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Highlights 

 Integration of robust clustering analysis and DEA to study bank branch performance 

 Detection of influential branches, i.e., exhibiting extreme operating behaviors 

 Detection of influential branches affecting the clustering and efficiency performance 

 Exploration of how peer selection is affected by influential branches 

 Influential-based and cluster profiles that inform network design decisions 
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Abstract 

This paper proposes a multi-step procedure that integrates robust methods, clustering analysis and 

data envelopment analysis (DEA) to identify bank branch managerial clusters and to study efficiency 

performance. By applying robust techniques based on principal component analysis, we look for (1) 

the detection of influential branches, i.e., exhibiting extreme operating behaviors, and (2) the 

clustering of branches based on operating characteristics. Our premise is that influential branches 

affect both the clustering and the determination of efficiency performance. The application of the 

procedure yields various aggregate influential-based branch profiles along with cluster profiles. These 

aggregate profiles provide valuable insights on the determinants of branch efficiency performance and 

operating patterns. Using the profiles as contextual information, DEA input-oriented slack-based 

models are applied to study branch efficiency performance from meta-frontier and cluster-frontier 

perspectives. Branch performance is characterized in terms of influential-based and cluster profiles, 

and efficiency designations. This allows for the understanding of how efficiency and peer selection 

are affected by influential branches, and how the profiles can be used to inform design decisions. 

Keywords 

Data envelopment analysis; Influential observations; Robust principal component analysis; Meta-

frontier; cluster-frontier; Bank branch performance. 

1. Introduction 

This paper discusses a unique augmentation and implementation of a multivariate approach 

(Triantis, Seaver, & Sarayia, 2010) for efficiency analysis accounting for influential observations 

(Seaver & Triantis, 1992; Seaver & Triantis, 1995; Seaver, Triantis & Hoopes, 2004). This paper 

expands on this approach by including (1) the study of efficiency performance from both meta-

frontier and cluster-frontier (i.e., a frontier computed from a cluster based analysis) perspectives, and 

(2) influential-based and cluster profiles to guide bank branch network design decisions, e.g., how to 

group branches, how to change the input/output structure of branches, etc. Our multi-step procedure 

can be considered as an expert system that informs decision making at the network and branch levels 
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and is implemented using a dataset of bank branch data (Paradi, Zhu, & Eldestein, 2012). Our 

research objectives are threefold. First, we augment and implement a multi-step procedure to identify 

managerial clusters of bank branches, as well as the challenges and intuition associated with its 

execution. Our approach in this paper differs from the Triantis, et al. (2010) approach in that robust 

principal component analysis is conducted to obtain an in-depth influential observation evaluation 

with a data set that is over five times larger than that of Triantis, et al. (2010). Based on this outlier 

evaluation and in the absence of specific contextual variables, we use the inputs and outputs to 

conduct both density and centroid based clustering analyses. We acknowledge that our proposed 

approach is heuristic but provides a wealth of information that lends to the investigation of bank 

branch profiles both from an influential observation and clustering perspectives. Second, we 

investigate how the concepts of meta-frontier and cluster-frontier along with the identification of 

influential observations improve the understanding of bank branch efficiency performance and design 

decisions. Third, we compare and contrast the bank branch performance results of Paradi et al. (2012) 

with the results reached by implementing our procedure. This allows the identification of alternative 

ways to cluster bank branches and to obtain new or complementary managerial insights. 

The impact of influential observations on efficiency measurement is an ongoing research issue. 

While many approaches that investigate this impact are highlighted in the DEA literature (e.g., Beguin 

& Simar, 2004), our contention over the years is that the integration of DEA with robust, fuzzy and 

multivariate approaches (Seaver & Triantis, 1995; Seaver & Triantis, 1992; Seaver, et al., 2004; 

Triantis et al., 2010) offer a unique perspective of the masking that occurs due to influential 

observations along with a different understanding of efficiency extremes (efficient versus very 

inefficient). Additionally, the meta-frontier concept hinges in part on the consideration of the 

contextual features of the DMUs that are used in the analysis. These features are typically used to 

arrange DMUs into homogenous groups. The cluster frontiers are formed by more similar DMUs, 

offering an additional perspective of efficiency performance along with the identification of 

performance targets and peers, and the discovery of best practices and design insights (see Section 

5.1). 

Bank branch performance is of continued interest especially in the context of technological and 

socio demographic shifts. While the study of a specific data set does not allow for complete 

generalizations on bank branch clustering and performance especially since the available dataset is 

from the year 2004, and consequently dynamic considerations (Fallah-Fini, Triantis, & Johnson, 

2014) cannot be incorporated, our multi-step procedure allows us to obtain practical and technical 

managerial insights summarized in Section 5. We consider this implementation as a point of departure 

from the literature as a means to analyze more recent banking data in the future. We provide 

information that can be useful not only when understanding ex-post bank branch operational 

performance but also when considering future network design decisions (see Section 5.1). Our 
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approach allows for a comprehensive meta-analysis of the data provided. In its core, it is a heuristic 

analysis dealing with a host of issues, e.g., influential observations; meta-frontier and cluster-frontiers. 

2. Bank Branch Performance: Context and Previous Study 

Retail banks perform two operations: the provision of financial products and services, and 

financial intermediation and risk management (Mukherjee, Nath, & Nath, 2002). They operate in a 

network fashion through branches across a country. Branches might have similar portfolios, but they 

might differ in terms of size, market orientation, operating environment, etc. (Paradi & Zhu, 2013). 

Their largest source of expenses is their operational inputs used to provide financial products and 

services (Paradi & Zhu, 2013). These costs range from 60 to 70% of the total expenses (McKinsey 

and Company, 2010), involving personnel, rent and supplies. When evaluating branch performance 

two types of efficiencies are of interest: profit and operational (Paradi & Zhu, 2013). Profit efficiency 

relates to the intermediation and risk management operations. Typical variables of interest are: 

interest revenues/costs and bank fees (Hannan, 2006). Operational efficiency focuses on the provision 

of financial products and services, minimizing operational inputs while maximizing the 

products/services volume. Profit efficiency is of interest to shareholders, and operational efficiency to 

stakeholders, e.g., branch managers. Branch performance has been measured using financial ratios 

(Mukherjee et al., 2002), e.g., return on investment. They compare few variables, making them easy 

to calculate. The criticism against them is their inability to measure performance as a 

multidimensional construct including non-financial variables (Berger & Mester, 1997). 

To overcome the shortcomings of financial ratios, the efficiency measurement literature proposes 

parametric methods, such as stochastic frontier analysis (SFA), and non-parametric ones, such as data 

envelopment analysis (DEA). These methods allow the evaluation of bank branch performance by 

including multiple dimensions, i.e., inputs and outputs (Sherman & Gold, 1985; Berger & Humphrey, 

1997; Paradi & Zhu, 2013). DEA has been used to address both profit and operational efficiency. Two 

approaches are typically followed: intermediation and production (Paradi & Zhu, 2013; Avkiran, 

2009). The intermediation approach manifests itself when funds are raised, e.g., from deposits, and 

money is lent to customers through credit lines (Mukherjee et al., 2002; Schaffnit, Rosen, & Paradi, 

1997). Collecting and lending money imply an intermediation process, which allows banks to 

generate profits from the interest charged on credits minus the interest paid on deposits (Paradi & 

Zhu, 2013). The goal is to maximize profits while minimizing or maintaining the interest costs; i.e., to 

achieve profit efficiency. In contrast, the production approach focuses on the provision of financial 

products and services given certain physical (e.g., layout), informational (e.g., technology) and human 

(e.g., employees) resources (Yang, 2009). Financial products and services include deposits, over-the-

counter transactions, etc. (Cook & Zhu, 2006). The goal is to minimize the use of resources while 

maximizing or maintaining product or service volumes; i.e., to achieve operational efficiency. 

We focus on operational efficiency. Table 1 depicts typical inputs/outputs used in the literature 

for the production approach. It suggests that: (1) Facilities-related inputs are fixed in the short term 
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since they are not likely to change under the branch managers' control and banks do not change their 

fixed costs frequently. Capturing their contribution to branch performance, in terms of output 

production, is difficult; (2) the use of costs for inputs and transaction values for outputs implies the 

use of prices, representing profitability. In this case, separating technical from price efficiency is a 

challenge; (3) the use of output transaction duration raises the issue of the appropriate metric to 

measure time, e.g., is the average time a reliable metric? The efficiency results will differ given the 

metric. In this context, we pursue a production approach with a model specification using personnel-

related inputs and volumes for outputs, avoiding market prices and time in the analysis (see Table 2). 

 

Table 1. The Production Approach: Literature-Related Typical Inputs and Outputs 

Inputs Outputs 

Personnel-related: services, sales, 

management, and other staff measured in 

Full-Time Equivalents (FTEs). 

Facilities-related: rent cost, layout space in 

ft
2
, number of ATMs and computers. 

Supply-related: cost of supplies, cost of 

ATMs and computer maintenance. 

Transaction volume (units): over-the-counter transactions (e.g., 

withdrawals, checks cashed, treasury checks), personal/business 

deposits, personal/business loans, insurance and mortgages, etc.  

Transaction value (dollars): deposits, personal/business loans, 

personal/business investments, and mortgages, etc.  

Transaction duration (time): over-the-counter transactions, 

personal/business deposits, personal/business credits, etc. 

 

Grouping branches is crucial for retail banks. Efficiency performance comparisons cannot be 

completed if branches are dissimilar. Strategies (e.g., initiatives to attract customers) and network 

design decisions (e.g., to have more sales-oriented branches, which branches to keep open based on 

efficiency performance) cannot be taken studying each branch due to cost and time constraints. 

Branches should be grouped into clusters composed of comparable branches, promoting a reasonable 

efficiency performance benchmarking process (Athanassopoulos, 1998). Homogeneous clusters 

would make it easier to suggest strategies and support network design decisions. Also, clusters would 

allow for the identification of differentiated needs and improvement actions. Banks use location and 

or size variables to group branches and compare efficiency performance (e.g., Yang, 2009). These 

variables fall short in capturing other characteristics such as the operating environment (customer age, 

income distribution, etc.), and operating patterns (product or service orientation and sales or service 

personnel focus). Recognizing that branches might share similar features beyond location and size, 

banks would require more reliable ways to group branches to (1) focus the design of strategies; (2) 

foster multidimensional performance comparisons; and (3) make informed network design decisions. 
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2.1 Background on Canadian Banking 

The Canadian Banking System is composed of: 29 domestic and 24 foreign banks, 27 full-service 

and 3 foreign lending branches (Canadian Bankers Association, 2014). The Office of the 

Superintendent of Financial Institutions regulates the system through the Canadian Bank Act (S.C. 

1991, c.46). Domestic banks operate through networks, reporting 6,321 branches, over 275,000 

employees, and 18,500 Automatic Banking Machines-ABMs (Canadian Bankers Association, 2014). 

Since two decades ago, Canadian bank networks experienced major changes due to regulatory and 

technological reasons. The introduction of the National Interact Debit Card in 1994, the first full-

service virtual bank in 1997, internet banking, and online shopping in 2000 and 2001, and the Bill C-

8, which introduced changes to financial legislation are some examples (Canadian Bankers 

Association, 2014). The movement towards a multichannel approach (branches, ABMs, and internet) 

has changed the way Canadians do banking. Recent statistics (Canadian Bankers Association, 2014) 

show that 55% of Canadians used the internet as the primary banking choice in 2014 versus 8% in 

2000. Although banking at branches has decreased over time, branches are still necessary for small 

town economic development since they provide access to financial markets, especially for towns in 

remote areas where the access to internet is not given. Also, some people prefer the personal touch 

that branches provide to customers. Despite the global trends on closing brank branches (e.g., U.S. 

branch closures in 2012 were 2,267 (Sidel, 2013)), Canadian banks show a positive growth in the 

number of branches, i.e., from 5,902 branches in 2006 to 6,321 in 2013 (Canadian Bankers 

Association, 2014). This growth is the product of re-designing branches within a multichannel 

approach, making them more specialized through customized products and services and expert advice. 

 

2.2 Selected Study on Bank Branch Clustering and Performance 

Paradi et al. (2012) identify bank branch managerial groups with similar operating patterns. The 

authors use data from a large Canadian bank, 962 out of 966 branches are analyzed after identifying 

four outliers. The dataset includes three inputs and four outputs. The inputs are: Full-time equivalent 

(FTE) service, sales, and management employees. The outputs relate to the number of new account 

openings and transactions: day-to-day (personal/small business accounts), investment (personal/small 

business terms; money funds; fixed income and wealth accounts), borrowing (mortgages; personal 

and small business loans; and lines of credit), and over-the-counter transactions (bill payments; 

deposits; withdrawals). Following a production approach, Paradi et al. (2012) execute the following 

multi-step procedure: Step 1: Identify efficient branches through a non-oriented slack-based measure-

SBM model. Step 2: Establish reference peers using an additive DEA model (Charnes, Cooper, 

Golany, Seiford and Stutz 1985) through lambda values ( ), indicating the degree of closeness of an 

inefficient branch to an efficient one. Step 3: Determine operating patterns. The premise is that 

efficient branches follow different operating patterns. To identify the operating patterns, vectors of 

inputs and outputs are compared to standard input/output vectors using the dot product. A standard 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

7 

 

vector is one with components equal to one or zero. A component equal to one designates a specific 

input focus (e.g., service FTEs) or output orientation (e.g., investments). The resulting measure of 

similarity is the cosine of the angle formed by the vectors. If the cosine value is closer to 1, the branch 

follows an operating pattern similar to the one proposed by the standard vector. Step 4: Conduct K-

means clustering. The K-means clustering uses the cosine measures to cluster efficient branches. Six 

clusters are selected. Step 5: Provide an inefficient branch allocation where the approach uses the 

lambdas to allocate inefficient branches to clusters. A max function determines the within-group 

membership, e.g., if an inefficient branch has a peer in Cluster A and Cluster B, the branch belongs to 

Cluster A if the sum of the lambdas related to it is greater than the one related to Cluster B. Paradi et 

al. (2012) highlight several managerial insights: (1) inefficient branches may not find their peers or 

role models within groups of branches located in similar geographical areas; (2) branches can be 

grouped by similar operating patterns (i.e., input focus/output orientation), leading to business 

specialization; (3) the effect of managerial staff on branch performance is not clear. This is due to the 

low correlation between the management input and the outputs; and (4) inefficient branches may find 

their peers in clusters that do not represent their exact operating patterns. This cross-referencing 

provides the opportunity to evaluate alternatives and change branch operating patterns. Alternatives 

include scaling the branch size up in terms of all or individual inputs and/or outputs. 

 

3. Data and Methodology 

 

3.1 Data Description and Multi-step Procedure 

The data belongs to a Canadian Bank with 966 branches and are the same used in the Paradi, et al. 

(2012) study. Branches are spread across the country and, in theory, follow the same processes under 

varied socio-demographic conditions, i.e., operating environments. The variables are divided into 

three inputs and four outputs, which are presented in Section 2.2. The cross-sectional data correspond 

to a 10 month period in 2004. Even though more recent data is not available, we use the data as a 

means to explore the capabilities of our multi-step procedure in identifying managerial clusters, 

studying branch performance, and informing network design decisions. Table 2 provides descriptive 

statistics of the data. The large data variability confirms the heterogeneity of operating patterns. The 

multi-step procedure is divided in two major steps and four sub-steps shown in Figure 1.  

 

Table 2. General Descriptive Statistics (966 branches) 

 
Inputs (in FTEs) Outputs (in Units) 

 
Service Sales Mgmt. Day-to-Day Investments Borrowing OTC 

Mean 8.16 5.48 0.82 2,867.20 3,414.25 1,855.27 248,459.33 

Std. Dev. 4.41 3.34 0.21 1,832.77 2,244.85 1,028.97 172,969.65 

 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

8 

 

 

Figure 1. The Multi-step Procedure 

 

3.2 Statistical Approach to Cluster Bank Branches 

This step integrates various statistical techniques to find a sound way of clustering branches. Two 

sub-steps are followed. Sub-step a) corresponds to robust outlier detection. Outliers might come 

from contaminated or incorrect data (e.g., bad measurement) or just from observations exhibiting 

extreme but valid behaviors (Seaver & Triantis, 1992). Since benchmarking depends on the results 

coming from the data used in the analysis (Seaver & Triantis, 1995), it is important to identify 

extreme observations before pursuing other analyses. Paradi, Yang and Zhu (2011) point out that 

under the assumption of correct data, outlier detection can identify whether some branches are 

different from others with respect to business orientation (e.g., output orientation) or structure (e.g., 

input focus). In other words, outlier detection can inform different operating patterns. This sub-step 

deals with the detection of outliers through the application of robust principal component analysis-

ROBPCA (Hubert, Rousseeuw, & Vanden Branden, 2005). Robustness implies stable results in the 

presence of outliers (Triantis et al., 2010). The influence that extreme observations exert on others is 

accounted for and isolated. ROBPCA allows for dimensionality reduction, so that data can be 

represented by a number of linear combinations that are lower than the number of variables of a 

dataset. The resulting linear combinations are called Principal Component (PC) hyper-planes (Triantis 

et al., 2010) and they explain fractions of the dataset variability. The first PC explains the largest 

proportion of the variability, the second PC the second largest proportion, etc. To verify the 

proportion of variability explained by each PC, we apply oblique rotation (for correlated data: 

Oblimin, Promax) or orthogonal methods (for uncorrelated data: Varimax, Quartimax). These 

methods prove useful when determining if the sizes of the PCs hide other PC structures; i.e., if other 

PCs explain dissimilar proportions of the variability. Not all PCs are selected for further analyses. The 

number of PCs selected depends on the fraction of variability explained by each PC, i.e., the more 

variability explained, the better. This decision can be tied to the Kaiser rule (Kaiser, 1960) that 

suggests that a PC should be selected if its eigenvalue (i.e., variability explained by a PC) is greater or 

equal than 1.0 for the correlation matrix, or greater or equal than 0.7 rule for simulation results. 

ROBPCA classifies observations in four categories: regular, good leverage, orthogonal, and bad 

leverage (Hubert, Rousseeuw, & Vanden Branden, 2005) while the robust PCA with m-estimation 

used by Triantis et al. (2010) only indicated outliers but not type. According to Hubert and Engelen 

(2004), regular observations are a consistent group horizontally and vertically close to the PC hyper-

a) Robust outlier detection

b) Two-stage clustering analysis 

a) Data envelopment analysis from 

a meta-frontier perspective

b) Data envelopment analysis from 

a cluster-frontier perspective

2.2 Statistical Approach to Cluster 

Bank Branches
2.3  Efficiency Measurement
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planes. They do not show extreme behaviors. Good leverage observations are vertically close to the 

PC hyper-planes, but horizontally far away from them. Their variability is still well captured by the 

PC hyper-planes. Orthogonal outliers are observations with a large vertical distance to the PC hyper-

planes and their projection on them is close to the regular observations. Their variability is harder to 

explain when compared to other observations. Finally, bad leverage observations have both large 

vertical and horizontal projections on the PC hyper-planes. They exhibit extreme behaviors and 

increased variability. The robust PCA used by Triantis et al (2010) creates a weight (between 0 and 1 

inclusive) for each observation that is inversely proportional to the outlying-ness of the observations 

that affects the mean vector and covariance matrix while ROBPCA provides more information by 

classifying observations into the four categories above. Our contention is that there is something to be 

learned from each type of observation. We believe that the most interesting observations are those that 

are extreme. For example, bad leverage observations could represent extreme occurrences. Thus, they 

might provide insights on the determinants of performance (inputs and outputs) generating extreme 

behaviors, and would also inform what a ‘bad leverage’ branch means in banking terms. This is why 

our approach looks at the classification of outliers by keeping as many observations as possible rather 

than discarding them. Although we recognize the variability within each group of observations, it is 

our intent to come up with aggregate profiles of the outlier-based classification as means to explore 

what we can learn from the data. Also, this sub-step provides the robust PC scores used for clustering. 

The PC scores are the new coordinates of the observations regarding the PC hyper-planes. Since the 

ROBPCA eigenvalues represent the variability explained by each PC, the PC scores are multiplied by 

the square root of their eigenvalues to weigh them for further clustering analysis.  

Sub-Step b) pertains to a two-stage clustering analysis. Branches might share similarities 

regarding operating environments, and hence, it is possible to cluster branches through statistical 

techniques (e.g., Prior & Surroca, 2006). Clustering allocates observations into several clusters 

(Paradi et al. 2012). Observations within clusters are ‘similar’ (i.e., low within-group variability) and 

to a certain degree, different from others belonging to other clusters (i.e., high between-group 

variability). In banking, clustering might be used as a pre or post-assessment efficiency performance 

technique (Thanassoulis, 1999). Clustering as a pre-assessment tool defines clusters first, and then its 

results are used for performance analyses. Thanassoulis (1999) indicates that pre-assessment makes 

sure that branches within clusters are really comparable, so that the efficient ones are appropriate 

benchmarks. Pre-assessment clustering often uses socio-demographic or contextual variables. 

Clustering as a post-assessment tool seeks to group branches using efficiency results, e.g., efficiency 

scores (Prior & Surroca, 2006). Efficiency branch performance is evaluated first, and then branches 

are grouped using performance results. Post-assessment clustering does not allow the drawing of 

inferences beyond efficiency performance, masking the influence of operating environments. 

For our research, the available dataset is bounded to internal data for inputs and outputs. This 

means that no contextual variables are available to pursue pre-assessment clustering based on external 
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variables. Considering this limitation and the intention of using pre-assessment clustering, we use the 

branch operating patterns, i.e., input focus and output orientation, as proxies to represent the 

heterogeneity of branch operating environments. Clustering can use raw or pre-processed data. We 

use the latter to avoid scaling issues, to concentrate on significant variables, and to reduce 

dimensionality (Han, Kamber, & Pei, 2012). Thus, the PC scores obtained in sub-step a) are used as 

the inputs for clustering. They are robust and account for high variability. For the clustering analysis, 

we include all the observations derived from sub-step a). This aligns with our premise to explore what 

we can learn from all observations in terms of efficiency performance. With respect to clustering 

methods, we use the two-stage clustering method proposed by Seaver and Triantis (1992). The first 

stage allocates observations to clusters using the k-NN algorithm (i.e., density-based method), 

providing robustness and less spherical cluster shapes. The second stage uses the hard allocated 

results as inputs to implement a k-means clustering method (i.e., centroid-based method) and obtain 

cluster profiles. Future research will show how a fuzzy clustering approach brings more clarity to the 

understanding of cluster profiles of banks (Triantis et. al., 2010). We tested a number of clusters 

from 4 to 8. It is our experience that a number greater than eight makes clusters more difficult to 

evaluate. The ‘best’ number of clusters is obtained from the jackknife error, which yields the 

minimum classification error possible when using a discriminant analysis for classifying observations 

into their clusters. To get the jackknife error, linear discriminant functions under several combinations 

of the raw variables are computed. Only one combination yields a minimum jackknife error. 

 

3.3 Efficiency Measurement  

We evaluate efficiency performance using data envelopment analysis -DEA (Charnes, Cooper, & 

Rhodes, 1978). We execute two sub-steps. Sub-step a), where we use DEA from a meta-frontier 

perspective. We analyze performance comparing each branch to all branches and in this way have an 

evaluation based on an overall meta-frontier. The model specification adopts a production model, 

where a bank branch represents a service provider using personnel-related inputs to provide sales and 

service-related outputs. We select an input oriented DEA model because at the operational level, 

branch managers have more control over inputs than outputs. Given that no contextual variables are 

available; this paper takes a traditional view of DEA using internal data for inputs and outputs. This 

leads to the assumption of personnel disposability for input minimization (e.g., hourly or part-time 

employees) in response to the demand for financial services and products. The relationships between 

inputs and outputs are not expected to be proportional (Avkiran, 2014). For example, a 10% reduction 

on service FTEs does not imply 10% reduction on the over-the-counter transactions (OTC). This is 

because some OTCs might be absorbed by the remaining service FTEs. Within this context, we then 

assume variable returns to scale. The Slack-Based Measure-SBM model by Tone (2001) is used for 

efficiency measurement. This model assumes a non-radial reduction or increase in inputs and outputs 

respectively. Thus, the rate at which inputs or outputs can be adjusted to achieve performance targets, 
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is not proportional for all input or outputs (Avkiran, Tone, & Tsutsui, 2008). The model provides an 

efficiency score between 0 and 1, where 1 means fully efficient branches and 0 fully inefficient 

branches. Efficient branches determine the efficient frontier and serve as peers for the inefficient ones. 

The model formulation is shown in Equations (1)-(5), where   is the efficiency score, xi0 is the input i 

of the evaluated branch 0, yr0 is the output r of the evaluated branch 0,  j is the weight assigned to 

branch j (reference peer), xij is the input i for branch j, yrj is the value of output r for branch j, and si
-
 is 

the input excess associated with input i. For more modeling details see Tone (2001). 
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Sub-step b) pertains to efficiency measurement using DEA within each cluster. The performance 

evaluation is conducted for each cluster where the cluster frontier is computed. To ensure consistency, 

the same SBM model presented above is applied. Considering branches within clusters as comparable 

and relatively homogeneous, the efficiency performance evaluation aims to (1) better discriminate 

branch efficiency, (2) ensure that the reference peers are appropriate role models, and (3) make sure 

that improvement targets are achievable. In the meta-frontier perspective, we address branch 

performance in relation to a common frontier where all branches compose a single production 

possibility set (O'Donnell, Prasada Rao, & Battese, 2008). Conversely, when looking at the cluster-

frontier perspective, we address efficiency performance with respect to different cluster-frontiers 

where branches compose production possibility sets only within those clusters. According to 

O’Donnell et al. (2008), the meta-frontier envelops the cluster-frontiers. Thus, efficiency performance 

results vary depending on the perspective used for the efficiency evaluation. We consider that it is 

important to compare both perspectives so that the efficiency performance evaluation is informed. 

 

4. Results 

The results are presented in the following six sub-sections. The first five present the results from 

applying the multi-step procedure described in Section 3, and the last sub-section compares and 

contrasts our results to the ones obtained by Paradi et al. (2012). In order to successfully guide the 

reader through our findings, we provide an overview of the first five sub-sections. Figure 2 provides a 
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diagram of the sequential empirical processes. In sub-section 4.1 (robust outlier detection), our 

purpose is to identify influential branches and characterize them into aggregate profiles based on 

their input focus and output orientation; 86 out of 965 branches are influential (8.91%). This sub-

section provides the PC's scores for the clustering, the ROBPCA branch classification, and branch 

profiles. In sub-section 4.2 (clustering results), our intention is to cluster branches into managerial 

groups. Four clusters are obtained. This sub-section discusses the cluster composition and their 

profiles. In sub-section 4.3 (meta-frontier efficiency), our objective is to identify the efficient 

branches that form the meta-frontier; 78 out of 965 branches are efficient (8.08%). Efficient branches 

show high variance, and high out-of-cluster peer referencing exists. This sub-section provides the 

efficiency designations for the meta-frontier. In sub-section 4.4 (cluster-frontier efficiency), our 

purpose is to identify the efficient branches that form the individual cluster-frontiers; 202 out of 965 

branches are efficient (20.93%). The cluster-frontiers yield more condensed frontiers by isolating the 

effect of influential branches with different operating patterns. This sub-section provides the cluster-

frontier efficiency designations along with their ROBPCA classification. In sub-section 4.5 

(influential branches and DEA designations), we study the effect of cluster-frontiers on the number 

and type of influential branches referenced as peers. As one would expect, the effect of influential 

branches on the inefficient ones is reduced when going from a meta-frontier to a cluster-frontier 

perspective. The combined use of the ROBPCA classification and the efficiency designation provides 

a means to improve peer selection and inform network design decisions. 

 

 

Figure 2. The Multi-step Procedure: Sequential Empirical Processes 

 

4.1 Robust Outlier Detection 

We apply ROBPCA as a means to classify branches into bad leverage, good leverage, orthogonal, 

and regular branches. We define the group of bad leverage, good leverage and orthogonal branches as 

influential ones. Influential branches deviate from regular operating patterns. By initially applying 
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ROBPCA to all 966 branches, we obtain 81 influential (28 bad leverage, 48 good leverage, and 5 

orthogonal) and 885 regular branches. Branch #1020 is classified as a bad leverage and exhibits very 

extreme behavior. Its average inputs FTEs for sales and services are 7 times greater than the overall 

average (10.4 standard deviations), and its average outputs are 6.9 times greater than the overall 

average (9.1 standard deviations), reaching a peak for the over-the-counter transactions (OTC) output 

with a value 12.8 times greater than the overall average (16.9 standard deviations). When comparing 

branch #1020 to branch #1104 (next most extreme branch) branch #1104 shows average input FTEs 

3.5 times greater than the overall average (4.5 standard deviations), and average outputs 3.3 times 

greater than the overall average (3.7 standard deviations) with no peak in any output. The remaining 

extreme branches, e.g., #1440, #9400 and #78, show similar behaviors to the one exhibited by branch 

#1104. This implies that they are not as isolated as branch #1020. Table 3 shows the inputs and 

outputs of the subset of the extreme branches above mentioned. We removed branch #1020 from the 

dataset due to its extreme characteristics, which would distort the results of subsequent analyses. 

 

Table 3. Inputs and Outputs of Most Extreme Observations 

 
Inputs (in FTEs) Outputs (in Units) 

Branch # Service Sales Mgt. Day-to-Day Investments Borrowing OTC 

1020 53.63 40.72 1.61 15,721 17,135 8,222 3,186,208 

1104 37.37 13.52 1.74 12,967 9,385 4,785 929,742 

1440 30.96 15.04 1.31 9,272 13,057 5,188 913,592 

9400 28.01 20.21 0.89 18,308 11,156 4,110 869,825 

78 24.10 15.50 0.85 6,876 10,971 5,030 941,487 

 

The ROBPCA analysis is run again yielding 86 influential (30 bad leverage, 53 good leverage, 

and 3 orthogonal) and 879 regular branches. The first PC accounts for 82.56% of the data variability 

with an eigenvalue equal to 4.07, while the second PC accounts for 6.16% of the data variability with 

an eigenvalue equal to 0.21. In essence, the results show that only one PC accounts for the majority of 

data variance. To confirm this finding, we perform oblique rotation and random partitions. Since the 

dataset is highly correlated for all variables
1
, Oblimin and Promax methods are applied. The results 

from both methods suggest that the size of the first PC is not hiding other PC structures, and hence, 

the first PC is dominant. This finding is supported by the random partitions, where the dataset is 

randomly partitioned into four equally sized datasets. The results show that on average the first PC 

explains 82% of the data variability. In all the previous analyses, the loads of the management input 

are extremely low in the first five PCs, and very high only in the sixth PC (explaining ~87% of the 

variability). This implies that the management input does not allow for branch differentiation, at least 

for the data we are dealing with. Based on the Kaiser rule, only the first PC should be kept for further 

analyses (i.e., its eigenvalue is greater than 1). However, we also keep the second PC since it does not 

add any complication, and in turn, it increases the total variability explained to 88.72%. Table 4 

                                                           
1
 Except for the management FTEs input. This variable has a correlation lower than 0.4 with all remaining inputs and outputs. 
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provides the classification of branches considering the outlier analysis on the first two PCs along with 

their means. The classification suggests that we need to identify aggregate branch profiles. The 

profiles are investigated through the examination of the inputs and outputs. The examination is in part 

conducted using the Tukey honestly significant difference test for comparison of means (Salkind & 

Rasmussen, 2007). 

From Table 4, the bad leverage branches have the highest average and variance (not reported) 

values for all inputs and outputs. However, Table 5 provides the mean service and sales per FTEs in 

an aggregate fashion. Taking the aggregate results to draw insights, one might think that the bad 

leverage branches are not exemplary in relation to service and very poor with respect to borrowing 

service. They are only high on investments and day-to-day account openings. A design decision in 

this case might consider rethinking the allocation of service personnel, and or verifying the existence 

of measurement problems related to the service FTEs input. The good leverage branches aggregate 

results have the second highest sales FTEs and the second highest average outputs, except for OTC. 

Again adjusting for FTEs, there is a dichotomy. These branches have the highest outputs per service 

FTEs, except for OTC, but the lowest outputs for sales FTEs. The emphasis for these branches is 

service. 

 

Table 4. ROBPCA Results: Classification and Means 

  
Inputs (in FTEs) Outputs (in Units) 

Type #Branches Service Sales Mgt. Day-to-Day Investments Borrowing OTC 

Bad Leverage  30 19.70 12.73 0.94 7,415 8,919 4,067 657,026 

Good Leverage  53 11.85 11.38 0.87 5,456 6,653 3,720 340,410 

Orthogonal 3 15.49 8.54 0.94 5,075 5,199 3,767 598,723 

Regular 879 7.47 4.83 0.81 2,533 3,009 1,653 224,433 

 

Table 5. ROBPCA Results: Mean Service and Sales Per FTEs 

  
Outputs/FTEs for Service Outputs/FTEs for Sales 

Branch Type 
# 

Branches 

Day-to-

Day 

Invest-

ments 

Borrow-

ing 
OTC 

Day-

to-

Day 

Invest-

ments 

Borrow-

ing 
OTC 

Bad Leverage 30 376 453 206 33,352 583 701 320 51,612 

Good Leverage 53 460 561 314 28,727 479 585 327 29,913 

Orthogonal 3 328 336 243 38,652 594 609 441 70,108 

Regular 879 339 403 221 30,044 525 623 342 46,467 

 

For the orthogonal branches, their aggregate service FTEs are second highest with respect to 

average borrowing and OTC. Although just three branches fall into this category, we explore what we 

can learn from them regarding their determinants of performance, and how they compare to the other 

groups in aggregate terms. Once again adjusting for service FTEs, these branches have the lowest 

aggregate outputs for day-to-day operations and investments and the highest with respect to OTC. As 

to sales FTEs, these branches have highest aggregate outputs in all categories, except investments. 

The weakest link for these branches is in services with respect to day-to-day operations and 
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investments. These branches when considering the outputs adjusted for service could have the 

following situations: (1) the FTEs might be masking administrative activities that do not have direct 

impacts on the outputs, e.g., training people for other branches; (2) the existence of qualified people to 

handle investments; or (3) a measurement problem with respect to the service metric. 

With respect to regular branches, they have the lowest aggregate average input FTEs and the 

lowest aggregate average outputs. When one adjusts the outputs for service and sales FTEs, these 

branches are not top-tiered. They are ranked second when considering investments and borrowing 

with respect to sales FTEs. These branches seem to be in the middle of the spectrum with respect to 

outputs. However, a quick glance at Table 5 suggests that changes in sales FTEs and in the day-to-day 

output could move these branches into a favorable top tiered position for sales. Table 6 provides a 

quick glance at the aggregate profiles of the types of branches. 

 

Table 6. ROBPCA Results: Branch Aggregate Profiles 

Bad Leverage Branches Good Leverage Branches Orthogonal Branches Regular Branches 

Large service and sales 

per FTEs generating 

more outputs but low 

borrowing in relation to 

service and sales FTEs.  

Highest outputs per FTEs 

for service except for OTC 

and worse outputs per 

FTEs for sales 

Very poor service per 

FTEs for day-to-day and 

investments but good for 

borrowing and OTC per 

FTEs for sales.  

Basically in the middle 

ground for service and 

sales per FTEs, i.e., 

nothing exceptional. 

 

4.2 The Clustering Results 

Branches are grouped using the two-stage clustering method described in Section 3.2. As input for 

the clustering, we use the product between the PC scores and the square root of the eigenvalues of 

each PC from Section 4.1. Table 7 shows the clustering results with respect to jackknife errors for 

k=4-8 clusters, where the appropriate number of clusters is k=4 due to its low jackknife error equal to 

9.43%
2
. Branches are hard or crisply allocated to clusters as follows: 320 branches to Cluster 1, 71 

branches to Cluster 2, 195 branches to Cluster 3, and 379 branches to Cluster 4. This cluster 

composition is contingent on the number of observations used for classification. In our case, it 

includes influential observations. The cluster composition would change if some of the influential 

observations are removed, which is not the approach we follow in this research. At this point one 

could also argue that once the branches are clustered, the problem of outliers reproduces itself within 

the clusters. Following this logic would imply looking at various iterations of outlier detection, adding 

more complexity than clarity on practical managerial decisions. The clusters are shown in Figure 3, 

and it is important to note that there seem to be overlapping clusters suggesting the need for fuzzy 

clustering (Seaver & Triantis, 1992). Table 8 depicts the results in terms of the cluster means. 

 

 

 

                                                           
2
 The minimum classification error comes from the optimal combination Sales FTEs, OTC, Borrowing, and Investments respectively. 
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Table 7. Clustering Results: Jackknife Errors  

 k=4 clusters k=5 clusters k=6 clusters k=7 clusters k=8 clusters 

Jackknife Error 0.0943 0.1300 0.1973 0.1970 0.1309 

 

Using the resulting clusters, we provide cluster profiles. To do so, we apply a Tukey test for the 

comparison of means. This test suggests that all clusters are statistically differentiated for all inputs 

and outputs as far as their means are concerned, except for the management FTE input. Figure 4 

shows a representation on the cluster differentiations based on the ratios of the clusters’ means to the 

overall means. From Figure 4 and Table 8, one can classify branches based on scale (i.e., FTEs and 

transaction volumes) instead of operating patterns, except for Cluster 2. There are no differences 

between clusters 1, 3, and 4, except their scale. These clusters comprise 93% of the total branches, 

which is quite likely since banks run a very tight ship and control all aspects of their operations. A 

pertinent question relates to the real differentiation regarding operating patterns. Based on the results, 

differentiation is more a matter of scale. It is our contention that fuzzy cluster assessment would allow 

for better differentiation in terms of operating patterns. Further research will address this issue. For 

the moment, it seems that hard or crisply allocated clusters somehow mask this differentiation. 

 

 

Figure 3. Clustering Results: Spatial Distribution of Branches within Clusters 

 

Table 8. Clustering Results: Cluster Means 

  
Inputs (in FTEs) Outputs (in Units) 

Cluster 
# 

Branches 
Services Sales Mgt. 

Day to 

Day 

Invest-

ments 

Borrow

-ing 
OTC 

1 320 8.25 5.28 0.86 2,805 3,264 1,813 250,531 

2 71 17.03 12.54 0.90 6,808 8,440 3,963 542,280 

3 195 11.75 8.15 0.88 4,287 5,035 2,752 375,341 

4 379 4.45 2.87 0.75 1,416 1,728 1,017 118,632 
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Figure 4. Clustering Results: Ratios of Cluster Means to the Overall Means per Input and Output 

 

In terms of FTEs (inputs) and transaction (output) volumes, hereinafter operational levels, 

Clusters 4 and 1 contain the branches with the lowest operational level. They show an aggregated 

average service and sales FTEs equal to 7.3 and 13.5 respectively. Cluster 4 contains 44 out of the 45 

branches with no management FTEs. The operational level of these branches imply that there is no 

need for management FTEs; managerial activities might be covered by service sales FTEs; or the way 

this variable is measured needs to be revised. The FTEs mix of Clusters 1 and 4 is similar (~61% of 

service FTEs, ~39% of sales FTEs). Cluster 1 has a slightly higher proportion of service FTEs when 

compared to Cluster 4; and its OTCs are a little bit higher than Cluster 4. Cluster 4 has a slightly 

higher proportion of sales FTEs when compared to Cluster 1; and its day-to-day, investment, and 

borrowing transactions are a little bit higher than Cluster 1. In reality, there is no significant 

differentiation in the input-output mix for these clusters. Differentiation pertains more to scale rather 

than to operating patterns. We label branches grouped in Cluster 4 as low-operational level branches, 

while branches falling in Cluster 1 as medium-operational level branches. 

 

Table 9. Clustering Results: Mean Service and Sales per FTEs 

  
Outputs/FTEs for Service Outputs/FTEs for Sales 

Cluster Branches 
Day-to- 

Day 

Invest- 

ments 

Borrow- 

Ing 
OTC 

Day-to-

Day 

Invest- 

Ments 

Borrow- 

ing 
OTC 

1 320 340 396 220 30,367 531 618 344 47,449 

2 71 400 496 233 31,843 543 673 316 43,244 

3 195 365 429 234 31,944 526 618 338 46,054 

4 379 318 388 229 26,659 494 602 354 41,336 

 

From Tables 8 and 9, Clusters 3 and 2 contain branches with higher FTEs and transaction 

volumes. Both clusters have an aggregate average of service FTEs and sales FTEs of 19.9 and 29.6 

respectively. The proportion of sales FTEs in Cluster 3 is slightly higher than in Cluster 1 (40.9% vs 

39%). The mix of inputs and outputs when comparing Clusters 3, 1 and 4 is not very different. 

However, Cluster 2 has the highest aggregate outputs per service and sales FTEs of all of the clusters, 

-
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except for borrowing and OTC on the sales side while Cluster 3 would rank second for outputs 

corrected for FTEs. Cluster 3 seems to consist of high-operational level branches since these branches 

have higher FTEs and transaction volumes than those in Clusters 1 and 4. Meanwhile, Cluster 2 is the 

one with the largest branches but with the greatest input and output variation (see Table 8). It has a 

high proportion of sales FTEs (42.4% vs. ~39.7% on average in other clusters). This makes the sales 

outputs higher for this cluster than in the other clusters (3.42% vs. ~3.19% on average in other 

clusters). The largest branches are more oriented to sales outputs (e.g., day-to-day, investment) than to 

service ones (i.e., OTC). They might be regional or headquarter branches, where more sales-strategic 

activities take place. According to the patterns in Figure 4, Cluster 2 is not as homogenous in terms of 

its input and output mix as the other clusters. It uses more sales FTEs. Branches in Cluster 2 are 

labelled as very high-operational level branches since they differentiate from others with respect to 

scale and operating patterns. Table 10 provides an overview of the cluster profiles. 

 

Table 10. Clustering Results: Cluster Profiles 

Criteria Cluster 1 Cluster 2 Cluster 3 Cluster 4 

Operational level Medium Very high High Low 

Avg. sales and service inputs 6.76 14.78 9.95 3.66 

Avg. sales-related outputs (day-

to-day, investment, borrowing) 
2,627.88 6,404.25 4,025.16 1,387.33 

Avg. service-related outputs 

(OTC)  
250,531.50 542,280.90 375,341.80 118,632.70 

Operating pattern 

No specific input 

focus or output 

orientation 

Targeting 

sales-related 

outputs 

No specific input 

focus or output 

orientation 

No specific input 

focus or output 

orientation 

 

Table 11. Clustering Results: Cluster Composition regarding ROBPCA Classification 

 
Type of Branch 

 Cluster Bad Leverage Good Leverage Orthogonal Regular Total 

1 0 6 0 314 320 

2 28 25 2 16 71 

3 2 22 1 170 195 

4 0 0 0 379 379 

Total 30 53 3 879 965 

 

Branches within clusters possess different classifications regarding their ROBPCA categories. 

Table 11 shows the number of influential and regular branches within each cluster. 63.95% (55 out of 

86) of the influential branches are grouped into Cluster 2. This cluster gathers 93.3% (28 out of 30) of 

all bad leverage branches, 47.16% (25 out of 53) of all good leverage branches, and 66.6% (2 out of 

3) of all orthogonal branches. Conversely, Cluster 4 is composed of 100% regular branches, Cluster 1 

has 98.1% (314 out of 320), and Cluster 3 has 87.17% (170 out of 195) regular branches. When 

studying these results we observe that the two-stage clustering method is able to isolate, as much as 

possible, the branches that exhibit extreme behaviors. Actually, the most extreme branches in the 

dataset are in Cluster 2, i.e., bad leverage branches #78, #1104, #1440, and #9400. 
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4.3 Efficiency Results Including all Branches (the Meta-Frontier) 

The input-oriented SBM model discriminates 78 branches as efficient (8.08%) and 887 as 

inefficient (91.92%) when using the entire dataset. Table 12 provides a descriptive summary of the 

efficient branches. They show high variability for almost all inputs and outputs, demonstrating the 

existence of branch heterogeneity regarding operating patterns. It would not be fair to compare 

inefficient branches to efficient ones possessing dissimilar features. 

 

Table 12. Efficiency Results with All Data: Descriptive Statistics of Efficient Branches 

 
Inputs (in FTE) Outputs (in Units) 

 
Services Sales Mgmt. Day to Day Investments Borrowing OTC 

Mean 7.84 5.19 0.64 3,299 3,588 2,104 269,187 

Std. Dev. 7.40 4.53 0.41 3,408 3,555 1,705 255,688 

  

Table 13. Percentage of Inefficient Branches Referencing Efficient Peers across Clusters 

 
  

Peers (Efficient Branches) 

Inefficient Branches 

Cluster # Branches Cluster 1 Cluster 2 Cluster 3 Cluster 4 

1 313 57.19% 0.32% 2.88% 39.62% 

2 54 1.85% 53.70% 44.44% 0.00% 

3 185 58.38% 9.19% 27.57% 4.86% 

4 335 8.36% 0.00% 0.00% 91.64% 

 

In Table 13 we present a comparison between the number of inefficient branches that are hard or 

crisply allocated to the clusters obtained in Section 4.2 and the percentage of those branches 

referencing efficient branches within the same or different clusters. The intention in studying the 

efficiency results using all data (the meta-frontier) with the branch groupings that are derived from the 

clustering is to investigate the peer designation from the DEA analysis in relation to where these peers 

exist using the clustering analysis. From Table 13, a high percentage of inefficient branches have 

peers from other clusters (i.e., high out-of-group references), especially inefficient branches that are 

allocated in Cluster 1 (39.62% of peers in Cluster 4), Cluster 2 (44.44% of peers in Cluster 3) and 

Cluster 3 (58.38% of peers in Cluster 1). This indicates that performance comparisons based on 

lambda values do not capture all the similarities that branches share in terms of operating patterns 

across clusters. In contrast, 91.6% of the inefficient branches in Cluster 4 have their peers within the 

same cluster. 

As an example, let us analyze inefficient branch #12 allocated to Cluster 1. The meta-frontier 

results suggest the efficient branch #7288 from Cluster 4 as the primary peer for branch #12. Figure 5 

depicts the efficiency performance of inefficient branch #12, efficient branch #7288, the average 

performance of efficient branches in Cluster 1 and Cluster 4. For normalization purposes, the values 

shown in Figure 5 correspond to the ratios of the branch’s input and output values to the overall mean 

for each input and output of interest. The figure shows how the inefficient branch #12 does not really 

compare to either its peer branch #7288 or the average of the efficient branches in Cluster 4. Indeed, 

the pattern of the inefficient branch #12 is more similar to the average of the efficient branches within 
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its own cluster, i.e., Cluster 1. If the inefficient branch #12 uses branch #7288 as a role model for best 

practices, it would need to drastically change its operating patterns to emulate branch #7288. Besides 

costs and time, it would suggest considering the short and long term feasibility of the changes. 

 

 

Figure 5. Comparison between Inefficient Branch #12 and Efficient Peer Branch #7288 

 

4.4 Efficiency Results within Each Cluster 

The input-oriented SBM model is applied to each cluster. The results are provided in Table 14. As 

expected, the number of efficient branches identified (202 out of 965) exceeds the number of efficient 

ones from the meta-frontier approach (78 out of 965), i.e., almost 2.6 times more efficient branches. 

In this case, inefficient branches find all their peers within their clusters. Table 15 provides descriptive 

statistics for the efficient branches. By comparing the variability in Table 15 and Table 12, the 

efficient branches in clusters show less variability in all inputs and outputs compared to the meta-

frontier approach. Branches within clusters are more similar. Revisiting branch #12 for example, we 

find that it remains inefficient when evaluating its performance within Cluster 1. However, the branch 

has branch #131 from Cluster 1 as its peer instead of branch #7288 from Cluster 4 as described in 

Section 4.3. In Figure 6, we identify how the branches within the same cluster (#12 and #131) are 

more similar with respect to operating patterns. Thus, any improvements performed by branch #12 are 

more reasonable to attain using efficient branch #131 as a peer rather than efficient branch #7288. 

 

Table 14. Cluster Efficiency Results: Efficiency Classification per Cluster 

Designation Cluster 1 Cluster 2 Cluster 3 Cluster 4 Total 

Efficient 50 23 43 86 202 

Inefficient 270 48 152 293 763 

Total 320 71 195 379 965 

 

In Table 14, the proportion of efficient branches is 20.93% (202/965) versus 8.08% (78/965) 

using the meta-frontier. This proportion increases in the cluster-frontiers because each branch is 

compared to a smaller set of more similar branches. The cluster-frontier perspective allows for the 

-
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definition of more reasonable efficient frontiers by isolating the effect of influential branches with 

different operating patterns. With respect to influential branches, we find that the meta-frontier is 

formed by 78 efficient branches classified into 57 regular and 21 influential (13 bad leverage, 7 good 

leverage and 1 orthogonal). The efficient frontiers from the cluster-frontier perspective are 

represented by four frontiers. Figure 7 shows the cluster composition. In this figure, the majority of 

efficient branches in Clusters 1, 3 and 4 are regular branches: 94% in Cluster 1 (47/50), 72% in 

Cluster 3 (31/43), and 100% in Cluster 4. Influential branches are not associated with these clusters. 

However, Cluster 2 contains the most influential branches (28 bad, 25 good, 2 orthogonal). Out of the 

71 branches composing cluster, 23 are efficient. Three are classified as regular branches and 20 as 

influential ones (12 bad leverage
3
, 7 good leverage and 1 orthogonal); 17 out of the 20 influential 

efficient branches in Cluster 2 are contained in the set of influential efficient branches found in the 

meta-frontier perspective. The cluster-frontier approach classifies a higher proportion of efficient 

influential branches in a particular cluster.  

 

Table 15. Cluster Efficiency Results: Efficient Branch Means per Cluster 

  

Inputs (in FTEs) Outputs (in Units) 

Cluster Statistic Services Sales Mgt. Day-to-Day Investments Borrowing OTC 

1 
Mean 8.12 5.14 0.84 3,168 3,649 2,052 279,615 

Std. Dev. 1.78 1.50 0.11 865 1,299 589 83,145 

2 
Mean 17.82 11.59 0.89 8,067 8,699 4,415 613,705 

Std. Dev. 6.40 3.18 0.29 2,888 3,258 880 166,063 

3 
Mean 11.64 7.99 0.87 4,793 5,429 3,005 392,228 

Std. Dev. 2.43 2.24 0.18 1,190 1,879 770 103,988 

4 
Mean 3.95 2.76 0.58 1,442 1,763 1,058 117,012 

Std. Dev. 1.76 1.10 0.40 729 892 521 57,548 

 

 

Figure 6. Comparison among Inefficient Branch #12 and Efficient Branches #131 and #7288 

 

                                                           
3
 This set includes the most extreme branches of the entire bank network: branches #78, #1104, #1440 and #9400. 
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Figure 7. Composition with respect to Efficiency Designation and Branch Type 

 

4.5 Influential Branches and DEA Efficiency Performance Measurement 

From the previous analysis, one can gain insights with respect to the reduction of the number of 

influential branches used as peers when using cluster-frontiers. As a matter of comparison, Table 16 

shows the number and type of branches used as primary peers in both the meta-frontier and cluster-

frontiers. It also shows the number of inefficient branches referencing primary peers falling into each 

ROBPCA category. Looking at the meta-frontier, 13 out of 30 bad leverage branches (43.3%) are 

used as primary peers by 25 inefficient branches, and a total of 84 inefficient branches (out of 887: 39 

regular, 11 bad, 33 good, and 1 orthogonal) reference influential branches as primary peers. In other 

words, efficient influential branches are peers for 9.47% (84/887) of the inefficient branches. A valid 

question to ask is if it is reasonable that inefficient branches choose efficient influential branches as 

peers. To some degree, there is no a clear answer to this question. It depends on the correspondence 

between inputs and outputs. For instance, 88% of the peers of the 33 good leverage branches 

referencing influential branches as primary peers are good leverage branches; meanwhile, 12% are 

bad leverage branches. Thus, cross-referencing is numerically possible, but the appropriate peer 

selection must be carefully studied by the analyst in a meta-analysis. 

By analyzing the cluster-frontiers shown in Table 16, 13 out of 30 bad leverage branches are used 

as primary peers by 34 inefficient branches. From these 13 efficient and bad leverage branches, 12 

belong to Cluster 2 (92.3%) and one to Cluster 3 (7.7%). A total of 61 inefficient branches (out of 

763) reference influential branches as primary peers. Thus, efficient influential branches are peers for 

7.99% (61/763) of the inefficient branches. These results must be decomposed per cluster to 

investigate the real impact. From the 61 inefficient regular branches referencing influential branches 
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as peers, 8 belong to Cluster 1 (1.04% out of 763), 46 to Cluster 2 (6.02% out of 763), 7 to Cluster 3 

(0.91% out of 763), and 0 to Cluster 4 (0% out of 763). Thus, there is a reduction in the number of 

influential branches serving as peers when using the cluster-frontiers versus the meta-frontier. 

 

Table 16. Number of Branches used as Efficient Peers per ROBPCA Classification 

Category Details 
Meta-

Frontier 

Cluster-

Frontier 

Bad 

Leverage 

# Bad leverage branches used as peers 13 13 

# Inefficient branches using bad leverage branches as peers 25 34 

Good 

Leverage 

# Good leverage branches used as peers 7 20 

# Inefficient branches using good leverage branches as peers 58 24 

Orthogonal 
# Orthogonal branches used as peers 1 2 

# inefficient branches using orthogonal branches as peers 1 3 

Regular 
# Regular branches used as peers 57 167 

# inefficient branches using regular branches as peers 803 702 

 

The discrimination of branches based on their ROBPCA classification and efficiency designation 

provides a means to improve peer selection. For example, from the 25 inefficient branches that have 

efficient bad leverage ones as peers in the meta-frontier, 10 are regular. Recalling the aggregate 

profile in which a bad leverage branch is where more outputs but low borrowing are produced in 

relation to service and sales FTEs, this implies that the 10 branches might follow peers that do not 

address their performance in a meaningful way. The targets might be infeasible, misrepresent the 

correspondence between sales and service inputs and outputs, and exert pressure towards unreachable 

goals. To confirm this, the analyst would need to compare the input and output mix of the 10 

inefficient regular branches and the mix of the bad leverage branches referred to as peers. Special 

attention must be given to bad leverage and orthogonal branches referenced as peers. A solution might 

be to select as peers efficient branches (not bad or orthogonal) with the second highest lambda. Good 

leverage peers exhibit better operating conditions (more service outputs using less service inputs); 

thus, their use as peers would not lead to unreasonable targets. 

 

4.6 Comparing and Contrasting with Paradi et al. (2012) 

We select the study by Paradi et al. (2012) to compare and contrast how different multi-step 

procedures provide varying results for managerial groups in bank branch networks. Our intent is not 

to suggest methodological superiority but to investigate how different methodologies lead to different 

clusters of bank branches, their study of efficiency and managerial insights. (1) Point of departure: 

Paradi et al (2012) use clustering as a post-assessment tool based on efficient branches and cosine 

similarity measures. Our approach clusters all branches first and then applies DEA analysis to each 

cluster, ensuring similarity between inefficient and efficient branches so that performance targets are 

achievable. (2) Treatment of Outliers: Paradi et al. (2012) use a rule of thumb approach to remove 

four extreme branches. The rule consists on removing branches for which at least two out of three of 
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their inputs have values larger than the input mean plus three times the input standard deviation of all 

branches. No additional discussion is provided. In contrast, our approach attempts to keep the outliers 

throughout the analysis to understand their influence in terms of the clustering and efficiency analysis. 

We apply ROBPCA to classify influential branches into profiles defining bad leverage, good leverage, 

and orthogonal branches. Only branch #1020 (bad leverage) is removed given its extreme behavior. 

(3) Number of Clusters: Paradi et al. (2012) obtain six clusters based on the efficient branches. The 

clusters are differentiated given certain inputs and outputs. Inefficient branches are allocated to the 

clusters based on their DEA lambda values. Our approach yields four clusters composed of efficient 

and inefficient branches. Only one cluster shows specific patterns in terms of the inputs and/or 

outputs. Clusters 1, 3 and 4 are composed of branches following homogeneous operating patterns (no 

specific input focus and/or output orientation), while Cluster 2 targets more sales-related outputs with 

more sales FTEs. (4) Efficiency Classification: The non-oriented DEA model applied by Paradi et al. 

(2012) identifies 78 efficient branches out of 962. Our cluster-frontier input-oriented DEA approach 

identifies 202 efficient branches out of 965. This is because the influential efficient branches are 

mainly grouped into one cluster, increasing the discrimination of efficient branches in other clusters. 

(5) Managerial Insights: The study developed by Paradi et al. (2012) provides several managerial 

insights discussed in Section 2.2. Our approach provides alternative insights by including influential-

based and cluster profiles, which expand the characterization of branches beyond operating patterns 

and include the analysis of reasonable correspondences between inputs and outputs. This provides 

managers with both aggregate and detailed information to support decision making in terms of 

shifting operating patterns, new branch openings, and operational improvements. Furthermore, our 

approach clearly identifies the low contribution of the management input to branch performance 

differentiation and characterization. This is evident by means of both the robust principal component 

analysis and the two stage clustering. This finding reinforces the need of revising the way the 

management input is measured. Contrary to Paradi et al. (2012), our approach informs managerial 

stakeholders about the suitability of using peers or role models within the same cluster. In other 

words, using peers within a group of branches that share the same operating patterns. As a result, our 

approach yields 0% cross-referencing and ensures the formulation of performance targets that are 

more feasible and logical with respect to current operating patterns of the inefficient branches. 

 

5. Conclusions 

5.1 Practical Remarks from the Analysis 

Despite the limitation of this research in terms of accessing more recent bank branch data and the 

non-availability of contextual variables for clustering, our multi-step procedure offers a set of 

capabilities that bank branch stakeholders might take advantage of when considering grouping 

branches, studying their performance, and informing bank network design decisions. These 

capabilities are: (1) Address operational performance from a multidimensional viewpoint. As 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

25 

 

supported by previous studies (e.g., Avkiran, 2014; Yang, 2009; Thanassoulis, 1999), multiple inputs 

and outputs can be included for efficiency performance evaluation, overcoming the limitations of 

financial ratios. It is important to recall the importance of the selection of an appropriate input and 

output model specification, since the use of different inputs and outputs leads to alternative 

realizations of operational or profit efficiency. (2) Ensure fairer comparability. Our multi-step 

procedure views branches as entities sharing similarities regarding operating patterns and 

environments. Clustering by similarities promotes fairer comparisons among branches. This 

challenges the tendency of grouping branches based on size or geographical location, which usually 

benefits branches serving big markets surrounded by favorable environmental conditions. Operating 

patterns that are not fully scale-driven will be further explored when using fuzzy methods (Seaver & 

Triantis, 1992). (3) Fully characterize branches at the individual level. Stakeholders can characterize 

each individual branch in relation to (a) its branch type (influential, regular), (b) its operating patterns 

(cluster allocation), (c) its efficiency designation (efficient or inefficient) for both the bank network 

(meta-frontier) and within clusters, and (d) its closest and most appropriate peer. This characterization 

provides a level of detail that is not usually found in efficiency banking studies, delivering as much 

information as can be extracted from the available data. (4) Fully characterize branches at the 

aggregate level. Individual information allows for pattern aggregation. Stakeholders are provided with 

two kinds of aggregate profiles. The influential-based branch profiles lead to an understanding of 

what bad leverage, good leverage, orthogonal, and regular branches mean based on the determinants 

of efficiency performance, i.e., key inputs and outputs. Bank networks might use these profiles as 

guidance for the identification of best practices and expected input-output correspondences. The 

cluster profiles identify the input focus and output orientation (operating patterns) of each cluster. Our 

multi-step procedure is replicable to other banking and non-banking networks. (5) Get a big picture 

on bank branch performance. By combining individual and aggregate information, stakeholders get 

a better understating of bank branch efficiency performance and are able to inform better network 

design decisions. Stakeholders thinking on re-designing branches, e.g., changing their output 

orientation, might use the branches’ current cluster profiles to determine the feasibility of future 

changes (e.g., adaptation to other operating pattern(s), costs, and time). Aggregate information would 

also allow for the discovery of measurement issues. For example, in this research we do not encounter 

a reasonable contribution of management FTEs on efficiency, which is not really expected. This is 

probably due to the difficulty of obtaining appropriate measurements for this variable. This is an 

opportunity to investigate how efficiency performance is measured in terms of specific variables using 

different methods, and to demonstrate how bad measurement affects network design decisions. 

5.2 Technical Remarks from the Analysis and Future Research 

We discuss technical insights along with further research challenges. (1) The need for consensus 

on model specifications. It is worth to note that there is no consensus in the literature as to what the 

appropriate model specification for bank branch operational performance is (Luo, Bi, & Liang, 2012). 
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The selection of model specifications should be informed by research on input-output 

correspondences contingent by the availability of data. (2) Building on the integration of Operations 

Research and robust statistical techniques. Current literature on bank branch operational 

performance usually concentrates on identifying efficient and inefficient branches, formulating 

improvement targets, and recommending peers. Besides these contributions, this paper augments and 

implements the Triantis et al. (2010) integrated approach in a bank branch network setting and 

complements it by adding aggregate profiles for influential observations and clusters. This unique 

implementation provides capabilities to investigate bank branch efficiency performance as it relates to 

the deviation of bank branches from normal operating patterns, the clustering of branches based on 

similarity, and the influence of clusters and influential branches on efficiency evaluation. (3) Number 

of clusters. Clustering results depend on both the method used to cluster and the selected number of 

clusters. We explored four to eight clusters, selecting four clusters based on the minimum jackknife 

error. This decision should be complemented with feedback from bank stakeholders through face-

validation. (4) Meta-frontier versus cluster-frontiers. In Sections 4.3 and 4.4, we explore how 

efficiency designations change when using a meta-frontier versus cluster-frontiers. Less variability, 

more efficient branches, and fairer benchmarking conditions are some of the benefits. (5) The effect 

of the robust clustering approach on efficiency designations. Figure 8 shows how the efficient 

branches identified by the meta-frontier are allocated into clusters along with their branch ROBPCA 

classification. We can see how none of the efficient branches change their efficiency designations, 

and particularly, how the majority of the influential branches (17 out 21) are allocated in Cluster 2. 

This captures the essence of what we refer to in Section 4 as the power of isolation of the robust two-

stage clustering method. This isolation increases the discriminatory power of efficient branches in all 

clusters and reduces the number of influential branches referenced as peers. (6) Use of results for an 

ex-ante perspective. Our approach might be used for bank network design. This implies looking at 

clustering and efficiency performance as a means for ex-ante interventions as opposed to the classical 

ex-post approach of the efficiency performance literature. Designing a bank network can imply 

decisions on restructuring, reengineering, closing or opening branches. The individual and aggregate 

branch characterizations can support and guide these decisions. Further research on linking efficiency 

performance measurement and bank network design is encouraged. (7) Additional future research. 

Some issues to address are: the analysis of more recent banking datasets along with the inclusion of 

contextual variables; the automation of the proposed multi-step procedure in a unified code so that 

analysts interested in its capabilities can use it as a single expert system to support clustering, 

efficiency evaluation, and bank network design decision making; the comparison of bank branch 

performance realities of different countries; and the exploration of the effect on operational 

performance by Full-Time Equivalent employees when breaking them down into full and part-time 

employees. Other critical issues should investigate the effect of mobile banking channels on branch 

performance and to examine a fuzzy clustering approach based on our previous research. With 
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respect to the latter, our intuition is that branches share similarities with more than one cluster, which 

affect their efficiency classification and the classification of other branches in the clusters. 

 

 

Figure 8. Effect of Clustering on Efficiency Designations 
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