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We introduce a new method for robust principal component analysis (PCA). Classical PCA is based
on the empirical covariance matrix of the data and hence is highly sensitive to outlying observations.
Two robust approaches have been developed to date. The first approach is based on the eigenvectors of
a robust scatter matrix such as the minimum covariance determinant or an S-estimator and is limited to
relatively low-dimensional data. The second approach is based on projection pursuit and can handle high-
dimensional data. Here we propose the ROBPCA approach, which combines projection pursuit ideas with
robust scatter matrix estimation. ROBPCA yields more accurate estimates at noncontaminated datasets
and more robust estimates at contaminated data. ROBPCA can be computed rapidly, and is able to detect
exact-fit situations. As a by-product, ROBPCA produces a diagnostic plot that displays and classifies the
outliers. We apply the algorithm to several datasets from chemometrics and engineering.

KEY WORDS: High-dimensional data; Principal component analysis; Projection pursuit; Robust

methods.

1. INTRODUCTION

Principal component analysis (PCA) is a popular statistical
method that tries to explain the covariance structure of data by
means of a small number of components. These components
are linear combinations of the original variables, and often al-
low for interpretation and better understanding of the different
sources of variation. Because PCA is concerned with data re-
duction, it is widely used for the analysis of high-dimensional
data, which are frequently encountered in chemometrics, com-
puter vision, engineering, genetics, and other domains. PCA is
then often the first step of the data analysis, followed by dis-
criminant analysis, cluster analysis, or other multivariate tech-
niques. It is thus important to find those principal components
that contain most of the information.

In the classical approach, the first component corresponds
to the direction in which the projected observations have the
largest variance. The second component is then orthogonal to
the first component and again maximizes the variance of the
data points projected on it. Continuing in this way produces all
of the principal components, which correspond to the eigenvec-
tors of the empirical covariance matrix. Unfortunately, both the
classical variance (which is being maximized) and the classical
covariance matrix (which is being decomposed) are very sen-
sitive to anomalous observations. Consequently, the first com-
ponents are often attracted toward outlying points, and may
not capture the variation of the regular observations. Therefore,
data reduction based on classical PCA (CPCA) becomes unre-
liable if outliers are present in the data.

The goal of robust PCA methods is to obtain principal
components that are not influenced much by outliers. A first
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group of methods is obtained by replacing the classical co-
variance matrix by a robust covariance estimator. Maronna
(1976) and Campbell (1980) proposed using affine-equivariant
M-estimators of scatter for this purpose, but these cannot resist
many outliers. More recently, Croux and Haesbroeck (2000)
used positive-breakdown estimators, such as the minimum
covariance determinant (MCD) method (Rousseeuw 1984)
and S-estimators (Davies 1987; Rousseeuw and Leroy 1987).
The result is more robust, but unfortunately is limited to small
to moderate dimensions. To see why this is so, consider, for
example, the MCD estimator, defined as the mean and the co-
variance matrix of the & observations (out of the whole data set
of size n) whose covariance matrix has the smallest determi-
nant. If p denotes the number of variables in our dataset, then
the MCD estimator can be computed only if p < h; otherwise,
the covariance matrix of any h-subset has zero determinant. By
default, £ is about .75x, and it may be chosen as small as .5n;
in any case, p may never be larger than n. A second problem
is the computation of these robust estimators in high dimen-
sions. Today’s fastest algorithms (Woodruff and Rocke 1994;
Rousseeuw and Van Driessen 1999) can handle up to about
100 dimensions, whereas in some fields, like chemometrics,
data with dimensions in the thousands need to be analyzed.

A second approach to robust PCA uses projection pursuit
(PP) techniques (Li and Chen 1985; Croux and Ruiz-Gazen
1996; Hubert, Rousseeuw, and Verboven 2002). These tech-
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niques maximize a robust measure of spread to obtain consec-
utive directions on which the data points are projected. This
idea has also been generalized to common principal compo-
nents (Boente, Pires, and Rodrigues 2002). It yields transparent
algorithms that can be applied to datasets with many variables
and/or many observations.

In Section 2 we propose the ROBPCA method, which at-
tempts to combine the advantages of both approaches. We also
describe an accompanying diagnostic plot that can be used
to detect and classify possible outliers. We analyze several
real datasets from chemometrics and engineering in Section 3.
In Section 4 we investigate the performance and robustness of
ROBPCA through simulations. Finally, in Section 5 we outline
potential applications of ROBPCA in other types of multivari-
ate data analysis.

2. THE ROBPCA METHOD

2.1 Description

The proposed ROBPCA method combines ideas of both PP
and robust covariance estimation. The PP part is used for the
initial dimension reduction. Some ideas based on the MCD es-
timator are then applied to this lower-dimensional data space.
The combined approach yields more accurate estimates than the
raw PP algorithm, as we discuss in Section 4.

The complete description of the ROBPCA method is quite
involved and thus is relegated to the Appendix; here is a rough
sketch of how it works. We assume that the original data are
stored in an n x p data matrix X = X,, ,, where n denotes the
number of objects and p denotes the original number of vari-
ables. The ROBPCA method then proceeds in three major steps.
First, the data are preprocessed such that the transformed data
are lying in a subspace whose dimension is at most n — 1.
Next, a preliminary covariance matrix Sg is constructed and
used for selecting the number of components k that will be
retained in the sequel, yielding a k-dimensional subspace that
fits the data well. Then the data points are projected on this
subspace where their location and scatter matrix are robustly
estimated, from which its k nonzero eigenvalues [, ..., [; are
computed. The corresponding eigenvectors are the k robust
principal components.

In the original space of dimension p, these k components
span a k-dimensional subspace. Formally, writing the (column)
eigenvectors next to one another yields the p x k matrix P x
with orthogonal columns. The location estimate is denoted by
the p-variate column vector fi and called the robust center. The
scores are the entries of the n x k matrix

Tn,k = (Xn,p - lnﬂ/)Pp,ks (])

where 1, is the column vector with all n components equal to 1.
Moreover, the k robust principal components generate a p X p
robust scatter matrix S of rank k£ given by

S= Pp,kLk,kP;,,k, (2)

where Ly x is the diagonal matrix with the eigenvalues/, . . ., Ik.

Like classical PCA, the ROBPCA method is location and or-
thogonal equivariant. That is, when a shift and/or an orthogonal
transformation (e.g., a rotation or a reflection) is applied to the

data, the robust center is also shifted, and the loadings are ro-
tated accordingly. Hence the scores do not change under this
type of transformation. Let A, ,, define an orthogonal transfor-
mation; thus A is of full rank and A’ = A~!, and fiy and Py, i are
the ROBPCA center and loading matrix for the original X,, ;.
Then the ROBPCA center and loadings for the transformed data
XA’ + 1,V are equal to Aji, + v and AP. Consequently, the
scores remain the same under these transformations,

T(XA' +1,v) = (XA" + 1,V — 1,(Afiy + v) ) AP
= (X~ Ljt)P=T(X).

Although these properties seem very natural for a PCA method,
they are not shared by some other robust PCA estimators, such
as the resampling by half-means and the smallest half-volume
methods of Egan and Morgan (1998).

2.2 Diagnostic Plot

As is the case for many robust methods, the purpose of a
robust PCA is twofold: (1) to find those linear combinations of
the original variables that contain most of the information, even
if there are outliers, and (2) to flag outliers and to determine
their type.

To see that there can be different types of outliers, consider
Figure 1, where p = 3 and k = 2. Here we can distinguish
between four types of observations. The regular observations
form one homogeneous group that is close to the PCA sub-
space. Next, we have good leverage points, which lie close to
the PCA space but far from the regular observations, such as
the observations 1 and 4 in Figure 1. We can also have orthogo-
nal outliers, which have a large orthogonal distance to the PCA
space but cannot be seen when we look only at their projection
on the PCA space, like observation 5. The fourth type of data
points are the bad leverage points, which have a large orthog-
onal distance and whose projection on the PCA subspace is re-
mote from the typical projections, such as observations 2 and 3.

Figure 1. Different Types of Outliers When a Three-Dimensional
Dataset Is Projected on a Robust Two-Dimensional PCA Subspace.
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To distinguish between regular observations and the three
types of outliers for higher-dimensional data, we construct a
diagnostic plot or outlier map. On the horizontal axis we plot
the robust score distance, SD;, of each observation, given by

3)

where the scores #; are obtained from (1). If k =1, then we
prefer to plot the (signed) standardized score #;/+/I1. On the
vertical axis of the diagnostic plot we display the orthogonal
distance, OD;, of each observation to the PCA subspace, de-
fined as

OD; = ||x; — jt — Py itj]], “4)

where the ith observation is denoted as the p-variate column
vector X; and t; is the ith row of T, «.

To classify the observations, we draw two cutoff lines. The
cutoff value on the horizontal axis is v Xl?,.975 when k > 1
and £V X12,,975 when k = 1 (because the squared Mahalanobis
distances of normally distributed scores are approximately
sz distributed). The cutoff value on the vertical axis is more
difficult to determine, because the distribution of the orthogonal
distances is not known exactly. However, a scaled chi-squared
distribution gj x (32 gives a good approximation of the unknown
distribution of the squared orthogonal distances (Box 1954).
Nomikos and MacGregor (1995) used the method of moments
to estimate the two unknown parameters g; and g». We pre-
fer to follow a robust approach. We use the Wilson—Hilferty
approximation for a chi-squared distribution. This implies that
the orthogonal distances to the power 2/3 are approximately
normally distributed with mean u = (g1g2)"/ 31 — 9%) and

2/3
2_2g1/

variance o PR We obtain estimates [ and 62 using the
K

univariate MCD.ZThe cutoff value on the vertical axis then
equals (fl + 62.975)%/%, with 7975 = ®~1(.975) as the 97.5%
quantile of the Gaussian distribution.

Note the analogy of this diagnostic plot with the plot
of Rousseeuw and Van Zomeren (1990) for robust regres-
sion. There the vertical axis gives the standardized residuals
obtained with a robust regression method, with cutoff val-
ues at —2.5 and 2.5 (because for normally distributed data,
roughly 1% of the standardized residuals fall outside that
interval). Here, we prefer horizontal and vertical cutoff values
that both have an exceeding probability of 2.5%.

3. EXAMPLES

Here we illustrate the ROBPCA method and the diagnos-
tic plot on several real datasets. We also compare the re-
sults from ROBPCA with four other PCA methods: classical
PCA (CPCA), RAPCA (Hubert et al. 2002), and spherical
(SPHER) and ellipsoidal (ELL) PCA (Locantore et al. 1999).
The latter three methods are also robust and designed for high-
dimensional data.

Li and Chen (1985) proposed the idea of PP for PCA, but
their algorithm has a high computational cost. More attractive
methods were developed by Croux and Ruiz-Gazen (1996), but
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in high dimensions these algorithms still have numerical inac-
curacy. Consequently, Hubert et al. (2002) developed RAPCA,
a fast two-step algorithm that searches for the direction on
which the projected observations have the largest robust scale,
then removes this dimension and repeats.

The spherical and ellipsoidal PCA methods provide a very
fast algorithm for performing robust PCA. After robustly cen-
tering the data, the observations are projected on a sphere
(in SPHER PCA) or an ellipse (in ELL PCA). The principal
components are then derived as the eigenvectors of the covari-
ance matrix of these projected data points. SPHER and ELL do
not yield estimates of the eigenvalues, which makes it impossi-
ble to compute score distances. Therefore, in the examples we
also applied the MCD estimator on the scores to compute robust
distances in the PCA subspace.

3.1 Car Data

Our first example is the low-dimensional car dataset, which
is available in S—PLUS as the data frame cu.dimensions. For
n =111 cars, p = 11 characteristics were measured, includ-
ing the length, width, and height of the car. We first looked at
pairwise scatterplots of the variables, and computed pairwise
Spearman rank correlations pg(X;, X;). This preliminary analy-
sis already indicated that there are high correlations among the
variables, for example, ps(X1, X2) = .83 and ps(X3, X9) = .87.
Hence PCA seems to be an appropriate method for finding the
most important sources of variation in this dataset.

When applying ROBPCA to these data, an important choice
that we need to make is how many principal components to
keep. We make this choice using the eigenvalues L >h >
R ir of Sg with r = rank(Sp), as obtained in the second
stage of the algorithm [see also (A.4) in the App.]. We can
use these eigenvalues in various ways. We can look at the scree
plot, which is a graph of the (monotone decreasing) eigenvalues
(Joliffe 1986). We can also use a selection criterion to choose k
such that

k r
ZZ,/ZZ,. ~90%, (5)
j=1 j=1

or, for instance, such that
=>107". (6)

Here we decided to retain k = 2 components based on crite-
rion (5), because (I + 1)/ Y11 = 94%.

Figure 2(a) shows the resulting diagnostic plot. We can
distinguish a group of orthogonal outliers (labeled 103-104,
107, 109, and 111) and two groups of bad leverage points
(cases 102, 105-106, 108, and 110 and observations 25, 30,
32, 34, and 36). A few good leverage points are also visi-
ble (6 and 96). If we look at the measurements, we notice
that the 5 most important bad leverage points (25, 30, 32, 34,
and 36) have the value —2 on 4 of the 11 original variables,
namely Xg = Rear.Hd, Xg = Rear.Seat, X;p = Rear.Shld, and
X11 = luggage. None of the other observations share this prop-
erty. The observations 102—111 have the value —2 for the last
variable X1 = luggage, and observation 109 has the value —3.
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Figure 2. Diagnostic Plots of the Car Dataset Based on (a) Two Robust Principal Components and (b) Two Classical Principal Components.

We compare this robust result with a CPCA analysis. The
first two components account for 85% of the total variance.
The diagnostic plot in Figure 2(b) looks completely different
from the robust plot in (a), although the same set of outliers is
detected. The most striking difference is that the group of bad
leverage points from ROBPCA is converted into good lever-
age points. This shows how the subspace found by CPCA is
attracted toward these bad leverage points.

Some differences between ROBPCA and CPCA are also
visible in the plot of the scores (#;1,%) for all i=1,...,n.
Figure 3(a) shows the score plot of ROBPCA, together with the
97.5% tolerance ellipse, which is defined as the set of vectors
in R? whose score distance is equal to v x22 975+ Data points
that fall outside the tolerance ellipse are by definition the good
and bad leverage points. We clearly see how well the robust tol-
erance ellipse encloses the regular data points. Figure 3(b) is
the score plot obtained with CPCA. The corresponding toler-
ance ellipse is highly inflated toward the outliers 25, 30, 32, 34,
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and 36. The resulting eigenvectors are not lying in the direction
of the highest variability of the other points. We also see how
the second eigenvalue of CPCA is blown up by the same set of
outliers.

We also performed robust PCA on this low-dimensional
dataset using the eigenvectors and eigenvalues of the MCD
covariance matrix. The resulting diagnostic plot was almost
identical to the ROBPCA plot and thus is not included. The
other robust methods also detected the same set of outliers.

3.2 Octane Data

Our second example is the octane dataset described by
Esbensen, Schonkopf, and Midtgaard (1994). This dataset con-
tains near-infrared (NIR) absorbance spectra over p = 226
wavelengths of n = 39 gasoline samples with certain octane
numbers. It is known that six of the samples (25, 26, and 36-39)
contain added alcohol. Both the classical scree plot shown in

(b)

97.5% tolerance ellipse

L L L L L L
-60 -40 -20 0 20 40

Figure 3. Score Plots With the 97.5% Tolerance Ellipse of the Car Dataset for (a) ROBPCA and (b) CPCA.
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Figure 4. Scree Plots of the Octane Dataset With (a) CPCA and (b) ROBPCA.

Figure 4(a) and the ROBPCA scree plot shown in Figure 4(b) The CPCA diagnostic plot, given in Figure 5(a), shows that

suggest retaining two principal components. the classical analysis detects only the outlying spectrum 26,
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Figure 5. Diagnostic Plots of the Octane Dataset Based on (a) Two CPCA Principal Components, (b) Two ROBPCA Principal Components,
(c) Seven ROBPCA Principal Components, and (d) Seven ELL Principal Components.
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which does not stick out much above the border line. In con-
trast, we immediately clearly spot the six samples with added
alcohol on the ROBPCA diagnostic plot in Figure 5(b). The first
principal component from the CPCA is clearly attracted by the
six outliers, yielding a classical eigenvalue of .13. In contrast,
the first robust eigenvalue /; is only .01.

Next, we wondered whether the robust loadings would be
influenced by the outlying spectra if we retained more than two
components. To avoid the curse of dimensionality with n = 39
observations, it is generally advised that n > 5k (see Rousseeuw
and Van Zomeren 1990), so we considered kmax = 7. From the
robust diagnostic plot in Figure 5(c), we see that the outliers are
still very far from the estimated robust subspace.

The diagnostic plots of RAPCA, SPHER, and ELL were sim-
ilar to Figure 5(b) for k = 2. But when we selected k = 7 com-
ponents with ELL, we see from Figure 5(d) that the outliers
have a much lower orthogonal distance. This illustrates their
leverage effect on the estimated principal components.

3.3 Glass Spectra

Our third dataset consists of EPXMA spectra over p =750
wavelengths collected on 180 different glass samples (Lember-
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ge, De Raedt, Janssens, Wei, and Van Espen 2000). The chem-
ical analysis was performed using a Jeol JSM 6300 scanning
electron microscope equipped with an energy-dispersive Si(Li)
X-ray detection system (SEM-EDX).

We first performed ROBPCA with default value of
h = .75n = 135; however, the diagnostic plots revealed a large
number of outliers. Therefore, we analyzed the dataset a second
time with & = .70n = 126. Three components were retained
for CPCA and ROBPCA, yielding a classical explanation per-
centage of 99% and a robust explanation percentage [see (5)]
of 96%. We then obtained the diagnostic plots in Figure 6. From
the classical diagnostic plot in Figure 6(a), we see that CPCA
does not find important outliers. In contrast, the ROBPCA plot
in Figure 6(b) clearly distinguishes two major groups in the
data, a smaller group of bad leverage points, a few orthogo-
nal outliers, and the isolated case 180 in between the two ma-
jor groups. A high-breakdown method such as ROBPCA treats
the smaller group with cases 143—-179 as one set of outliers.
Later, it turned out that the window of the detector system had
been cleaned before the last 38 spectra were measured. As a
result, less radiation (X-rays) was absorbed and more could be
detected, resulting in higher X-ray intensities. Looking at the
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Figure 6. Diagnostic Plots of the Glass Dataset Based on Three Principal Components Computed With (a) CPCA, (b) ROBPCA, (c) SPHER,

and (d) ELL.
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Figure 7. The Glass Dataset. (a) Regular observations; (b) bad leverage points 143—179; (c) bad leverage points 57-63 and 74-76; and

(d) orthogonal outliers 22, 23, and 30.

spectra, we can indeed observe these differences. The regular
samples, shown in Figure 7(a), clearly have lower measure-
ments at channels 160-175 than did samples 143-179 of Fig-
ure 7(b). The spectrum of case 180 (not shown) was somewhat
in between. Note that instead of plotting the raw data, we first
robustly centered the spectra by subtracting the univariate MCD
location estimator from each wavelength. Doing so allow us to
observe more of the variability that is present in the data.

The other bad leverage points, (57-63) and (74-76), are sam-
ples with high concentrations of calcic. Figure 7(c) shows that
their calcic alpha peak (around channels 340-370) and calcic
beta peak (channels 375-400) is higher than for the other glass
vessels. The orthogonal outliers (22, 23, and 30), the spectra of
which are shown in Figure 7(d), are boundary cases, although
they have larger measurements at channels 215-245. This might
indicate a larger concentration of phosphor.

RAPCA yielded a diagnostic plot similar to the ROBPCA
plot. SPHER and ELL are also able to detect the outliers, as
shown in Figures 6(c) and 6(d), but they turn the bad leverage
points into good leverage points and orthogonal outliers.

4. SIMULATIONS

We conducted a simulation study to compare the perfor-
mance and the robustness of ROBPCA with the four other

TECHNOMETRICS, FEBRUARY 2005, VOL. 47, NO. 1

principal component methods introduced in Section 3: CPCA,
RAPCA, SPHER, and ELL. We generated 1,000 samples of
size n from the contamination model

(1 —&)N,(0, 2) + &N, (it, 2)
or
(1—e)t5(0, %) + et5(ji, X)

for different values of n, p, ¢, X, jt, and 3. That is, n(1 — ¢)
of the observations were generated from the p-variate Gaussian
distribution N, (0, X) or the p-variate elliptical #5(0, X) distrib-
ution, and ne of the observations were generated from N, (i, f))
or from #5(ji, X).

Note that the consistency factor in the FAST-MCD algo-
rithm, which is used within ROBPCA, is constructed under
the assumption that the regular observations are normally dis-
tributed. Then the denominator equals X,il_a, the (1 — a)th
quantile of the chi-squared distribution with k degrees of free-
dom. Hence the best results of the simulations with #, (and
here v = 5) are obtained by replacing the denominator with
k((v —2)/v)Fkv,1—«» With Fy 1—¢ the (1 — a)th quantile of
the F distribution with k and v degrees of freedom. However, in
real examples, any foreknowledge of the true underlying distri-
bution is mostly unavailable. Therefore (and also to make a fair
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comparison with RAPCA), we did not adjust the consistency
factor.

In Tables 1 and 2 and Figures 8—12 we report some typical
results obtained in the following situations:

1. n=100, p =4, ¥ =diag(8,4, 2, 1), and k = 3 [because
then (33 1)/ (X1 4i) = 93.3%].

(4a) & =0 (no contamination).

(4b) &€ =10% or ¢ = 20%, ji = fieq4 = (0,0,0, 1), and
3= Y /f>, where fj =6,8,10,...,20and , =1 or
fr=15.

2. n =50, p =100, X = diag(17,13.5,8,3,1,.095,
...,.002,.001), and k = 5 [because here (Z? A/
(1%%) =90.3%].

(100a) & = 0 (no contamination).

(100b) & = 10% or £ = 20%, ji = fies, and ¥ = X /f3,

where fi = 6,8,10,...,20and f, =1 or fo = 15.

Note that ¢ = 0% also corresponds to fj =0 and f> = 1. The
subspace spanned by the first k eigenvectors of X is denoted by
E; =span{ey, ..., e}, with ¢; the jth column of I, ;.

The settings (4a) and (4b) consider low-dimensional data
(p = 4) of not too small a size, n = 100, whereas in (100a)
and (100b) we generate high-dimensional data, with n = 50
being rather small and even less than p = 100. In settings
(4b) and (100b), the contaminated data are shifted by a dis-
tance f1 in the direction of the (k + 1)th principal component.
We started with fj = 6; otherwise, the outliers could not be
distinguished from the regular data points. The factor f> de-
termines how strongly the contaminated data are concentrated.
Rocke and Woodruff (1996) showed that shifted outliers with
the same covariance structure as the regular points are the most
difficult to detect. This situation corresponds with f> = 1. Note
that because of the orthogonal equivariance of the ROBPCA
method, we need consider only diagonal covariance matrices.

For each simulation setting, we summarized the results of
each estimation procedure (CPCA, RAPCA, SPHER, ELL, and
ROBPCA) as follows:

1. For each method, we considered the maximal angle be-
tween Ej; and the estimated PCA subspace, which is
spanned by the columns of Py, ;. Krzanowski (1979) pro-
posed a measure for calculating this angle, which we de-
note by

maxsub = arccos(y/Ax ),

where Ay is the smallest eigenvalue of I;(prp,kP;(’pIp,k
It represents the largest angle between a vector in E; and
the vector most parallel to it in the estimated PCA sub-
space. To standardize this value, we have divided it by 7.

2. We compute the proportion of variability that is explained
by the estimated eigenvalues. We do this by comparing
the sum of the k largest eigenvalues with the sum of all p
known eigenvalues. We report the mean proportion of ex-
plained variability,

(O ST S PR Y

1,000 ; MAAM+ i+ +Ap

where )A\;l) is the estimated value of A; at the /th replica-
tion. It would be more elegant if the denominator also

Table 1. Simulation Results of maxsub in Settings (4a) and (100a)
When There Is No Contamination

Distribution  n p CPCA RAPCA SPHER ELL ROBPCA

Normal 100 4  .094 .160 127 .087 176
50 100 .215 707 272 213 .282

Is 100 4 130 .183 127 .086 133
50 100 .308 .701 272 213 311

contained the estimated eigenvalues, but ROBPCA and
RAPCA estimate only the first k eigenvalues. We re-
port these results for the settings without contamination
and also for a specific situation with 10% contamination
(fi =10, 2, = 1). Because SPHER and ELL estimate only
the principal components and not their eigenvalues, we do
not include these methods in the comparison.

3. For the k largest eigenvalues, we also compute the mean
squared error (MSE), defined as

| Looo )
MSE(L) = —— Y (AP =)
( ]) 1’000 = ( j ])
We report the results only for f> = 1, because they were
very similar for o = 15.

The ideal value of maxsub and MSE in the tables and figures
is thus 0. For the mean proportion of explained variability, the
optimal values are 93.3% for low-dimensional data and 90.3%
for high-dimensional data.

Table 1 reports the simulation results of maxsub for the set-
tings (4a) and (100a). We see that elliptical PCA yields the best
results for maxsub when there is no contamination. For low-
dimensional data, the results for the other methods are more or
less comparable, whereas for high-dimensional data, RAPCA
is clearly the less efficient approach.

From Table 2, we see that CPCA provides the best mean pro-
portion of explained variability when there is no contamination
in the data. RAPCA attains higher values than ROBPCA for
both distributions. When contamination is added to the data,
the eigenvalues obtained with CPCA are overestimated, result-
ing in estimated percentages even larger than 100%! The robust
methods are much less sensitive to the outliers, but RAPCA
also attains a value larger than 100% at the contaminated low-
dimensional normal distribution. Note that when the consis-
tency factor in ROBPCA is adapted to the #5 distribution, the
results improve substantially. For the low-dimensional data,
we obtain 80% without contamination and 82.8% with conta-
mination, whereas in high dimensions the mean percentages of
explained variability are 69.3% and 69.4%.

Table 2. Simulation Results of the Mean Proportion of Explained
Variability When There Is No Contamination and With
10% Contamination (f; = 10 and fo = 1)

Multivariate normal Multivariate ts

CPCA RAPCA ROBPCA CPCA RAPCA ROBPCA
n=100,p=4
e=0% 93.4% 94.7% 83.9% 98.7% 721% 60.2%
e=10% 147.8% 112.9% 88.5% 135.2% 86.8% 67.5%
n=50, p=100
e=0% 91.6% 83.6% 79.5% 99.2% 65.1% 57.3%
e=10% 109.4% 86.1% 79.3% 110.9% 66.9% 56.7%
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Figure 8. The maxsub Value of the Low-Dimensional Multivariate Normal Data for (a) e = 10% and fo =1, (b) e = 10% and fo = 15, (c) e = 20%
and fo =1, and (d) e = 20% and fo= 15. The curves represent the results for CPCA (s), SPHER (R), ELL (x), RAPCA (x), and ROBPCA (¢).

The results of the maxsub measure for simulations (4b)
and (100b) are summarized in Figures 8-11. In every situa-
tion, CPCA clearly fails and provides the worst possible result,
because maxsub is always very close to 1. This implies that the
estimated PCA subspace has been attracted by outliers in such
a way that at least one principal component is orthogonal to Ey.
RAPCA, SPHER, and ELL are also clearly influenced by the
outliers, most strongly when the data are high-dimensional or
when there is a high percentage of contamination. In all situa-
tions, ROBPCA outperforms the other methods. ROBPCA at-
tains high values for maxsub at the long-tailed 75 only when fj is
between 6 and 8. This is because in this case the outliers are not
yet very well separated from the regular data group. The other
methods also fail in such a situation. As soon as the contamina-
tion lies somewhat further, ROBPCA is capable of distinguish-
ing the outliers, and maxsub remains almost constant.

Finally, we summarize some results for the MSEs of the
eigenvalues in Figure 12. The figure displays the ratio of
the MSEs of CPCA versus ROBPCA and RAPCA versus
ROBPCA, for the normally distributed data with e = 10% con-
tamination and f> = 1. Figures 12(a) and 12(b) show the results

TECHNOMETRICS, FEBRUARY 2005, VOL. 47, NO. 1

for the low-dimensional data, whereas Figures 12(c) and 12(d)
present the results for the high-dimensional ones. Compar-
ing CPCA and ROBPCA, we see that the MSE of the first
CPCA eigenvalue increases strongly when the contamination
is shifted further away from the regular points. Also, the MSEs
of the other CPCA eigenvalues are much larger than those of
ROBPCA. Only MSE(X») and MSE(43) in Figure 12(c) are of
the same order of magnitude.

Figures 12(b) and 12(d) demonstrate the superiority of
ROBPCA over RAPCA. For high-dimensional data, the differ-
ences are most prominent in the fifth eigenvalue. This explains
the bad results for maxsub obtained with RAPCA in this sit-
uation. The first four eigenvalues (and their eigenvectors) are
well estimated, but the fifth eigenvalue is clearly attracted by
the outliers.

4.1 Computation Time

Although ROBPCA is slower than the other methods dis-
cussed in this article, its computation time is still very short.
Our Matlab implementation requires only 3.19 seconds for the
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Figure 9. The maxsub Value of the High-Dimensional Multivariate Normal Data for (a) e = 10% and fo = 1, (b) ¢ = 10% and fo = 15, (c) ¢ = 20%
and fo =1, and (d) e = 20% and f» = 15. The curves represent the results for CPCA (s), SPHER (M), ELL (x), RAPCA (x), and ROBPCA (¢).

car dataset (n = 111, p = 11), 3.06 seconds for the octane
dataset (n = 39, p = 226), and 4.16 seconds for the glass dataset
(n= 180, p =750) on a 2.40-GHz Pentium IV processor.

Figure 13(a) shows the mean CPU time in seconds over
100 runs for varying low-dimensional normal data. The sample
sizes vary from 50 to 5,000, and p is relatively small (p =4 or
p = 10). We see that the computation time is linear in n and k.
From Figure 13(b), the same conclusion can be drawn for high-
dimensional datasets. We also looked at the effect of varying p
while holding n = 100 and k = 4 constant. In this case the mean
CPU time was 3.2 seconds for p = 10 and increased to only
4.3 seconds for p = 3,000.

5. CONCLUSION AND OUTLOOK

We have constructed a fast and robust algorithm for PCA
of high-dimensional data. The algorithm first applies PP tech-
niques in the original data space. These results are then used
to project the observations into a subspace of small to moder-
ate dimension. Within this subspace, ideas of robust covariance
estimation are the applied. Throughout, we have the ability to

detect exact fit situations and to reduce the dimension accord-
ingly. Simulations and applications to real data demonstrate that
this ROBPCA algorithm yields very robust estimates when the
data contains outliers. The associated diagnostic plot is a use-
ful graphical tool that allows one to visualize and classify the
outliers.

As mentioned in Section 1, data analysis often starts with
PCA. We have used a robust PCA before applying a robust dis-
criminant analysis technique (Hubert and Van Driessen 2003;
Hubert and Engelen 2004) and a robust method for logistic re-
gression (Rousseeuw and Christmann 2003). In addition, using
ROBPCA in robust principal components regression (Hubert
and Verboven 2003) and robust partial least squares (Hubert and
Vanden Branden 2003) has been investigated. The ROBPCA
method thus opens a door to practical robust multivariate cal-
ibration and to the analysis of regression data with both out-
liers and multicollinearity. To select the number of principal
components based on the predictive power of the model, fast
methods of cross-validation have been developed (Engelen and
Hubert 2004).
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Figure 10. The maxsub Value of the Low-Dimensional Multivariate t5 Data for (a) ¢ = 10% and f> =1, (b) ¢ = 10% and f> = 15, (c) ¢ = 20% and
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The Matlab program robpca and auxiliary functions are
available at the websites http://www.agoras.ua.ac.he/ and
http:/fwww.wis.kuleuven.ac.be/stat/robust.html as part of
LIBRA: the Matlab Library for Robust Analysis (Verboven and
Hubert 2004). Also stand-alone S-PLUS and R implementa-
tions can be downloaded from these websites.
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APPENDIX: DETAILED ROBPCA ALGORITHM

Here we describe the ROBPCA method in detail, following
the sketch in Section 2.

TECHNOMETRICS, FEBRUARY 2005, VOL. 47, NO. 1

Stage 1. As proposed by Hubert et al. (2002), we start by
reducing the data space to the affine subspace spanned by the
n observations. This is especially useful when p > n, but even
when p < n, the observations may span less than the whole
p-dimensional space. A convenient way to do this is by a sin-
gular value decomposition of the mean-centered data matrix,
yielding

Xn,p - ln/lé) = Un,rODro,rOV/

ro.p’

(A1)

where fi is the classical mean vector, o = rank(X,, , — lnﬂé)),
D is an ro x ro diagonal matrix, and U'U = I, = V'V,
where I, is the r9 x ro identity matrix. When p > n, we
carry out the decomposition in (A.l) using the kernel ap-
proach based on computing the eigenvectors and eigenvalues
of (X — 1ft)(X — 1,5)" (Wu, Massart, and de Jong 1997).
Because the latter matrix has » rows and columns, its decom-
position can be obtained faster than can the decomposition of
the p x p matrix (X — 1,t() (X — 1 fig).

Without losing any information, we now work in the sub-
space spanned by the rg columns of V. That is, Z, ,, = UD


http://www.wis.kuleuven.ac.be/stat/robust.html
http://www.agoras.ua.ac.be/
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becomes our new data matrix. Note that this singular value de-
composition is just an affine transformation of the data. We do
not use it to retain only the first eigenvectors of the covari-
ance matrix of X, »; this would imply that we were performing
CPCA, which is of course not robust. Here we merely represent
the data in its own dimensionality.

Stage 2. In this stage we try to find the 7 < n “least out-
lying” data points. We then use their covariance matrix to ob-
tain a preliminary subspace of dimension ko. The value of &
can be chosen by the user, but n — & should exceed the number
of outliers in the dataset. Moreover, i needs to be larger than
[(n 4 ko + 1) /2], for reasons that are explained in stage 3 of the
algorithm. Because we do not know the number of outliers or kg
at this moment, we take 7 = max{[an], [(n + kmax + 1)/21},
where kmax represents the maximal number of components that
will be computed and is set to 10 by default. The parameter «
can be chosen as any real value between .5 and 1. The higher
the «, the more efficient the estimates will be for uncontam-
inated data. But setting a lower value for o will increase the
robustness of the algorithm for contaminated samples. Our de-
fault, which is also used in the simulations, is « = .75.

To find the & “least outlying” data points, we proceed as fol-
lows:

1. For each data point x;, we compute its outlyingness.
The Stahel-Donoho affine-invariant outlyingness (Stahel
1981; Donoho 1982) is defined as

/ /
|x;v — med(xjv)|

outl4 (x;) = max , (A.2)
veB

mad(x}v)

where B contains all non-0 vectors, med(x;v) is the me-
dian of {x]’-v,j =1,...,n}, and mad(x}v)'z med|x]’-v -
med(x;v)|. In a PCA analysis we need only an orthog-
onally invariant measure, so we can restrict the set B
to all directions through two data points. If (3) > 250,
then we take at random 250 directions from B. More-
over, we replace the median and the mad in (A.2) by the
univariate MCD location and scale estimator (Rousseeuw
1984), denoted by fycp (resp. sycp). These estimators
are defined as the mean (resp. the standard deviation) of
the  observations with smallest variance. The estimators
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tmep and sycp can be easily computed in O(nlog(n))
time (Rousseeuw and Leroy 1987, p. 171). Summarizing,
for each direction v € B, we project the n data points X;
on v and compute their robustly standardized absolute
residual, [x}v — tMCD(Xj’-V)|/sMCD(XJ’-V). This leads to the
orthogonally invariant outlyingness,

x;v — tnep (X;V)|

outlp (X;) = max ——————. (A.3)
veB SMCD(XJ'V)

a. When all robust scales sy;cp are nonzero, we can com-
pute outlp(x;) for all data points and consider the
h observations with smallest outlyingness. Their in-
dices are stored in the set H.

b. When we encounter a direction v in which the pro-
jected observations have zero robust scale [i.e.,
SMCD (xj’-v) = 0], we have in fact found a hyperplane Hy
orthogonal to v that contains 4 observations. This is
called an “exact fit” situation. When this happens, we
project all of the data points on Hy, thereby reducing
the true dimension by one. To perform this projection,
we apply the reflection step, described in detail by
Hubert et al. (2002). The reflection step starts by re-
flecting all data such that the normalized vector v/||v||
coincides with the first basis vector e;. The projection
on the orthogonal complement of v then simply cor-
responds to removing the first coordinate of each data
point. We then repeat the search for the 4 least outlying
data points in Hy; that is, we return to step 1.

Note that the exact fit situation can occur more than once,
in which case we reduce the working dimension sequen-
tially. We end up with a dataset in some dimension r; < rg
and a set Hp indexing the & data points with smallest
outlyingness. For convenience, we still denote our lower-
dimensional data points by Xx;.
. We now consider ft; and Sp the mean and covariance ma-
trix of the /& observations in Hy. We follow the conven-
tion that the eigenvalues of any scatter matrix are sorted
in descending order and the eigenvectors are indexed ac-
cordingly. This means that the eigenvector v; corresponds
to the largest eigenvalue, vo corresponds to the second
largest eigenvalue, and so on. The spectral decomposition
of Sp is denoted by

So= P0L0P6s (A4)

with L = diag(ly, ..., 1) and r < r1.

The covariance matrix Sp is used to decide how many
principal components kg < r will be retained in the further
analysis. We can do this in various ways; for instance,
we can look at the scree plot, which is a graph of the
(monotone-decreasing) eigenvalues, or we can use a se-
lection criterion such as (5) or (6). See also Engelen and
Hubert (2004) for a method based on cross-validation.

. Finally, we project the data points on the subspace
spanned by the first ko eigenvectors of Sp. To implement
this step, we set

* _ Al
nky — (Xn,r1 - lnlLl)Pm,kO,

where P, i, consists of the first ko columns of Py in (A.4).

Stage 3. In the third stage of the algorithm, we robustly
estimate the scatter matrix of the data points in X:,ko us-
ing the MCD estimator. Recall that for this, we need to find
h data points whose covariance matrix has minimal determi-
nant. Because in general we cannot consider all i-subsets, we
must rely on approximate algorithms. Here we slightly adapt
the FAST-MCD algorithm of Rousseeuw and Van Driessen
(1999) by taking advantage of the result of stage 2, which used
the outlyingness measure (A.3):

1. We first apply C-steps, starting from the x; with i € Hy
(the index set Hy was obtained in step 1 in stage 2). The
C-step was proposed by Rousseeuw and Van Driessen
(1999), who gave it a fundamental role in the fast com-
putation of the MCD estimator. It is defined as follows:
Let mg and Cy be the mean and the covariance matrix of
the 4 points in Hp. Then:

a. If det(Cp) > 0, then we compute the robust dis-
tances of all data points with respect to mg and Cp, de-
noted as

ding o () =/ (xF = mo) C ! (x —mo)
fori=1,...,n. (A.S)

We then define the subset H; as the (indices of the)
h points with smallest robust distances d,,c, (i). We then
use this subset to compute m;, C;, and all robust dis-
tances dm,,c, (7). Rousseeuw and Van Driessen (1999)
proved that always det(C;) < det(Cp). We continue up-
dating the subset until the determinant of the covariance
matrix no longer decreases.

b. if at some iteration step m =0, 1, ..., a covariance
matrix C,, is found to be singular, then we project the data
points on the lower-dimensional space spanned by the
eigenvectors of C,, that correspond to its nonzero eigen-
values, and we continue the C-steps inside that space.

On convergence, we obtain a data matrix, still denoted
by X;: ky® with k; < kg variables, and indices of the final
h-subset, which are stored in the set H].

2. We now apply the FAST-MCD algorithm to X} k- This
algorithm draws many random subsets of size (k] + 1) out
of X*. In each subset, the mean and the covariance ma-
trix are computed. Then the robust distances (A.5) with
respect to this mean and covariance matrix are obtained
for all observations. Next, the (k; + 1)-subset is enlarged
to an h-subset by considering the h observations with
smallest robust distances. This h-subset is then used to
start C-steps. Note that the FAST-MCD algorithm gener-
ates quasi-random h-subsets, whereas in step 1 of stage 3
C-steps are applied starting from one specific #-subset H.

The FAST-MCD algorithm contains several time-
saving techniques. For instance, it does not apply C-steps
until convergence for each h-subset under consideration.
Instead, it carries out two C-steps for each, selects the
10 best results, and only iterates fully starting from these.
Moreover, when n is large, the algorithm constructs sev-
eral nonoverlapping representative subsets of 300-600
cases. It first applies C-steps to those subsets, then uses
the best solutions as starts for C-steps in the union of
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those subsets. In the end, the best solutions are iterated in
the whole dataset.

Whereas FAST-MCD draws 500 random subsets of
size (k1 + 1) by default, we use 250 random subsets in the
ROBPCA algorithm. This reduced the computation time
considerably, and in simulations had almost no effect on
the estimates. This is because we already used the outly-
ingness measure (A.3), which gave us a very good initial
h-subset, allowing us to draw fewer random subsets.

In this step of the ROBPCA algorithm, we also could
have used other algorithms for robust covariance estima-
tion. One reason we chose the FAST-MCD algorithm was
that to the best of our knowledge, it is currently the only
algorithm that can deal with exact fit situations. When
these situations occur, the algorithm reduces the working
dimension.

The final data set is denoted by X,,,k with k < k. Let
L, and S; denote the mean and covariance matrix of the
h-subset found in step 1, and let fi3 and S denote the
mean and covariance matrix found by the FAST-MCD al-
gorithm. If det(S1) < det(S;), then we continue our com-
putations based on ft, and S;. For this, we set ft; = ji,
and Sz = S;. Otherwise, we let i, = ft3 and S3 = S,.

3. Based on fis and S3, we compute a reweighted mean
and covariance matrix to increase the statistical efficiency.
First, we multiply S3 by a consistency factor, c1, to make
the estimator unbiased at normal distributions. As pro-
posed by Rocke and Woodruff (1996), we use the con-
sistency factor of Rousseeuw and Van Driessen (1999),
adapted with the hth quantile of the robust distances in-
stead of their median, so that

{d? }(h)
¢l = M4 $3
Xk h/n
. 2 2
with {d; ¢}y = {dj, s} =+ = {dA4S3}(n) Let

d; (i=1,...,n) be the robust distances of all observations
with respect to ft4 and ¢1S3, let w be a weight function,
and put w; = w(d,) for all i. Then the center and scatter of
the data are estimated by

L ik

,,l, =
: Z?:] Wi

and

Yo wiXi — L) (X — fus)

Z?:l wi—1

In our implementation we use “hard rejection” by taking

S4=

w(dy) =1(d; <V sz, 975)> Where I denotes the indicator
function.

The spectral decomposition of S4 can be written as
S4 = P2L2P’2, where the columns of P, = Py ; contain
the eigenvectors of S4 and L, = Ly is the diagonal ma-
trix with the corresponding eigenvalues. The final scores
are now given by

Tn,k = (Xn,k -1
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wits)P2. (A.6)

4. The last step transforms the columns of P, back to R?,
yielding the final robust principal components P, ;. The
final robust center f is obtained by transforming ft5 back
to R”, and the final p-dimensional robust scatter matrix S
of rank k is given by (2). The scores (A.6) can be writ-
ten as the equivalent formula (1) in RP. Note that the
robust score distance, SD;, of (3) can be computed in
the k-dimensional PCA space by the equivalent formula
SD; = v (% — fts)'S; ' (% — fis), which saves computa-
tion time in high-dimensional applications.

[Received February 2002. Revised November 2003.]
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