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Abstract— we present FPT, a scheduling framework for 
periodic tasks that uses the temporal characteristic of periodic 
tasks to alleviate the overhead of geo-distributed data centers. 
In FPT, clients are able to express the periodicity about their 
tasks, and this characteristic is used to realize one-time 
scheduling for multiple executions. For a set of periodic tasks, 
aiming to find the minimum number of VMs required to 
guarantee the scheduability and generate the task execution 
sequence on each VM, an algorithm is also presented. A case-
study and its evaluation are given to show the efficiency of our 
framework. 

key words task scheduling; periodic task; geo-distributed data 
centers; cloud computing 

I.  INTRODUCTION  
With the prevalence of cloud computing services, there 

has been a growing trend toward geographically distributed 
data centers. Google has built dozens of data centers all over 
the world to guarantee the quality of internet service to 
global users [1]. One of the greatest challenges in leveraging 
these data centers is efficient task scheduling. Better energy 
efficiency, geographical load balancing and fairness are 
extensively discussed in previous works [2, 3, 4, 5, and 6]. 

However, cloud task scheduling is an NP-hard 
optimization problem. Due to existence of different 
workload types with various requirements that should be 
supported by data centers, no any single schedule strategy  
can allocate resources to all imaginable types efficiently. For 
example, numerical computing tasks are usually CPU 
intensive, while database operations typically require high-
memory support. The heterogeneity of workload demands 
poses significant technical challenges on the schedule 
mechanism, giving rise to many delicate issues -notably 
efficiency -that must be carefully addressed [7].  

Existing approaches to workload characterization for 
cloud computing mainly focus on task resource requirements 
for CPU, memory, disk, I/O, network, etc. However, in 
addition to resource requirements, tasks frequently have 
placement constraints or temporal characteristics of the 
execution. Table 1 show data taken from our production geo-
distributed data centers called iVCE test bed over a period of 
31 days in this July. On average, there are 18 million tasks 
need to schedule per day.  Most of these tasks are very short 
and the average running time is 3 minutes. Notably, more 

than half of them are periodic task. Actually the test bed 
especially the scheduler is facing significant pressure to 
allocate resources efficiently. In some extremes, the success 
ratio of task scheduling is less than 50%. After analysis, the 
low success ratio is mainly attributed to the high load. As 
shown in table 1, there are more than 200 tasks need to 
schedule average per second. The test bed has used a 
centralized management approach, in which a super master 
node schedules tasks among the Geo-Distributed data centers. 
In another side, there exist many complicated task placement 
constraints such as on OS versions, machine types, physical 
place and network accessing methods, those lead to high 
computational-complexity to find an optimal resource to 
execute a task. Using benchmarks of Google compute 
clusters, the results of experiment in [8] indicate that the 
presence of constraints increases task scheduling delays by a 
factor of 2 to 6, which often means tens of minutes of 
additional task wait time. 

TABLE 1. MEAN VALUE IN JULY 

Source Number of 
tasks 

Average 
running time 

Number of periodic 
tasks 

iVCE test bed 18 million 180 seconds 10.5 million 
 
In general, distributed scheduling scheme can reduce the 

pressure. But this is beyond the scope of this paper. We try to 
use the temporal features- notably periodicity -to optimize 
the scheduling process.   

Despite the unprecedented heterogeneity in geo-
distributed data centers, state-of-the-art computing 
frameworks have paid little attention to the temporal features 
of workload.  

However, the periodic features increase the difficulties of 
efficiently scheduling at least from the following two aspects: 

(1) The heavy overhead on the master node resulting 
from the highly frequent scheduling. As shown in table 1, 
there are more than 200 tasks need to schedule average per 
second. 

(2) The pressure of too much bandwidth consumption. 
Though Geo-Distributed data centers are usually connected 
together with dedicated high-bandwidth communication 
links, the bandwidth is limited during the peak-hour. 
Assuming that the average size of tasks is 1 MB, it will 
consume 200MB/S bandwidth to distribute tasks. 
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In this work, we focus on the method to alleviate the 
pressure of the scheduler which is the key component in 
Geo-Distributed data centers. The number of tasks those 
need to be scheduled in unit time is the most essential factor 
for determining the pressure of the scheduler. Reducing the 
number of scheduling times is most simple and intuitionistic. 
Periodic tasks can be scheduled one-time for repeated 
execution at regular intervals.  

This paper presents a novel framework called FPT, 
which aims to reduce the unnecessary scheduling for 
periodic tasks in Geo-Distributed data centers. 

The paper is organized as follows: Section II briefly 
introduce the Geo-Distributed data centers, and task models 
we consider. Then we show FPT design details in Section III. 
Section IV presents a scheduling solution under FPT 
framework for periodic tasks. A case-study and its evaluation 
are given in Section V. We survey the related work in 
Section VI. Section VII concludes the paper and future work. 

 

II. SYSTEM AND TASK MODELS 
This section describes the Geo-Distributed data centers 

system model and our task model. 

A. The Geo-Distributed Data Centers System 
In this paper, we consider an Platform-as-a-Service 

(PaaS) system, in which a number of Geo-Distributed data 
centers participate in a federated approach. These data 
centers provide basic on-demand storage, compute and 
network access capacities. The provision of these 
computational resources is in the form of virtual machines 
(VMs) deployed in data centers. Virtual machine is an 
abstract unit of storage, compute and network access 
capacities provided in a data center. VMs from different 
data centers are offered in different types, each of which has 
different characteristics. For example, they may have 
different numbers of CPUs, amounts of memory, network 
access points and network bandwidths. 

We use a centralized management approach, in which a 
super node schedules tasks among multiple data centers. For 
each task submitted by clients, the super node decides which 
data center will execute this task based on the information 
from the task description. 

In our model, there are � geographically distributed data 
centers GDCi, ∀i (0 i N-1 unless stated otherwise). The 
physical location of GDCi is denoted by pli. Furthermore, 
GDCi has Vi VMs. Each VM contributes m resources (e.g., 
CPU, memory, storage and network) denoted by VM = 
{cpu, mem, str, …, net}, which means the VM can offer the 
capacity of cpu CPUs, mem GB memory and str GB 
storage. Network is a key resource in our model, which 
needs to be described at least in three dimensions, such as 
network operators (Enumerated. e.g., China Mobile -CM for 
short, China Unicom –CU for short, China Telecom –CT for 
short), the way of network access (Enumerated. e.g., ADSL, 
Optical Access Network abbreviated as OAN) and the 
bandwidth (Numeric, the values is in megabytes per 

second). Network resource can be denoted by net = {no, na, 
bw} accordingly. 

B. Task Model 
In this paper, we consider a single set of independent 

tasks �= {t0, t1..., tn-1}, task ti is defined using the following 
parameters ( ti is a tuple {idi, pli, rqi, sti, exti, pri, fti}). 
� idi: The ID of ti; 
� pli: The physical place that ti needs to execute in; 
� rqi: The resources those ti requires, e.g., CPU, 

memory, storage and network  described in section A; 
� sti: The start time for ti. By default, sti is equal to the 

release time; 
� exti: The computation time requirement; 
� pri: The period, means ti needs to execute in every pri 

minutes(pri exti). In case of non-periodic task, pri is 
set to zero; 

� fti: The finish time. It can be a relative value of sti (e.g., 
1 month). In case of non-periodic task, fti is set to 
zero; 

For periodic task, ti needs to execute once in every pri 
minutes between sti and fti. The kth execution of ti is denoted 
by tik. Further, all periodic tasks are ready for execution at 
the beginning of each period. 

 

III. THE SCHEDULING FRAMEWORK FOR PERIODIC TASKS  
This section presents the system design of the scheduling 

Framework for Periodic Tasks (FPT). First, we describe a 
motivational example to identify the additional load 
incurred by scheduling periodic tasks instances over and 
over again. Then, we introduce our solutions to alleviate the 
overhead for scheduling. And last, a high level FPT 
architecture is presented. 

A. Motivational Example 
We give an example of periodic task in our Geo-

Distributed data centers called iVCE test bed as mentioned 
in previous section .The iVCE test bed has been providing 
services for more than 10 applications. One of the most 
typical applications is China Internet Speed Test (CIST). 

However, it is a challenging job to test the internet speed, 
especially in China. Firstly, there are several network 
operators including China Mobile, China Unicom and China 
Telecom. The capability of their network infrastructure is 
different. Secondly, there exists spatial imbalance of the 
Internet development in China, resulting in coexist of 
several generations’ network access technologies. Finally, 
the cost is very high especially for large-scale test. 
Fortunately, the iVCE test bed provides platform services, 
which greatly reduces the challenge. 

For the Website of high traffic burden, the internet speed 
to access a single page will become a bottleneck of the 
system. Therefore, the internet speed test for specific web 
sites (CIST4SWS) is meaningful, which is a very practical 
case in CIST. Because the network access speed changes 
with time, in general, CIST4SWS has to execute at a certain 
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period (10 minutes or much shorter). As shown in Fig. 1, 
there is a sequence of tasks aiming at testing the internet 
speed to access a target website over China Mobile network 
in Tibet and Beijing. These tasks can be divided into two 
sets according to resource requirements. Tasks within the 
same set are almost identical besides their execution time 
(execute once every 10minutes). However, all the tasks need 
to be scheduled before their execution in the mainstream of 
known cloud computing framework [9, 10, 11, 12, and 13]. 
Complicated task placement constraints lead to high 
computational-complexity to find an optimal machine to 
execute a task, which may increase task scheduling delays 
by a factor of 2 to 6 [8]. We need to optimize the scheduling 
process to alleviate the overhead on the scheduler.  

 
Fig. 1. Periodic Execution of tasks for CIST4SWS 

B. Design Philosophy 
In Geo-Distributed data centers, scheduling and 

monitoring already incur heavy overhead on the master 
(scheduler) node, which can easily become the bottleneck. 
In addition, frequent task release easily result in too much 
bandwidth consumption. Given this consideration, several 
design decisions have to be made to alleviate the overhead 
on the scheduler and communication links. 

There are two expensive operations at the time of starting 
a task: scheduling and task distribution. How to reduce the 
number of these expensive operations while satisfying user's 
QOS requirements is a main challenge. 

If we know a sequence of tasks are the instances of a 
periodic task, one-time scheduling for multiple executions 
can realize. In essence, periodicity is decided by the 
characteristics of upper applications. The users (or data 
center service consumer) can indicate the periodicity about a 
task clearly using our model mentioned in section II. 

C. FPT Architecture 
The architecture of FPT is illustrated in Fig.2. FPT is 

mainly composed of four modules: 
(1) Information Collector (IC). Resources allocations are 

made according to the status messages about virtual 
machine across data centers. For example, how many 
resources are available for scheduling. Due to the highly 

dynamic information about the resources, IC must collect 
the information in time to facilitate task scheduling. There 
are two methods to collect the information, pull model and 
push model. In order to guarantee the collection effect, the 
hybrid method is used occasionally; 

(2) Model Analyzer (MA). MA is responsible for parsing 
task descriptions, analyzing the resources requirements and 
grouping the tasks based on the requirement. The grouping 
can facilitate task scheduling; 

(3) Execution Sequence Generator (ESG).In order to 
allocate resources among different tasks efficiently, ESG 
adopts special strategy to use virtual machines as few as 
possible to execute tasks in the same group. First, ESG acts 
as the match-maker between virtual machines and tasks. 
Then, ESG try to find minimum number of virtual 
machines from the candidate set for each task group, that 
can be seen as a special case of the bin packing problem. 
Lastly, the execution sequence about tasks in every 
selected virtual machine is generated. We will illustrate the  
process in detail in section IV; 

 Fig. 2. FPT Architecture 
 

(4) Agent. A single agent runs on each virtual machine, 
mainly focuses on two-fold roles. The first is to collect local 
information and status periodically, and report them to IC 
for further scheduling judgment. The second role is to 
ensure task processes to execute in predefined sequence.  

To eliminate the interference between tasks which can 
cause incorrect test results, tasks in the same virtual 
machine are executed serially. Agent will start processes for 
a task only if it's time for execution. Specifically, when the 
execution time of a task is greater than the claimed value 
and the time for another task is up,  processes belong to the 
former task will be killed to maintain execution order. For 
periodic tasks, the failure instance at a few points has little 
influence on the test results of the whole application. 
Therefore,  we have not used the fault tolerance mechanism 
here.  
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IV. TASK EXECUTION SEQUENCE GENERATION 
ALGORITHM 

ESG is the core functional module in FPT. How to find 
minimum number of virtual machines (VM) from the 
candidate set for each task group and generate task execution 
sequence in every selected resource is the main problem in 
ESG. With the models introduced in section II, the problem 
can be formally formulated as follows. 

Problem 1 Given a task set � = {t0, t1..., tn-1} and VM set 
V = {vm0, vm1..., vmm-1} as described above, where each task 
is characterized by its computation time exti and its period pri, 
what is the minimum number of VMs required to execute the 
tasks in � such that all the tasks in the same VM are 
schedulable, and how to generate the task execution 
sequence for each selected VM. 

We borrow existing solutions in Real-time operating 
system [14]. In recent years, much research has focused on 
the multiprocessor scheduling of real-time tasks problem [15, 
16, 17, 18, and 19]. In work [15], a scheduling problem 
called Rate-Monotonic Multiprocessor Scheduling (or 
RMMS) is studied, and a new heuristic algorithm called RM-
First-Fit-Decreasing-Utilization (or RM-FFDU) is shown for 
RMMS problem. RMMS is a bin-packing problem and has 
been proven to be NP-complete. To solve the RMMS 
problem, two issues need to be addressed: the scheduling on 
each processor and the assignment of tasks to processors. A 
sufficient schedulability condition for the scheduling of tasks 
on a single processor is given in [15]. RM-FFDU uses the 
famous First-Fit-Decreasing heuristic to assign tasks to 
processors. 

Our problem is similar with the RMMS problem. We 
present an algorithm based on RM-FFDU to address the 
problem 1, the pseudo code as follows: 

 
Algorithm 1. 

 Input: task set �,VM set V; 
Output: m, linked list- l1 to lm. 

(1) Sort � in the order of non-increasing utilization 
(for each task t, utilization u = t.ext / t.pr); 
(2) i=1; m=1; 

linklist l1; 
(3) j=1;  

While(ui>2( ) -1-1) 

j=j+1; 
//task ti cannot be scheduled in VMj 

(4) kj= kj +1; // kj is the number of tasks assigned on VMj. 
(5) if (j>m) 

{  m=j; linklist lj;} 
lj.addinOrder(ti.id);//keep in order of ascending pr 

//Assign task ti to VMj, 
(6) i=i+1; 
(7) if (i>n) Exit;//n is the number of tasks in � 
     Else Goto (3). 

 

When the algorithm returns, the value of m is the number 
of VMs needed to schedule task set �, lj is the set of tasks 
assigned on VMj, kj is the size of lj. Tasks in lj are ordered by 
scheduling priority descending. The scheduling of tasks on 
VMj can be done using the rate monotonic algorithm [20]. 

TABLE 2. TASKS BE SCHEDULED 

order Task id ext (min) pr (min) U=ext/pr 
1 331 2 5 0.4 
2 320 1 3 0.333 
3 321 1 5 0.2 
4 280 2 10 0.2 
5 281 1 10 0.1 

Table 2 shows an example to illustrate the process. There 
are five tasks need to be scheduled. The sum of their 
utilization value is greater than 0.7435 (5*(21/5-1)) [20]. 
These tasks are not schedulable in a single VM. We have to 
partition the task set. Frist, task 331 is assigned on VM1. For 
task 320, the utilization value is 1/3 (less than (2/ (0.4+1))-1 
in VM1), it can be assigned on VM1 too. For task 321, the 
utilization value is 0.2 (greater than 2/ (0.4+1)*(0.333+1)-1 
in VM1), it can be assigned on a new VM (VM2). When the 
algorithm returns, all the five tasks can be scheduled on two 
VMs, Fig.3 shows the result. 

 Fig.3. A scheduling instance 

 

V. CASE-STUDY AND EVALUATION 
In this section, we will illustrate the effectiveness of the 

scheduling Framework for Periodic Tasks (FPT) by a case-
study and its evaluation. We start with simulations of a large 
geo-distributed datacenters based on workload traces from 
iVCE test bed. We then use a smaller set of micro 
simulations to evaluate the efficiency. 

As our iVCE test bed has been used in real production, 
there is a certain risk to conduct repeatable large-scale 
experiments on the real infrastructure. Therefore, the 
CloudSim toolkit [21] has been chosen as a simulation 
platform as it is a modern simulation framework aimed at 
cloud computing environments.  

We have simulated 12 data centers according to the 
workload trace. Each datacenter is composed of 480 VMs 
those can be divided into 6 types (3 network operators and 2 
ways of network access). Each VM is modeled to have one 
CPU core with the performance equivalent to 2000 MIPS, 2 
GB of RAM and 8 GB of storage.  
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A. Efficiency of alleviating the overhead 
Fig.4 shows one-day trace of arrived tasks submitted by 

an identical user. The total number of tasks instances is about 
100 thousands. For every instance, the scheduler needs to 
find an optimal machine to execute the task, leading to high 
overhead. Most of these tasks are actually periodic. Our 
simulation result in table 3 shows that the number of 
scheduling times can be reduced by more than 90% in FPT.  

 

 
Fig.4. One-day trace of arrived tasks 

TABLE 3. SCHEDULER OVERHEAD 

 Testbed FPT 
Number of 
Scheduling  105132 8125 

 

B. Performance Evaluation 
Now we evaluate the performance of FPT using trace-

driven simulations. In above workload traces, there are 
101010 periodic task instances those need be scheduled to 
execute on 12 geo-distributed data centers. For each data 
center, we make a micro simulation to evaluate the 
scheduling success ratio. If the scheduler has allocated the 
resources and generated task instances execution sequence 
rightly for a task, we call the task has been scheduled 
successfully.  

 

 
 

Fig.5. Scheduling success ratio of  12 datacenters 
 
Fig.5 shows our simulation results. The average 

scheduling success ratio is 94.1%. The main cause of 
scheduling failure is task preemption. Highly frequent 

occurrences of preemption will consume system resources 
under very high loads, which is neglected in FPT.  However, 
the ratio is much higher than our production test bed. 

Though, the production environment is more complicated 
than the simulations, the current result of scheduling 
overhead and success ratio reflects a preliminary 
performance of our algorithm, but it has already shown the 
effectiveness of our framework. More comprehensive 
evaluation based on an actual test bed will be conducted in 
the future.  

 

VI. RELATED WORK 
This work is related to research in the following fields. 
Task Scheduling in Data Centers. A large body of 

research has examined variants of task scheduling algorithm 
or framework in data centers (or cloud computing). Most of 
these works focus on lifting the efficiency. Ran S et al.  
present a provably-efficient online algorithm, GreFar, for 
scheduling batch jobs among multiple geographically 
distributed data centers [2]. GreFar minimizes the energy-
fairness cost while providing queueing delay guarantees. Xu 
H et al. propose to make workload management for geo-
distributed datacenters temperature aware and formulated the 
problem as a joint optimization of request routing and 
capacity allocation [5]. Zhang Z et al. present Fuxi, a 
distributed resource management and job scheduling system 
at Alibaba. There are three novel techniques that allow Fuxi 
to tackle the scalability and fault tolerance issues at Internet 
scale [12]. To the best of our knowledge, none of these woks 
have used the temporal characteristic of tasks to lift the 
efficiency. 

Real-time tasks scheduling. Real-time tasks scheduling 
is a key problem in real-time system, which has decades of 
history. A scheduling algorithm which assigns priorities to 
tasks in a monotonic relation to their request rates (RM) is 
shown to be optimum among the class of all fixed priority 
scheduling algorithms in [20]. Oh Y et al. seek to minimize 
the total number of processors required to execute a set of 
periodic tasks such that deadlines are guaranteed by the 
Rate-Monotonic (RM) algorithm on each processor, an 
algorithm called RM-FFDU is given for this problem [15]. 
Bertogna M et al. addresses the schedulability problem of 
periodic and sporadic real-time task sets with constrained 
deadlines on a multiprocessor platform and a sufficient 
schedulability algorithm that are able to check whether a 
periodic or sporadic task set can be scheduled is presented in 
[17]. All of these works offer the theoretical foundation for 
our research work in this paper. 

 

VII. CONCLUSION AND FUTURE WORK 
In this paper, we have presented a scheduling Framework 

for Periodic Tasks (FPT), which aims to reduce the 
unnecessary scheduling for periodic tasks in Geo-
Distributed data centers. The number of tasks those need to 
be scheduled is the most essential factor for determining the 
pressure of the scheduler. Reducing the number of 
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scheduling times is most simple and intuitionistic. In some 
applications, tasks are dispatched periodically. It is feasible 
to realize one-time scheduling for multiple executions, 
alleviating the overhead of data centers. FPT is mainly 
composed of four modules. For a task set, an algorithm 
aiming to find the minimum number of VMs required to 
guarantee the scheduability and generate the task instance 
execution sequences on each VM is also presented. A case-
study and its evaluation are given to show the efficiency of 
our framework. 

Future work will concentrate on improving the 
scheduling algorithm for generating execution sequence of 
periodic tasks. The current version is based on Rate-
Monotonic algorithm that belongs to preemptive scheduling. 
However, tasks preemption may decrease the scheduling 
success ratio. We also plan to work on other features such as 
bringing moderate fault tolerance into FPT, fine tuning 
algorithms to realize hybrid scheduling of periodic and 
aperiodic tasks, and alleviating the imbalance of resource 
utilization. 
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