 2, 3, t]T .
Assume that subtasks on different paths are independent of
each other, in other words, there would be no two paths in
TG sharing the same node (except the ending node t).

Let ceitid(j), i ∈ {1, 2, . . . , N}, j ∈ {1, 2, . . . ,mtid} be the
execution cost of running the jth subtask of task tid, stid(j)
on data center di. Let ct(i, k) be the unit cost to transfer data
from data center di to another data center dk. Let f(stid(j))
represent the size of result for subtask stid(j) in terms of units.
Thus the cost of transferring the output of stid(j) from di to
dk is f(stid(j))× ct(i, k).

Let leitid(j), i ∈ {1, 2, . . . , N}, j ∈ {1, 2, . . . ,mtid} be
the execution latency of stid(j) on data center di. Let
lt(i, k, f) be the transmission latency to transfer f units of
data from data center di to another data center dk. Thus the
latency of transferring the output of stid(j) from di to dk is
lt(i, k, f(stid(j))).

Let Xtid be a mtid × N matrix that represents the data
center assignment for task tid, where the element at row i
and column j, xtid(i, j) is 1 if subtask stid(i) is deployed at
data center dj , and 0 otherwise. Assume a subtask can not be
splitted further, and can only be deployed to one and only one
data center, we have:∑

j

xtid(i, j) = 1,∀i ∈ {1, 2, . . . ,mtid} (1)

On the other hand, the aggregated assignment at datacenter dj

is
∑

i xtid(i, j), and we have:∑
i

xtid(i, j) ≤ n′i,∀j ∈ {1, 2, . . . , N} (2)

where n′i represents the capacity of dj at the time task tid gets
processed at the central controller. This ensures that aggregated
assignment processed at datacenter dj does not exceed its
current capacity.

Let ctid be the total cost of processing task tid in G(D,E).
We have:

ctid =

mtid∑
i=1

N∑
j=1

cejtid(i)× xtid(i, j)

+

mtid∑
i=1

mtid∑
j=1

N∑
k=1

N∑
q=1

f(stid(i))×

ct(k, q)× xtid(i, k)× xtid(j, q)×DPMtid(i, j)

(3)

Let ltid be the latency of processing task tid in G(D,E).
As subtasks of tid can run in parallel, we define ltid
as the the maximal accumulated latency of paths in
TGtid(V Stid, DPtid).

ltid = max
pttid(i)∈PTtid

{
nstid(i)−1∑

j=1

N∑
k=1

lektid(pttid(i)[j])

×xtid(pttid(i)[j], k)+
nstid(i)−2∑

j=1

N∑
k=1

N∑
q=1

lt(k, q, f(stid(pttid(i)[j])))

×xtid(pttid(i)[j], k)× xtid(pttid(i)[j + 1], q)

+
N∑

k=1

lt(k, rpmr(tid), f(stid(pttid(i)[nstid(i)− 1])))

×xtid(pttid(i)[nstid(i)− 1]], k)}

(4)

where rpmr(tid) represents the index of the data center that
the primary replica of receiver of task tid resides in.

B. Problem Definition

Given a geo-distributed cloud system G(D,E), considering
an arrival task tid at the central controller, our goal is to find
a task assignment matrix Xtid that optimizes the performance
(i.e., minimizes the latency/cost) and satisfies constraints from
Equations (1), (2). Take the latency minimization problem for
example. The problem can be expressed as,

min ltid

s.t
∑
j

xtid(i, j) = 1,∀i ∈ {1, . . . ,mtid}, and∑
i

xtid(i, j) ≤ n′i,∀j ∈ {1, . . . , N}

(5)

As elements in Xtid are all binary variables, and there are
quadratic terms of these binary variables in Equation (5) (more
specifically, in ctid and ltid), the proposed task assignment
problem Equation (5) falls into Binary Quadratic Programming

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Mini-Conference 499



(BQP) problems, which are known to be NP-hard [12, 13].
In the following section, we will propose an approximation
scheme to solve problem.

III. TASK ASSIGNMENT ALGORITHM

In this section, we present a heuristic algorithm to provide
an approximate solution to the proposed NP-hard problem
Equation (5). Given a geo-distributed cloud system G(D,E),
when a task tid arrives at the central controller, we first
partition it into subtasks, figure out the task dependencies, and
create a task graph TGtid(V S,DP ). Then we run algorithm
1 to assign subtasks to distributed data centers. In particular,
we would look at subtasks on the longest path in PTtid first,
then subtasks on the second longest path, and so on, as the
latency of long paths are usually longer than that of short
paths and we need to ensure that the latency of running tid
on G(D,E) is less than the given bound bid. When assigning
stid(j), we would evaluate every applicable data center di
(di is applicable if rpoid(i) = 1 and if n′i ≥ stid(j)) by
scoreitid = αcitid + βlitid + ρltitid + γctitid, where α ≥ 0,
β ≥ 0, ρ ≥ 0, and γ ≥ 0 are constants, and

citid =
ceitid(j) + f(stid(p))× ct(k, i)

cavetid

(6)

litid =
leitid(j) + lt(k, i, f(stid(p)))

lavetid

(7)

ltitid =
lt(i, rpmoid, f(stid(j)))

ltmin
tid

(8)

ctitid =
ct(i, rpmoid)× f(stid(j))

ctmin
tid

(9)

In the above equations, dk represents the data center
that the immediate previous subtask stid(p) is assigned to,
cavetid =

∑N
i=1(ce

i
tid(j)+f(stid(p))×ct(k,i))×rpoid(i)

N and lavetid =∑N
i=1(le

i
tid(j)+lt(k,i,f(stid(p)))×rpoid(i)

N represent the average
cost and latency of running stid(j) on all data centers in
G(D,E), ltmin

tid and ctmin
tid represent the minimum of them,

respectively. The date center with smallest scoreitid would be
selected for assignment. In particular, constants α, β, ρ, and
γ can be adjusted to fit the application purpose. In Eq.5, since
we aim to minimize the total latency, we would let α and γ be
0, and β, ρ be greater than 0. When assigning the last subtask
on a path, besides citid and litid, we would also consider the
transmission cost/latency between the candidate data center
and the receiver’s data center drpmoid

. As a result, we would
evaluate every applicable data center by rscoreitid = α(citid+
f(stid(j))×ct(i, rpmoid))+β(l

i
tid+lt(i, rpmoid, f(stid(j))))

when we assign the last subtask on a path.

IV. SIMULATION

In this section we validate the performance of our algorithm
over simulations under various conditions.

Algorithm 1 Task Assignment Algorithm
Input:
• G(D,E): Geo-distributed data center graph
• TGtid(V S,DP ): Task graph for task tid

Output:
• Xtid: The task assignment matrix for task tid

1: function TASK ASSIGNMENT ALGORITHM
2: Create a matrix Xtid and set all elements in Xtid to 0
3: Create PTtid based on TGtid(V S,DP )
4: Sort paths in PTtid in decreasing order of length
5: for pttid(k) ∈ PTtid do
6: for q ∈ [1, nstid[k]− 1] do
7: for i ∈ [1, N ] do
8: if rpoid(i) = 1 AND n′i ≥ stid(pttid(k)[q]) then
9: Calculate scoreitid

10: end if
11: end for
12: Select the data center dmin that results in the smallest

scoremin
tid . Let xtid(pttid(k)[q],min) = 1

13: Update the capacity n′min of data center dmin:
n′min = n′min − stid(pttid(k)[q])

14: end for
15: end for
16: Output Xtid

17: end function

A. Evaluation Settings

We create a geo-distributed cloud system that consists of
20 data centers. For data center di, its capacity is represented
by ni, the number of processing servers within a range of
[1000, 15000]. We adopt the Amazon EC2 price model [14] for
cost and latency. The cost/latency for each data center (pair)
is randomly taken from a set of real world prices/latency mea-
surements on Amazon EC2 machines (round trip time (RTT)
between instances in the same region for execution latency,
RTT between instances in different regions for transmission
latency). We create 100 users and every user has a number
of replicas across data centers where the number of replicas
varies in [2, 20] and data centers which replicas locate in are
selected randomly. We consider big data processing tasks in
simulations that each task can be decomposed into subtasks
which further can be grouped into a set of independent paths.
The owner of the input data and the receiver of each task
is selected randomly from the user set {uid}. The number
of paths and the number of subtasks along each path are
chosen randomly from [2, 8] and [1, 10], respectively. The
number of processing servers required by every subtask varies
in [100, 500], and output of every subtask is proportional to
the number of required processing servers. We set α to 0, β
to 1, ρ to 1, and γ to 0(We also tested different values for
latency minimization and cost minimization. Results exhibit
similar characters, therefore omitted due to space limitation).

We implement two heuristic algorithms for performance
comparison: a random assignment algorithm that randomly
picks a data center for every subtask, and a greedy algo-
rithm that always selects the data center with the largest
number of servers available. They are denoted as RAND and

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Mini-Conference500



GREEDY , respectively. Every result presented is an average
of 50 runs.

B. Evaluation Results

First, we investigate how the number of replicas affects
the latency via varing its value from 1 to 18 in Figure 4.
It is obvious that compared with the other two algorithms, the
proposed algorithm achieves the least latency under different
number of replicas. The difference of latency between the
proposed algorithm and the other two increases as the number
of replicas increases, indicating that the proposed method
performs especially well when the number of replicas is big.
We can also observe that the latency generated by the proposed
algorithm stays steadily around 150ms when the number of
replicas is between 1 and 8, and drops gradually as the number
of replicas grows beyond 10. This is because when there are
more replicas, there are more choices. Since the proposed
algorithm 1 ranks data centers by scoreitid, we would always
assign tasks to data centers bigger in capacity and smaller in
latency which in turn results in better performance. On the
other hand, the latency of GREEDY and RAND increases as
the number of replicas increases when the number of replicas
is less than 10, and does not change significantly when the
number of replicas is larger than 10. For GREEDY algorithm,
as it always picks the data center with the largest capacity,
when there are more data centers available, it is more likely to
assign neighboring subtasks on a path to different data centers
even when there exists a data center able to run both subtasks,
leading to a high transmission latency. The same reason applies
to the RAND algorithm as it chooses a data center randomly,
when there are more replicas in the pool, it is more likely to
choose a different data center for every new subtask. When
replicas spread across the majority of the data centers (greater
than 10), the latency generated by GREEDY and RAND stays
about the same, as the difference having one data center more
or one less becomes insignificant.

Next in Figure 5, we show the results when the average path
length increases from 2 to 10 where the path length refers to
the number of subtasks along a path in TG. It can be seen
from Figure 5 that the latency is an increasing function of
the path length due to the fact that the longer the path, the
more the subtasks, which in turn results in bigger execution
latency and transmission latency. The latency generated by the
proposed algorithm is significantly lower than that of the other
two.

Finally Figure 6 investigates the effect of the number of
paths existing in TG on latency, where the number is set from
2 to 10. We can observe that the latency grows as an increasing
function of the number of paths. This is because when there are
more paths, there are more subtasks. As a result, it would be
more competitive to obtain resources from data centers, which
further leads to a higher latency. The proposed algorithm
outperforms the other two algorithms under different number
of paths.

Fig. 4. Latency vs. Number of replicas.

Fig. 5. Latency vs. Path length.

V. RELATED WORK

In this section, we review the related work on big data
processing in geo-distributed cloud systems.

Compared to running a large scale data processing task
in a single data center, distributed data processing signifi-
cantly reduces the operation cost and improves the service
quality [3, 4]. One of the biggest challenges on distributed
data processing is to minimize cost due to its high demand
on computation and communication resources. A series of
recent work have addressed the cost minimization issue in geo-
distributed cloud systems from various perpectives. [10, 13,
15] explored workload control and balancing by taking account
of energy consumption and electricity prices in order to reduce
the energy expenditure. Chen [13] studied how to reduce
electricity cost via optimal virtual machine placement in geo-
distributed data centers with heterogeneous pricing scheme
and resource constraints. Jiao in [10] investigated the impact
of data placement on cost for socially aware services, and
proposed a cost-minization data placement algorithm based
on graph cuts. Zeng [15] considered task assignment, data
placement and data movement jointly to minimize the overall
operational cost in geo-distributed data centers.

Another important feature of big data processing in geo-
distributed clouds is that data stored in the cloud have multiple
replicas located in different data centers [16, 17]. A substantial
body of research has been devoted to replica placement to
achieve performance optimization [18, 19] from different
points of view such as QoS, data correlation and probability
trust. In this paper, when processing big data tasks, as there

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Mini-Conference 501



Fig. 6. Latency vs. Number of Paths.

are multiple data replicas available, we can get the input data
from any of the replicas, not necessarily the primary one.
We assume data replicas are known to users/controllers, thus
instead of figuring out where to save data replica, we focus on
finding out which replica we should use in order to achieve
performance optimization. To the best of our knowledge, this
is the first work to investigate the impact of replica selection
on data processing in geo-distributed cloud systems.

VI. CONCLUSION

In this paper, we have investigated the problem of task
assignment in geographically distributed cloud systems. We
focused on partitioning and deploying data intensive tasks into
geographically distributed data centers with an objective of
performance optimization. We proposed a heuristic algorithm
to solve the proposed NP-hard problem. Extensive simulations
have been performend, and the results demonstrate that our
method outperforms the random and greedy algorithms sig-
nificantly. Our future work includes detailed studies on task
partition, inter-cloud communications, and deriving variations
of the proposed strategy (i.e., load-balanced task assignment in
distributed cloud systems), and more constraints such as data
regulations that can restrict the storage geographic location.

REFERENCES

[1] D. Lazer, R. Kennedy, G. King, and A. Vespignani, “The
parable of google flu: traps in big data analysis,” Science,
2014.

[2] Z. Tufekci, “Big questions for social media big data:
Representativeness, validity and other methodological
pitfalls,” arXiv preprint arXiv:1403.7400, 2014.

[3] L. Wang, J. Tao, R. Ranjan, H. Marten, A. Streit, J. Chen,
and D. Chen, “G-hadoop: Mapreduce across distributed
data centers for data-intensive computing,” Future Gen-
eration Computer Systems, 2013.

[4] S. K. Garg, C. S. Yeo, A. Anandasivam, and R. Buyya,
“Environment-conscious scheduling of hpc applications
on distributed cloud-oriented data centers,” Journal of
Parallel and Distributed Computing, 2011.

[5] J. Zhao, H. Li, C. Wu, Z. Li, Z. Zhang, and F. C. Lau,
“Dynamic pricing and profit maximization for the cloud
with geo-distributed data centers,” in IEEE INFOCOM
2014. IEEE, 2014.

[6] H. Roh, C. Jung, W. Lee, and D.-Z. Du, “Resource
pricing game in geo-distributed clouds,” in INFOCOM,
2013 Proceedings IEEE. IEEE, 2013.

[7] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber, “Bigtable: A distributed storage system for struc-
tured data,” ACM Transactions on Computer Systems
(TOCS), 2008.

[8] T. Kraska, G. Pang, M. J. Franklin, S. Madden, and
A. Fekete, “Mdcc: Multi-data center consistency,” in
Proceedings of the 8th ACM European Conference on
Computer Systems. ACM, 2013.

[9] Q.-y. Huang and T.-l. Huang, “An optimistic job schedul-
ing strategy based on qos for cloud computing,” in
Intelligent Computing and Integrated Systems (ICISS),
2010 International Conference on. IEEE, 2010.

[10] L. Jiao, J. Lit, W. Du, and X. Fu, “Multi-objective
data placement for multi-cloud socially aware services,”
Proceedings - IEEE INFOCOM, pp. 28–36, 2014.

[11] J. Baker, C. Bond, J. Corbett, J. J. Furman, A. Khorlin,
J. Larson, J. M. Leon, Y. Li, A. Lloyd, and V. Yushprakh,
“Megastore: Providing scalable, highly available storage
for interactive services.” in CIDR 2011, Fifth Biennial
Conference on Innovative Data Systems Research, Asilo-
mar, CA, USA, January 9-12, 2011, Online Proceedings,
2011, pp. 223–234.

[12] K. Katayama and H. Narihisa, “Performance of simulated
annealing-based heuristic for the unconstrained binary
quadratic programming problem,” European Journal of
Operational Research, 2001.

[13] K. Y. Chen, Y. Xu, K. Xi, and H. J. Chao, “Intelligent
virtual machine placement for cost efficiency in geo-
distributed cloud systems,” pp. 3498–3503, 2013.

[14] Amazon-AWS, “https://aws.amazon.com/ec2/pricing,”
2016, ONLINE.

[15] D. Zeng, L. Gu, and S. Guo, Cost Minimization for
Big Data Processing in Geo-Distributed Data Centers.
Springer International Publishing, 2015.

[16] D.-W. Sun, G.-R. Chang, S. Gao, L.-Z. Jin, and X.-W.
Wang, “Modeling a dynamic data replication strategy
to increase system availability in cloud computing envi-
ronments,” Journal of computer science and technology,
2012.

[17] W. Li, Y. Yang, and D. Yuan, “A novel cost-effective
dynamic data replication strategy for reliability in cloud
data centres,” in Dependable, Autonomic and Secure
Computing (DASC), 2011 IEEE Ninth International Con-
ference on. IEEE, 2011.

[18] Z. Ye, S. Li, and X. Zhou, “Gcplace: geo-cloud based
correlation aware data replica placement,” in ACM Sym-
posium on Applied Computing, 2013, pp. 371–376.

[19] N. Kumar and J. Kim, “Probabilistic trust aware data
replica placement strategy for online video streaming
applications in vehicular delay tolerant networks,” Math-
ematical and Computer Modelling, 2013.

2017 IFIP/IEEE International Symposium on Integrated Network Management (IM2017): Mini-Conference502


