
A Scheduling Framework for Periodic Tasks in Geo-Distributed Data Centers

Yan Li1,2,3, Hong Zhang3, Yong Wang3, Xinran Liu3, Peng Zhang4
1University of Chinese Academy of Sciences, Beijing 100080, China

2Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
3National Computer Network Emergency Response Technical Team/Coordination Center, Beijing 100029, China

4Institute of Information engineering, Chinese Academy of Sciences, Beijing 100093, China
E-mail: liyan@ncic.ac.cn, zhangh@cert.org.cn, wangyong@cert.org.cn, lxr@isc.org.cn, pengzhang@iie.ac.cn

Abstract— we present FPT, a scheduling framework for
periodic tasks that uses the temporal characteristic of periodic
tasks to alleviate the overhead of geo-distributed data centers.
In FPT, clients are able to express the periodicity about their
tasks, and this characteristic is used to realize one-time
scheduling for multiple executions. For a set of periodic tasks,
aiming to find the minimum number of VMs required to
guarantee the scheduability and generate the task execution
sequence on each VM, an algorithm is also presented. A case-
study and its evaluation are given to show the efficiency of our
framework.

key words task scheduling; periodic task; geo-distributed data
centers; cloud computing

I. INTRODUCTION
With the prevalence of cloud computing services, there

has been a growing trend toward geographically distributed
data centers. Google has built dozens of data centers all over
the world to guarantee the quality of internet service to
global users [1]. One of the greatest challenges in leveraging
these data centers is efficient task scheduling. Better energy
efficiency, geographical load balancing and fairness are
extensively discussed in previous works [2, 3, 4, 5, and 6].

However, cloud task scheduling is an NP-hard
optimization problem. Due to existence of different
workload types with various requirements that should be
supported by data centers, no any single schedule strategy
can allocate resources to all imaginable types efficiently. For
example, numerical computing tasks are usually CPU
intensive, while database operations typically require high-
memory support. The heterogeneity of workload demands
poses significant technical challenges on the schedule
mechanism, giving rise to many delicate issues -notably
efficiency -that must be carefully addressed [7].

Existing approaches to workload characterization for
cloud computing mainly focus on task resource requirements
for CPU, memory, disk, I/O, network, etc. However, in
addition to resource requirements, tasks frequently have
placement constraints or temporal characteristics of the
execution. Table 1 show data taken from our production geo-
distributed data centers called iVCE test bed over a period of
31 days in this July. On average, there are 18 million tasks
need to schedule per day. Most of these tasks are very short
and the average running time is 3 minutes. Notably, more

than half of them are periodic task. Actually the test bed
especially the scheduler is facing significant pressure to
allocate resources efficiently. In some extremes, the success
ratio of task scheduling is less than 50%. After analysis, the
low success ratio is mainly attributed to the high load. As
shown in table 1, there are more than 200 tasks need to
schedule average per second. The test bed has used a
centralized management approach, in which a super master
node schedules tasks among the Geo-Distributed data centers.
In another side, there exist many complicated task placement
constraints such as on OS versions, machine types, physical
place and network accessing methods, those lead to high
computational-complexity to find an optimal resource to
execute a task. Using benchmarks of Google compute
clusters, the results of experiment in [8] indicate that the
presence of constraints increases task scheduling delays by a
factor of 2 to 6, which often means tens of minutes of
additional task wait time.

TABLE 1. MEAN VALUE IN JULY

Source Number of
tasks

Average
running time

Number of periodic
tasks

iVCE test bed 18 million 180 seconds 10.5 million

In general, distributed scheduling scheme can reduce the

pressure. But this is beyond the scope of this paper. We try to
use the temporal features- notably periodicity -to optimize
the scheduling process.

Despite the unprecedented heterogeneity in geo-
distributed data centers, state-of-the-art computing
frameworks have paid little attention to the temporal features
of workload.

However, the periodic features increase the difficulties of
efficiently scheduling at least from the following two aspects:

(1) The heavy overhead on the master node resulting
from the highly frequent scheduling. As shown in table 1,
there are more than 200 tasks need to schedule average per
second.

(2) The pressure of too much bandwidth consumption.
Though Geo-Distributed data centers are usually connected
together with dedicated high-bandwidth communication
links, the bandwidth is limited during the peak-hour.
Assuming that the average size of tasks is 1 MB, it will
consume 200MB/S bandwidth to distribute tasks.

2015 IEEE Symposium on Service-Oriented System Engineering

978-1-4799-8356-8/15 $31.00 © 2015 IEEE

DOI 10.1109/SOSE.2015.29

247

In this work, we focus on the method to alleviate the
pressure of the scheduler which is the key component in
Geo-Distributed data centers. The number of tasks those
need to be scheduled in unit time is the most essential factor
for determining the pressure of the scheduler. Reducing the
number of scheduling times is most simple and intuitionistic.
Periodic tasks can be scheduled one-time for repeated
execution at regular intervals.

This paper presents a novel framework called FPT,
which aims to reduce the unnecessary scheduling for
periodic tasks in Geo-Distributed data centers.

The paper is organized as follows: Section II briefly
introduce the Geo-Distributed data centers, and task models
we consider. Then we show FPT design details in Section III.
Section IV presents a scheduling solution under FPT
framework for periodic tasks. A case-study and its evaluation
are given in Section V. We survey the related work in
Section VI. Section VII concludes the paper and future work.

II. SYSTEM AND TASK MODELS
This section describes the Geo-Distributed data centers

system model and our task model.

A. The Geo-Distributed Data Centers System
In this paper, we consider an Platform-as-a-Service

(PaaS) system, in which a number of Geo-Distributed data
centers participate in a federated approach. These data
centers provide basic on-demand storage, compute and
network access capacities. The provision of these
computational resources is in the form of virtual machines
(VMs) deployed in data centers. Virtual machine is an
abstract unit of storage, compute and network access
capacities provided in a data center. VMs from different
data centers are offered in different types, each of which has
different characteristics. For example, they may have
different numbers of CPUs, amounts of memory, network
access points and network bandwidths.

We use a centralized management approach, in which a
super node schedules tasks among multiple data centers. For
each task submitted by clients, the super node decides which
data center will execute this task based on the information
from the task description.

In our model, there are � geographically distributed data
centers GDCi, ∀i (0 i N-1 unless stated otherwise). The
physical location of GDCi is denoted by pli. Furthermore,
GDCi has Vi VMs. Each VM contributes m resources (e.g.,
CPU, memory, storage and network) denoted by VM =
{cpu, mem, str, …, net}, which means the VM can offer the
capacity of cpu CPUs, mem GB memory and str GB
storage. Network is a key resource in our model, which
needs to be described at least in three dimensions, such as
network operators (Enumerated. e.g., China Mobile -CM for
short, China Unicom –CU for short, China Telecom –CT for
short), the way of network access (Enumerated. e.g., ADSL,
Optical Access Network abbreviated as OAN) and the
bandwidth (Numeric, the values is in megabytes per

second). Network resource can be denoted by net = {no, na,
bw} accordingly.

B. Task Model
In this paper, we consider a single set of independent

tasks �= {t0, t1..., tn-1}, task ti is defined using the following
parameters (ti is a tuple {idi, pli, rqi, sti, exti, pri, fti}).
� idi: The ID of ti;
� pli: The physical place that ti needs to execute in;
� rqi: The resources those ti requires, e.g., CPU,

memory, storage and network described in section A;
� sti: The start time for ti. By default, sti is equal to the

release time;
� exti: The computation time requirement;
� pri: The period, means ti needs to execute in every pri

minutes(pri exti). In case of non-periodic task, pri is
set to zero;

� fti: The finish time. It can be a relative value of sti (e.g.,
1 month). In case of non-periodic task, fti is set to
zero;

For periodic task, ti needs to execute once in every pri
minutes between sti and fti. The kth execution of ti is denoted
by tik. Further, all periodic tasks are ready for execution at
the beginning of each period.

III. THE SCHEDULING FRAMEWORK FOR PERIODIC TASKS
This section presents the system design of the scheduling

Framework for Periodic Tasks (FPT). First, we describe a
motivational example to identify the additional load
incurred by scheduling periodic tasks instances over and
over again. Then, we introduce our solutions to alleviate the
overhead for scheduling. And last, a high level FPT
architecture is presented.

A. Motivational Example
We give an example of periodic task in our Geo-

Distributed data centers called iVCE test bed as mentioned
in previous section .The iVCE test bed has been providing
services for more than 10 applications. One of the most
typical applications is China Internet Speed Test (CIST).

However, it is a challenging job to test the internet speed,
especially in China. Firstly, there are several network
operators including China Mobile, China Unicom and China
Telecom. The capability of their network infrastructure is
different. Secondly, there exists spatial imbalance of the
Internet development in China, resulting in coexist of
several generations’ network access technologies. Finally,
the cost is very high especially for large-scale test.
Fortunately, the iVCE test bed provides platform services,
which greatly reduces the challenge.

For the Website of high traffic burden, the internet speed
to access a single page will become a bottleneck of the
system. Therefore, the internet speed test for specific web
sites (CIST4SWS) is meaningful, which is a very practical
case in CIST. Because the network access speed changes
with time, in general, CIST4SWS has to execute at a certain

248

period (10 minutes or much shorter). As shown in Fig. 1,
there is a sequence of tasks aiming at testing the internet
speed to access a target website over China Mobile network
in Tibet and Beijing. These tasks can be divided into two
sets according to resource requirements. Tasks within the
same set are almost identical besides their execution time
(execute once every 10minutes). However, all the tasks need
to be scheduled before their execution in the mainstream of
known cloud computing framework [9, 10, 11, 12, and 13].
Complicated task placement constraints lead to high
computational-complexity to find an optimal machine to
execute a task, which may increase task scheduling delays
by a factor of 2 to 6 [8]. We need to optimize the scheduling
process to alleviate the overhead on the scheduler.

Fig. 1. Periodic Execution of tasks for CIST4SWS

B. Design Philosophy
In Geo-Distributed data centers, scheduling and

monitoring already incur heavy overhead on the master
(scheduler) node, which can easily become the bottleneck.
In addition, frequent task release easily result in too much
bandwidth consumption. Given this consideration, several
design decisions have to be made to alleviate the overhead
on the scheduler and communication links.

There are two expensive operations at the time of starting
a task: scheduling and task distribution. How to reduce the
number of these expensive operations while satisfying user's
QOS requirements is a main challenge.

If we know a sequence of tasks are the instances of a
periodic task, one-time scheduling for multiple executions
can realize. In essence, periodicity is decided by the
characteristics of upper applications. The users (or data
center service consumer) can indicate the periodicity about a
task clearly using our model mentioned in section II.

C. FPT Architecture
The architecture of FPT is illustrated in Fig.2. FPT is

mainly composed of four modules:
(1) Information Collector (IC). Resources allocations are

made according to the status messages about virtual
machine across data centers. For example, how many
resources are available for scheduling. Due to the highly

dynamic information about the resources, IC must collect
the information in time to facilitate task scheduling. There
are two methods to collect the information, pull model and
push model. In order to guarantee the collection effect, the
hybrid method is used occasionally;

(2) Model Analyzer (MA). MA is responsible for parsing
task descriptions, analyzing the resources requirements and
grouping the tasks based on the requirement. The grouping
can facilitate task scheduling;

(3) Execution Sequence Generator (ESG).In order to
allocate resources among different tasks efficiently, ESG
adopts special strategy to use virtual machines as few as
possible to execute tasks in the same group. First, ESG acts
as the match-maker between virtual machines and tasks.
Then, ESG try to find minimum number of virtual
machines from the candidate set for each task group, that
can be seen as a special case of the bin packing problem.
Lastly, the execution sequence about tasks in every
selected virtual machine is generated. We will illustrate the
process in detail in section IV;

 Fig. 2. FPT Architecture

(4) Agent. A single agent runs on each virtual machine,
mainly focuses on two-fold roles. The first is to collect local
information and status periodically, and report them to IC
for further scheduling judgment. The second role is to
ensure task processes to execute in predefined sequence.

To eliminate the interference between tasks which can
cause incorrect test results, tasks in the same virtual
machine are executed serially. Agent will start processes for
a task only if it's time for execution. Specifically, when the
execution time of a task is greater than the claimed value
and the time for another task is up, processes belong to the
former task will be killed to maintain execution order. For
periodic tasks, the failure instance at a few points has little
influence on the test results of the whole application.
Therefore, we have not used the fault tolerance mechanism
here.

249

IV. TASK EXECUTION SEQUENCE GENERATION
ALGORITHM

ESG is the core functional module in FPT. How to find
minimum number of virtual machines (VM) from the
candidate set for each task group and generate task execution
sequence in every selected resource is the main problem in
ESG. With the models introduced in section II, the problem
can be formally formulated as follows.

Problem 1 Given a task set � = {t0, t1..., tn-1} and VM set
V = {vm0, vm1..., vmm-1} as described above, where each task
is characterized by its computation time exti and its period pri,
what is the minimum number of VMs required to execute the
tasks in � such that all the tasks in the same VM are
schedulable, and how to generate the task execution
sequence for each selected VM.

We borrow existing solutions in Real-time operating
system [14]. In recent years, much research has focused on
the multiprocessor scheduling of real-time tasks problem [15,
16, 17, 18, and 19]. In work [15], a scheduling problem
called Rate-Monotonic Multiprocessor Scheduling (or
RMMS) is studied, and a new heuristic algorithm called RM-
First-Fit-Decreasing-Utilization (or RM-FFDU) is shown for
RMMS problem. RMMS is a bin-packing problem and has
been proven to be NP-complete. To solve the RMMS
problem, two issues need to be addressed: the scheduling on
each processor and the assignment of tasks to processors. A
sufficient schedulability condition for the scheduling of tasks
on a single processor is given in [15]. RM-FFDU uses the
famous First-Fit-Decreasing heuristic to assign tasks to
processors.

Our problem is similar with the RMMS problem. We
present an algorithm based on RM-FFDU to address the
problem 1, the pseudo code as follows:

Algorithm 1.

 Input: task set �,VM set V;
Output: m, linked list- l1 to lm.

(1) Sort � in the order of non-increasing utilization
(for each task t, utilization u = t.ext / t.pr);
(2) i=1; m=1;

linklist l1;
(3) j=1;

While(ui>2() -1-1)

j=j+1;
//task ti cannot be scheduled in VMj

(4) kj= kj +1; // kj is the number of tasks assigned on VMj.
(5) if (j>m)

{ m=j; linklist lj;}
lj.addinOrder(ti.id);//keep in order of ascending pr

//Assign task ti to VMj,
(6) i=i+1;
(7) if (i>n) Exit;//n is the number of tasks in �
 Else Goto (3).

When the algorithm returns, the value of m is the number
of VMs needed to schedule task set �, lj is the set of tasks
assigned on VMj, kj is the size of lj. Tasks in lj are ordered by
scheduling priority descending. The scheduling of tasks on
VMj can be done using the rate monotonic algorithm [20].

TABLE 2. TASKS BE SCHEDULED

order Task id ext (min) pr (min) U=ext/pr
1 331 2 5 0.4
2 320 1 3 0.333
3 321 1 5 0.2
4 280 2 10 0.2
5 281 1 10 0.1

Table 2 shows an example to illustrate the process. There
are five tasks need to be scheduled. The sum of their
utilization value is greater than 0.7435 (5*(21/5-1)) [20].
These tasks are not schedulable in a single VM. We have to
partition the task set. Frist, task 331 is assigned on VM1. For
task 320, the utilization value is 1/3 (less than (2/ (0.4+1))-1
in VM1), it can be assigned on VM1 too. For task 321, the
utilization value is 0.2 (greater than 2/ (0.4+1)*(0.333+1)-1
in VM1), it can be assigned on a new VM (VM2). When the
algorithm returns, all the five tasks can be scheduled on two
VMs, Fig.3 shows the result.

 Fig.3. A scheduling instance

V. CASE-STUDY AND EVALUATION
In this section, we will illustrate the effectiveness of the

scheduling Framework for Periodic Tasks (FPT) by a case-
study and its evaluation. We start with simulations of a large
geo-distributed datacenters based on workload traces from
iVCE test bed. We then use a smaller set of micro
simulations to evaluate the efficiency.

As our iVCE test bed has been used in real production,
there is a certain risk to conduct repeatable large-scale
experiments on the real infrastructure. Therefore, the
CloudSim toolkit [21] has been chosen as a simulation
platform as it is a modern simulation framework aimed at
cloud computing environments.

We have simulated 12 data centers according to the
workload trace. Each datacenter is composed of 480 VMs
those can be divided into 6 types (3 network operators and 2
ways of network access). Each VM is modeled to have one
CPU core with the performance equivalent to 2000 MIPS, 2
GB of RAM and 8 GB of storage.

250

A. Efficiency of alleviating the overhead
Fig.4 shows one-day trace of arrived tasks submitted by

an identical user. The total number of tasks instances is about
100 thousands. For every instance, the scheduler needs to
find an optimal machine to execute the task, leading to high
overhead. Most of these tasks are actually periodic. Our
simulation result in table 3 shows that the number of
scheduling times can be reduced by more than 90% in FPT.

Fig.4. One-day trace of arrived tasks

TABLE 3. SCHEDULER OVERHEAD

 Testbed FPT
Number of
Scheduling 105132 8125

B. Performance Evaluation
Now we evaluate the performance of FPT using trace-

driven simulations. In above workload traces, there are
101010 periodic task instances those need be scheduled to
execute on 12 geo-distributed data centers. For each data
center, we make a micro simulation to evaluate the
scheduling success ratio. If the scheduler has allocated the
resources and generated task instances execution sequence
rightly for a task, we call the task has been scheduled
successfully.

Fig.5. Scheduling success ratio of 12 datacenters

Fig.5 shows our simulation results. The average

scheduling success ratio is 94.1%. The main cause of
scheduling failure is task preemption. Highly frequent

occurrences of preemption will consume system resources
under very high loads, which is neglected in FPT. However,
the ratio is much higher than our production test bed.

Though, the production environment is more complicated
than the simulations, the current result of scheduling
overhead and success ratio reflects a preliminary
performance of our algorithm, but it has already shown the
effectiveness of our framework. More comprehensive
evaluation based on an actual test bed will be conducted in
the future.

VI. RELATED WORK
This work is related to research in the following fields.
Task Scheduling in Data Centers. A large body of

research has examined variants of task scheduling algorithm
or framework in data centers (or cloud computing). Most of
these works focus on lifting the efficiency. Ran S et al.
present a provably-efficient online algorithm, GreFar, for
scheduling batch jobs among multiple geographically
distributed data centers [2]. GreFar minimizes the energy-
fairness cost while providing queueing delay guarantees. Xu
H et al. propose to make workload management for geo-
distributed datacenters temperature aware and formulated the
problem as a joint optimization of request routing and
capacity allocation [5]. Zhang Z et al. present Fuxi, a
distributed resource management and job scheduling system
at Alibaba. There are three novel techniques that allow Fuxi
to tackle the scalability and fault tolerance issues at Internet
scale [12]. To the best of our knowledge, none of these woks
have used the temporal characteristic of tasks to lift the
efficiency.

Real-time tasks scheduling. Real-time tasks scheduling
is a key problem in real-time system, which has decades of
history. A scheduling algorithm which assigns priorities to
tasks in a monotonic relation to their request rates (RM) is
shown to be optimum among the class of all fixed priority
scheduling algorithms in [20]. Oh Y et al. seek to minimize
the total number of processors required to execute a set of
periodic tasks such that deadlines are guaranteed by the
Rate-Monotonic (RM) algorithm on each processor, an
algorithm called RM-FFDU is given for this problem [15].
Bertogna M et al. addresses the schedulability problem of
periodic and sporadic real-time task sets with constrained
deadlines on a multiprocessor platform and a sufficient
schedulability algorithm that are able to check whether a
periodic or sporadic task set can be scheduled is presented in
[17]. All of these works offer the theoretical foundation for
our research work in this paper.

VII. CONCLUSION AND FUTURE WORK
In this paper, we have presented a scheduling Framework

for Periodic Tasks (FPT), which aims to reduce the
unnecessary scheduling for periodic tasks in Geo-
Distributed data centers. The number of tasks those need to
be scheduled is the most essential factor for determining the
pressure of the scheduler. Reducing the number of

251

scheduling times is most simple and intuitionistic. In some
applications, tasks are dispatched periodically. It is feasible
to realize one-time scheduling for multiple executions,
alleviating the overhead of data centers. FPT is mainly
composed of four modules. For a task set, an algorithm
aiming to find the minimum number of VMs required to
guarantee the scheduability and generate the task instance
execution sequences on each VM is also presented. A case-
study and its evaluation are given to show the efficiency of
our framework.

Future work will concentrate on improving the
scheduling algorithm for generating execution sequence of
periodic tasks. The current version is based on Rate-
Monotonic algorithm that belongs to preemptive scheduling.
However, tasks preemption may decrease the scheduling
success ratio. We also plan to work on other features such as
bringing moderate fault tolerance into FPT, fine tuning
algorithms to realize hybrid scheduling of periodic and
aperiodic tasks, and alleviating the imbalance of resource
utilization.

ACKNOWLEDGMENT
This work was supported by a grant from the Major State

Basic Research Development Program of China (973
Program) (No. 2011CB302605).

REFERENCES

[1] https://www.google.com/about/datacenters/inside/locations.
[2] Ren S, He Y, Xu F. Provably-efficient job scheduling for energy and

fairness in geographically distributed data centers[C]//Distributed
Computing Systems (ICDCS), 2012 IEEE 32nd International
Conference on. IEEE, 2012: 22-31.

[3] Chen C, He B, Tang X. Green-aware workload scheduling in
geographically distributed data centers[C]//CloudCom. 2012: 82-89.

[4] Liu Z, Lin M, Wierman A, et al. Greening geographical load
balancing[C]//Proceedings of the ACM SIGMETRICS joint
international conference on Measurement and modeling of computer
systems. ACM, 2011: 233-244.

[5] Xu H, Feng C, Li B. Temperature aware workload management in
geo-distributed datacenters[C]//Proceedings of the ACM
SIGMETRICS/international conference on Measurement and
modeling of computer systems. ACM, 2013: 373-374.

[6] Goudarzi H, Pedram M. Geographical Load Balancing for Online
Service Applications in Distributed Datacenters[C]//Cloud

Computing (CLOUD), 2013 IEEE Sixth International Conference on.
IEEE, 2013: 351-358.

[7] Wang W, Li B, Liang B. Dominant resource fairness in cloud
computing systems with heterogeneous servers[J]. arXiv preprint
arXiv:1308.0083, 2013.

[8] Sharma B, Chudnovsky V, Hellerstein J L, et al. Modeling and
synthesizing task placement constraints in Google compute
clusters[C]//Proceedings of the 2nd ACM Symposium on Cloud
Computing. ACM, 2011: 3.

[9] Bialecki A, Cafarella M, Cutting D, et al. Hadoop: a framework for
running applications on large clusters built of commodity hardware[J].
Wiki at http://lucene. apache. org/hadoop, 2005, 11.

[10] Hindman B, Konwinski A, Zaharia M, et al. Mesos: A Platform for
Fine-Grained Resource Sharing in the Data Center[C]//NSDI. 2011,
11: 22-22.

[11] Dean J, Ghemawat S. MapReduce: simplified data processing on
large clusters[J]. Communications of the ACM, 2008, 51(1): 107-113.

[12] Zhang Z, Li C, Tao Y, et al. Fuxi: a Fault-Tolerant Resource
Management and Job Scheduling System at Internet Scale[J].
Proceedings of the VLDB Endowment, 2014, 7(13).

[13] Apache Software Foundation. Apache Spark Lightning-Fast Cluster
Computing.http://spark.apache.org/

[14] http://en.wikipedia.org/wiki/Real-time_operating_system
[15] Oh Y, Son S H. Fixed-priority scheduling of periodic tasks on

multiprocessor systems [J]. Department of Computer Science,
University of Virginia, Tech. Rep. CS-95-16, 1995: 1-37.

[16] Andersson B, Jonsson J. Fixed-priority preemptive multiprocessor
scheduling: to partition or not to partition[C]//Real-Time Computing
Systems and Applications, 2000. Proceedings. Seventh International
Conference on. IEEE, 2000: 337-346.

[17] Bertogna M, Cirinei M, Lipari G. Schedulability analysis of global
scheduling algorithms on multiprocessor platforms [J]. Parallel and
Distributed Systems, IEEE Transactions on, 2009, 20(4): 553-566.

[18] Devi U M C, Anderson J H. Tardiness bounds under global EDF
scheduling on a multiprocessor [J]. Real-Time Systems, 2008, 38(2):
133-189.

[19] Srinivasan A, Baruah S. Deadline-based scheduling of periodic task
systems on multiprocessors [J]. Information Processing Letters, 2002,
84(2): 93-98.

[20] Liu C L, Layland J W. Scheduling algorithms for multiprogramming
in a hard-real-time environment[J]. Journal of the ACM (JACM),
1973, 20(1): 46-61.

[21] Calheiros R N, Ranjan R, Beloglazov A, et al. CloudSim: a toolkit for
modeling and simulation of cloud computing environments and
evaluation of resource provisioning algorithms[J]. Software: Practice
and Experience, 2011, 41(1): 23-50.

252

