
An Automated Infrastructure for Real-Time
Monitoring of Multi-Core Systems-on-Chip

George Kornaros∗

Electronics & Computer Engineering Department
Technical University of Crete

Kounoupidiana, Chania, Greece
Email: kornaros@mhl.tuc.gr

Ioannis Christoforakis, Maria Astrinaki
Applied Informatics & Multimedia Department

Technological Educational Institute
Estavromenos, Heraklion, Greece

Abstract—Requirements for rapid turnaround development of
complex multi-core Systems-on-Chip nowadays have advanced to
the level at which a number of different in principle validation
techniques have to be performed in short time. Quite common
are hybrids of passive debugging of Systems-on-Chip and event-
driven active verification. On top of these, we present a novel
highly flexible verification infrastructure, in which parameters of
monitoring can be accessible in real-time while the measurement
itself is being performed. Instead of simply observing components
under development, the proposed infrastructure enables the
designer to interact, monitor and adjust in real-time system
parameters or application software. This paper explores different
microarchitecture alternatives to efficiently support flexible real-
time monitoring via hardware configurable monitors which can
provide abstractions of the information. A quantitative evaluation
of the proposed methodology on a system-on-FPGA provides
results that can serve as guidelines for system-level designers,
proving the need for flexible and at the same time efficient filters
for real-time monitors inside complex multi-core SoCs.

I. INTRODUCTION

In recognition of the complexity of debugging (in this
article we use the term debugging to refer to both debugging
for correctness as well as to discovering the critical paths
for performance tuning and power optimization) multi-core
systems-on-chip in conjunction with parallel applications, run-
time mechanisms are becoming increasingly important to
identify multiprocessing problems and evaluate partitioning
and mapping of tasks to cores or their run-time behavior with
increased level of confidence and accuracy. Therefore, it is
important to develop tools and methodologies which provide
advanced multi-core development and debugging capabili-
ties while supporting both heterogeneous operating systems
and/or heterogeneous processor architectures. Efforts are in
the direction of system-aware profiling, run-time debugging
tools, while it is widely known that it is extremely hard
to find multiprocessing problems like race-conditions, time-
consuming tasks, deadlocks or live-locks.

The paper addresses the problem of reducing the time spent
on prototyping an SoC design, to improve time-to-market.
In the prototyping process, the SoC design is implemented
on an FPGA and trace programs are run on the SoC while
measuring signals that are internal to the designed systems,

Also with the Technological Educational Institute of Crete, Applied Infor-
matics & Multimedia Department, Heraklion, Greece

because these signals need to be observed to validate the
operation of hardware and software components. The pur-
pose of this phase of prototyping is to find implementation
errors and performance bottlenecks. To observe the system-
internal signals, the proposed approach includes non-intrusive
monitoring circuitry in the HDL of the SoC design. The
monitoring circuitry can be automatically generated based on
a prototyping-engineers specification to observe the behavior
pre-determined signals. The monitoring hardware can contain
comparison units, counters, timers, and memory, implemented
either as dedicated hardware structures or using software
running on monitoring-specific CPUs. Particular focus is on
filtering the large data volume from FPGA-based prototyping
experiments, to monitor only certain signals in conjunction to
given events, analogous to setting breakpoints in a software
debug tool. The proposed monitoring circuitry contain such
filters and these filters can be reconfigured to match new events
during the operation of the FPGA experiment.

The proposed infrastructure is conceived as an amalgama-
tion of ideas from hardware verification methodologies for
SoCs, hardware emulators and monitoring and debugging for
distributed, real-time or parallel systems. Increasingly reduced
time-to-market requirements force designers to devise auto-
mated ways to verify and isolate a root cause of the failures, or
of the time-critical path inside complex multi-core SoCs. Key
enabling concepts in electronic system level (ESL) verification
methodologies are using transaction-based communication and
synchronization combined with the controlled time concept
[1], or hardware-abstraction layers [2], to deliver high verifi-
cation throughput.

This work presents an automated methodology using ad-
vanced script-based tools, yet easy and fast to deploy; these
tools feature a non-invasive nature, with the capacity to capture
the timing, performance or energy deficiencies inside complex
SoCs when the real-time failing conditions do actually occur.
While this hybrid infrastructure utilizes both hardware mon-
itors and software run-time management for increased flexi-
bility, it is straightforward and easy to employ. The hardware
monitors need to be attached to the suspicious signals to verify,
while the monitors’ software interface offers a simple API to
the developer, and does not incur any other programmer visible
effects. Moreover, the proposed scheme can be incorporated

978-1-4673-1188-5/12/$31.00 ©2012 IEEE

to assist in monitoring and efficient handling of multiple
processes or parallel applications in embedded systems. De-
bugging and control of parallel embedded applications can
be facilitated with a real-time tool capable of capturing both
hardware and software deficiencies.

The remainder of this paper is organized as follows. Section
II addresses previous work on debugging and environments
for monitoring SoCs. In section III the essential monitoring
methodology features are described. Section IV analyzes the
internal architecture of the monitors and provides an assess-
ment of the capacity of the system when scaling to multi-cores,
along with the interaction and the capabilities of the associated
monitoring software. Finally, section V concludes the paper.

II. BACKGROUND AND RELATED WORK

In providing observability for bus-based systems research
and industry has already demonstrated valuable results, such
as ARMs Coresight technology [3]. Usually, the presence of
extra logic and special debugging modules is intrusive and
sometimes degrades system performance. On top, integrating
suitable debug and trace options on the system often requires
the specialist knowledge of the tool manufacturer.

In the research domain, Cota et al., describe in [4] one
approach to provide a Test Access Mechanism (TAM) for
testing the nodes of a SoC; this technique re-uses the network
resources to minimize the cost and improve the speed of
testing probes. The key observation is that due to its role,
network-on-chip is a central piece of the SoC. TAM interfaces
with test wrappers, built around the cores, to apply test vectors
to the cores under test, and also collects and delivers the
possible responses. However, this type of operation is intrusive
and useful only for off-line testing.

Different Design-for-Testability (DfT) approaches have also
been proposed, to provide the means for testing a network-on-
chip [5]. In [6] a debug framework for reconfigurable hardware
is presented to address the problem of co-debugging in hybrid
systems. A custom tool named JHDL with a new special
design language has been developed to emulate the system
based on abstractions of the structural view of hardware.
However, real-time features of this approach and of the work
presented in [7], combined with handling of the complexity
of debugging multi-core SoCs are not present.

Hybrid techniques have been proposed which are based
on combining a number of packet selection approaches. For
instance, Scholler proposes to add packet sampling into the
packet and create a scheme combining certain advantages of
filtering and sampling [9].

In [10] Ciordas et al. present, in detail, how monitoring ser-
vices can be taken into account at design time and how design-
ers can integrate the monitoring functionality and placement in
a network-on-chip through the system design flow. In addition,
the cost of the complete monitoring solution is quantified; this
cost includes the monitors, the extra network interfaces (NIs),
NI ports or enlarged topology needed to support monitoring in
addition to the original communication infrastructure. Results

show an area-efficient solution for integrating monitoring in
NoC designs. However, the filtering solutions are not detailed.

One of the main problems in NoC monitoring is that
processing the entire contents of every packet imposes high
demands on packet monitors and their hardware resources.
One way for reducing the volume of the data is by utilizing
certain techniques for filtering, aggregation, and sampling
just as it is done in the case of telecommunication network
monitoring [8]. In [11] the debug environment of the AEthereal
NoC architecture is presented so as to visualize a SoC’s state at
the logical communication level. Complementary to this work
the following sections introduce a more practical infrastructure
which is quantitatively evaluated with experiments, so as to
explore its effectiveness for multi-core SoCs.

III. DEBUGGING FRAMEWORK BASED ON REAL-TIME
MONITORING

The main objectives of the proposed methodology are
briefly summarized in:

• providing an easy, fast and efficient tool to jointly monitor
hardware designs and software code,

• integrating monitors with the SoC design in a non-
invasive way,

• leaving the software application without any instrumenta-
tion code run as it would on the actual embedded system.

The design flow is outlined in Fig. 1. Usually prototyping on
a reconfigurable-logic-based platform assumes a SoC design
that is re-synthesized and verified many times before an error
free system is produced. In this context, but not limited to pre-
production validation, the infrastructure shown in Fig. 1 uses
a design described in an HDL (and potentially the embedded
application code) as input. The designer mainly specifies the
trace and the trigger signals before running the tool. Each of
these signals can be either a single bit or a bit vector, or part
of this bit vector. These can also be generics, or just the name
of the signal without specifying bit width; the tool parses the
design to discover it. The signal name can also be part of the
actual signal name, which is very convenient when the design
that is used as input to the flow has already been synthesized,
and thus, the suffix of the signal name may be modified (due
to vector naming conventions, or duplicate logic to reduce
fanout).

� ���������	��

��
����

��

�������

������

�����	�

� ����������

������

����

����

������	
�������

��������

Fig. 1. Automated infrastructure to integrate Trace Monitor Units (TMUs)
with a System-on-Chip design.

The debugging framework employs configurable plug-ins
that can be specified optionally depending on the designer’s
requirements and resource constraints. After the inputs are

scanned and processed the configuration plug-ins are consid-
ered to produce the final top level synthesizable SoC. The
developed plug-ins include:

• Free-running timer. Timestamps can be enabled to iden-
tify the exact timing of captured events. It is useful to ob-
tain events from different clock domains associated with
a local timestamp when insight is needed at a block level.
However, currently we opt for a centralized counter/clock
to avoid distributed time consensus issues. A tuple {time-
stamp, event} forms an event-time structure.

• Statistic counters. Currently a single 32-bit counter is
used to accumulate the captured events and is controlled
by the software of the monitor CPU.

• Compression unit. While filtering the trace data reduces
the amount of information, if the designer desires to
increase the window of observation then, the data must
be either compressed or use a high-throughput link to
transfer them to the real-time on-chip monitor CPU,
or to the off-chip monitor host. Even though hardware
compression units are efficient, their energy and silicon
cost may be prohibitive for comparatively small designs.

• CAM-based Event Classification. A Content-
Addressable-Memory (CAM) helps to categorize
the events in classes specified as rules by the designer.
A single filter is a first aid to select the events of interest
out of a vast amount of sampled data. Further on-the-fly
processing though, necessitates the use of a CAM. Due
to the silicon cost of a hardware CAM the testbed
evaluation discussed in section IV is using a single
hardware filter combined with a CAM in software.

• External Memory Interface. Depending on the combina-
tion of processing of traced events, of link throughput
that is used to transfer these data and of the level of
filtering more on-chip memory, or off-chip memory can
be selected.

The organization and internal architecture of these compo-
nents is further analyzed in the following section.

A. Architecture

The minimal configuration of the monitoring unit may
include a single interface (either UART or parallel interface)
in order to forward the captured traces to a monitoring host.
Similar to Chipscope Pro from Xilinx, a on-chip real-time ob-
server tool for FPGAs, the designer defines which signals can
be observed; these are captured through a monitor controller to
an outgoing interface. Thus, users can define trigger conditions
and capture data at or close to the system clock rate.

Unless the traced data can be forwarded to the monitoring
host at least with the system’s operating frequency, buffering
must be enabled. The default option is to use on-chip memory,
utilizing multiple memory blocks of size 64×64 if desired. The
number of these memory blocks is automatically computed
based on the bit width of the specified traced signals, so as to
form a wide memory. Fig. 2 outlines an example organization
of the monitoring module connected to an on-chip CPU.
Alternatively, an off-chip memory can be specified with a

potential risk to affect the system’s throughput if the memory
or the interface cannot sustain the aggregate bandwidth of the
SoC and of the monitors.

� !��

���"�������

� !��

����#	�
�$�

��	����

��%���

����"���

����

&'��

����

'�

��������(��

��������(��

�! ��

&'��

Fig. 2. On-chip memory organization for real-time event tracing

The functionality of the Trace Monitor Unit (TMU) en-
compasses a programmable filter to reduce the amount of
captured data and the required time to process these data in
software. In addition, the proposed real-time monitoring and
debugging system features on the fly update of the filter of the
monitor, which gives a clear advantage over all other on-chip
verification tools, such as Chipscope, or ARM’s CoreSight.
This is particularly useful when a condition is met that triggers
subsequent events to monitor, or more importantly when the
execution of the embedded application is benefited from these
events. Moreover, a series of checkpoints is a usual debugging
strategy towards providing guarantees for a working algo-
rithm. In the current implementation the monitoring processor
communicates with the TMU using a register based interface.
Thus, the filter can be programmed at run-time in the following
way:

[T-1] Mask the traced vector using conditioning circuitry
to collect only the samples of interest.

[T-2] Perform exact pattern match if strong conditioning
is desired.

[T-3] Use a maskable trigger event to enable breakpoint-
ing, or versatile run-time control of trigger function.

Actually, the sampled data must satisfy a group of conditions
set by the trigger fields and the masks so as to be captured.
However, default masks allow an easy and straightforward
usage by the designer. Figure 3 shows the internals of a
single TMU attached to a on-chip CPU, which for the evalu-
ation testbed is a MicroBlaze soft-CPU core from Xilinx. A
few words can be transferred via point-to-point links (Fast-
Simplex-Links named FSL, [12]) utilizing FIFOs for synchro-
nization decoupling.

In fact, the TMU is a modular design allowing decoupling
of its internal architecture with the type of memory storage
used to capture the traces. It is created based on the user’s
configuration of the TVdata and TVtrigger signals, while the
user can optionally program the mask with software at run-
time.

There is the issue of targeting the host platform with these
tools. At this point, generic solutions don’t exist because
of the range of multi-core hardware. Tools primarily target

����	��!$������)�""����*+ ���%�"���
,,�-�

.,�-�

���"���
�"�

��"�����	��!$����"�������

����������"���

���� ���������

�
��/��))���

0

$ 0

Fig. 3. Architecture of a single programmable trace monitor. The designer
specifies the Trace Vector (TV) signals: TVdata and TVtrigger at configuration
time, while TVmask and TVpattern can be programmed and modified at run-
time.

only one class of hardware or even one vendor’s hardware.
In the developed framework, besides including a monitor
processor or sending the captured information directly out of
the chip to a monitoring host, the TMU component is modular
and independent from the FSL wrapper. The FSL wrapper
is used to exchange information with the MicroBlaze CPU,
receiving the filtered samples and setting the appropriate masks
according to the designer’s code. However, the TMU module
is quite generic and can be used easily in other platforms,
besides Xilinx’s.

Additionally, multiple TMUs can be integrated with a single
MicroBlaze processor through the processor’s configurable
direct FSL extensions. The limitation of attaching up to 16
FSL custom blocks to the MicroBlaze is easily overcome,
since a TMU wrapper-manager can form a hierarchical TMU
structure with a larger number of TMUs, restricted only by
the available on-chip resources. Finally, a potential issue that a
designer must tackle is the processing capacity of a centralized
monitoring CPU, as the monitoring software has to manage a
large number of TMUs.

One must notice that the monitoring infrastructure employs
easy to implement language constructs, so as to facilitate real-
time decisions. These constructs are primitive to provide ease
of use and fast deployment, and very efficient as well:

• change monitor signals, with masks by software at run-
time, or with multiplexing in hardware (configuration /
generation time)

• provide causal capture (if “event e1 happened” then look
for event e2); currently, only four conditions are allowed
to respect a reasonable area budget, while at the same
time a designer will hardly ever use more conditions.

For instance, a user specification in the Trace Signals file of
the form:

event1 > trigsignal1,... ,trigsignalN1
event2 > trigsignal2,... ,trigsignalN2

is translated in a HDL description as follows:
case TVdata:

when event1=> TVtrigger <= {trigsignal1,... ,trigsignalN1};
TVdata <= {signal1,... ,signalN1};

when event2=> TVtrigger <= {trigsignal2,... ,trigsignalN2};
TVdata <= {signal2,... ,signalN2};

when event3=> TVtrigger <= {trigsignal3,... ,trigsignalN3};
TVdata <= {signal3,... ,signalN3};

when event4=> TVtrigger <= {trigsignal4,... ,trigsignalN4};
TVdata <= {signal4,... ,signalN4};

end case;

This allows zero overhead for the monitor CPU to change
trigger conditions, but requires re-synthesis of the system in
case of errors, and thus more design time.

IV. EVALUATION AND IMPLEMENTATION RESULTS

The evaluation testbed utilizes Xilinx’s Virtex4-FX20 device
as a substrate for experiments, along with simple kernel tasks
to investigate rapid deployment, potential hardware overheads
and programming model transparency. The testbenches are
structured in two parts with increasing degree of complexity.

A. TMU response under software control

The non-invasive monitoring of embedded SoC applications
for debugging, reliability, or performance, can be considered
as the clear value addition by using this methodology. To this
direction an embedded System-on-FPGA is developed, which
uses the MicroBlaze soft-processors (see fig. 2 to perform
an example application, namely an edge detection filter. Even
though this SoC was hosted on a ML405 platform from Xilinx
with external SRAM and DRAM memories, the embedded
application is located in the local BRAM of the MicroBlaze.
A neighboring MicroBlaze core serves as the monitor CPU
which communicates with a hardware timer on a PLB bus, and
with a UART interface to an external host. The ELF image
to apply the filter is also pre-loaded in the local data BRAM.
We attached a TMU to the address bus of the data BRAM of
the supervised MicroBlaze. This worker MicroBlaze maintains
a message buffer in its local Data BRAM while the monitor
MicroBlaze observes when this buffer is accessed via its TMU.
The physical address of the buffer in the local data BRAM
is known after dis-assembly of the ELF executable; , or after
profiling; then, the filter masks are programmed. In the current
infrastructure a post-compilation script searches the executable
code to provide the address of the buffer.

Figure 4 shows the measurement results as reported from
the monitoring MicroBlaze. Initially, the TMU is disabled; the
monitored MicroBlaze runs an edge detection kernel (based on
Sobel filter) which processes an image of 7×180 pixels in 7M
clock cycles as measured with the on-chip hardware timer. The
buffer is accessed (read or write is not important) in every loop
iteration for each row of the image.

Next, the TMU is enabled and the code in the monitoring
MicroBlaze (after manual optimizations and compilation with
-O3 option) continuously reads the FSL wrapper to extract
the captured traces from the TMU memory. In the current
implementation one access of the MicroBlaze results in read-
ing of four 32-bit words from the TMU memory. A software
timer is incremented with every access of the monitoring
MicroBlaze to the TMU. Alternatively, this can be considered
as a sampling rate indicator. Multiple experiments with diverse
conditions of the application in the worker MicroBlaze and
with the monitoring software (communication with neighbor-
ing processors is disabled during the kernel processing), the
worst case response of the TMU when inquired from the
monitor CPU is depicted in Fig. 4 (a). When only the on-
chip hardware counter is utilized, the monitor CPU reads the

sampled value from the TMU in 650K clock cycles in worst
case; when only the software counter is used, the worst case
is 9.2K times. The monitor has the capacity to sample the
specified signals which a designer requests in every clock
cycle; however the designer must evaluate the time required
for software to process the captured data against the capacity
of the trace memory.

�������

�������

�	����

��
�������

���
��
�

��
�������

�
�����
�

�	��

�

�������

�������

�������

��
�������

���
��
�

��
�������

�
�����
�

�����

�

��������	
���
�	�

����������

�����	�

�����������
�	��

���

���

��������
�����
�����	�

���

�

� 	 � � � � �

�����!���

Fig. 4. A monitoring MicroBlaze captures the progress of image filtering
running on a different MicroBlaze processor; the goal includes to identify
response latency using software and hardware timers

In part (b) of Fig. 4 the monitoring CPU manages a 16
entry CAM in software. When the same trace is encountered
more than ten times it is logged inside the CAM. Now, in
the application code the local buffer in the data BRAM is
accessed three times per loop iteration. The result is that an
entry is stored in the CAM in almost 3.74M clock cycles in
worst case. This is due to the transfer rate of the captured
traces from the TMU memory to the processor (4 words per
access). The monitor provides indications empty and full to the
monitor master, as regards the status of the TMU memory.

After the edge detection kernel on the pre-loaded image
completes, the worker MicroBlaze calculates the gray-scale
threshold using an available range of 255 values. The ad-
dresses of the threshold table are extracted from the code
and the masks in the monitor are set appropriately. Thus, the
monitoring CPU computes and reports the results shown in
figure 5 after the application completes. Positive and negative
deviations from the average sampling time are also reported to
identify potential instantaneous interferences. Notice that the
filter allowed only addresses conforming to bits [15..7] of the
mask 0x00006880 for a total of 16 buffers in local memory.

Alternatively, the free-running timer per monitor can be
enabled for attaching timestamps to each event, instead of
presenting the average time between samples.

Table I summarizes the implementation cost of indicative
monitor configurations; Unless we integrate complex functions
in hardware, such as compression or classification of events,
the cost of integrating even multiple TMUs is affordable.

����"���

������ !��

1��"�2���%�3�
�����!%%��		��
��4������!���		�	�
�����----566-�----778��------6�9�

�����----566:�----778%�------:;9�

�����----5666�----778��------7;9�

�����----566��----7786�------7-9�

�����----56<-�----778=�------759�

�����----56<:�----7788�-------%9�

�����----56<6�----777:�-------:9�

�����----56<��----77:��------->9�

�����----56�-�----77=%�------->9�

�����----56�:�----77:5�-------:9�

�����----56�6�----7-;;��-------79�

�����--------�--------�--------9�

�����--------�--------�--------9�

�����--------�--------�--------9�

�����--------�--------�--------9�

�����--------�--------�--------9�

����

Fig. 5. Monitor report during execution of image filtering, threshold
computations; in addition to correctness the goal is to offer real-time services
towards monitoring tasks with hard real-time constraints

TABLE I
TRACE MONITOR UNIT IMPLEMENTATION RESULTS

Configuration Slices RAMB16s Freq
TMU 72bit monitor 358 6 405.8
with UART Tx i/f (ext. Host)
CAM plugin (16×192) 1364 18 211
TMU 32bit monitor 432 3 418
with FSL i/f to MicroBlaze

B. Monitor aware multi-core SoC
If we assume that the monitoring system is not only a

passive observer but the worker CPU considers and reacts
on the outcome of the monitor CPU, then, the designer must
take into account the total round-trip time with respect to
each individual source of delay. Hence, as refers to the delay
between the occurrence of an event and the reaction of the
worker processor, critical issues arise: (i) whether the monitor
infrastructure faces bounded jitter as regards the processing of
the events, (ii) what is the most efficient scheme to notify the
worker processors (interrupt triggered, message passing, etc.)
considering the NoC organization, the memory hierarchy and
the interrupt latency of a particular CPU.

If multiple monitors are attached to a monitor processor,
then, the processor software in the centralized configuration,
as in the implementation shown in section IV-A, must sweep
all the monitors in a round-robin fashion, assuming all are of
the same priority.

The boundary condition for an effective scheme can be
formulated as:
Tevent2-Tevent1 >= Tmonproc + Treaction + TTMU

where,
Tmonproc: the time for the monitor processor to process the
captured event,
Treaction: the time for a MicroBlaze node to understand the
message of the monitor processor, and,
TTMU : the time for the TMU to filter an event, store it in a
local buffer or memory and send it to the monitor processor.

To achieve this target each time-consuming factor must be
addressed. The proposed infrastructure in this work is efficient
if applied at task level granularity, since, as the experiments
show, even with optimized code in the monitor CPU we need
carefully selected filters to remove garbage traces. Shifting to
hardware management techniques and distributed schemes will

consequently open the way to sub-microsecond monitoring of
hundreds of cores.

In order to pause, reconfigure, or perform synchroniza-
tion operations we investigated the latency of interrupt-based
monitor-SoC communication, and thus we developed the eval-
uation scenario shown in Fig. 6. This includes just one set
of the processing and the monitor MicroBlaze in interactive
mode. Even though the monitor’s role can be non-intrusive,
it can potentially interfere to provide monitoring services for
deterministic replay, or for more difficult cases like debugging
shared variables, or interrupt handling. The key in these cases
is to provide predictability.

In the depicted scenario the monitor probe collects the
sampled traces and decides to communicate with one CPU
via interrupt, so, the sequence of events shown in the figure
takes place. The monitor CPU inquires the monitor probe, then
sends a message to the worker and gives up polling the monitor
interface; after, continuously reads a one-word (i.e., four bytes)
message from the incoming port of the mailbox. The worker
CPU is notified when a message arrives in the mailbox FIFO
via interrupt. Each counter connected to the PLB adds a small
overhead, but its usage only serves this measurement scenario.
To avoid risking large penalties, integrated counters in place
can be used.

������������

����"��

�����?

���(��

�
��/��))��

.

����*�
�

������ *�
�������@
����*�

������

0�����

�����?

���(�

��"��

� !�

����

�� �

&�	"�4�

� !�

����

�� �

&�"�

��

��

�

�

��

��

Fig. 6. Testbench setup of an integrated real-time monitor manager
MicroBlaze with a monitor unit connected via FSL, measuring round-trip
time while exchanging messages with the worker processor.

The average round-trip time to react for an identified event
of interest costs 7070 clock cycles. Experiments with the pro-
cess initiated from the worker MicroBlaze exhibit an average
latency of 6920 clock cycles. In this scenario, the worker
MicroBlaze starts its local XPS timer, then the sequence of
events 4→5→2→3; the event 3 causes an interrupt and inside
the interrupt service routine the value of the XPS timer is
sampled. To further understand the performance difference
from the application’s perspective, the current application
consumes 650K clock cycles between subsequent samples,
which translates to almost 80 messages with response from
the hardware processing units (i.e., the MicroBlaze).

Notice that if we integrate a hardware CAM to classify the
captured events, with only 3 clock cycles per search operation,
then, we can significantly accelerate Tmonproc of the monitor
CPU. Nevertheless, the area cost of this plug-in is significant

as shown in table I, making it affordable only for large SoCs.
The method and dedicated logic or hardware components
may have a significant impact on the ability to observe and
detect specific execution behavior or system states at runtime.
Predictable real-time system operation can be dependent on
meeting tight timing constraints that may be perturbed during
online observation or debugging. Different embedded applica-
tion behavior, as well as distributed monitoring schemes will
be explored in future work.

V. CONCLUSIONS

A novel infrastructure is introduced to address the real-
time monitoring of multi-core SoCs for debugging in an
non-invasive way, and for performing on-line adjustments,
optimizations, and control in multi-process environments. This
new methodology is applied in a reconfigurable environment
using soft-cores. The generated centralized monitoring system
allows a variety of configurations as regards the memory used
for traces, the interfaces to the off-chip host and to the on-chip
monitoring CPU. The internal organization of the template-
based monitors allows a compact and flexible filtering easily
configured off-line and programmed on-line.

The evaluation of the presented infrastructure shows that a
well-balanced co-design of hardware debug blocks to provide
comprehensive on-chip instrumentation and debug solutions,
together with efficient software management of these hardware
monitors opens remarkable possibilities for a system designer
in the era of large multiprocessor SoCs.

REFERENCES

[1] M. Kudlugi, S. Hassoun, C. Selvidge, and D. Pryor, “A transaction-based
unified simulation/emulation architecture for functional verification,” in
Proceedings of 38th Design Automation Conference DAC 01, pp. 623–
628, 2001.

[2] A. Raynaud and M. Mohtashemi, “Transaction-level co-emulation added
to vmm methodology,” Synopsys Insight, vol. 2, no. 4, 2009.

[3] A. Coresight, [Online] Available: http://www.arm.com/products/solutions/
CoreSight.html.

[4] E. Cota, L. Carro, and M. Lubaszewski, “Reusing an on-chip network
for the test of core-based systems,” ACM Trans. Des. Autom. Electron.
Syst., vol. 9, no. 4, pp. 471–499, 2004.

[5] A. Amory, E. Briao, E. Cota, M. Lubaszewski, and F. Moraes, “A
scalable test strategy for network-on-chip routers,” in Proceedings of
IEEE International Test Conference (ITC), Nov. 2005.

[6] B. Roesler and E. Nelson, “Debug methods for hybrid cpu/fpga systems,”
in Proceedings of Field-Programmable Technology, 2002, pp. 243–250.

[7] M. Aguirre, J. Tombs, V. Baena-Lecuyer, J. Mora, J. Carrasco, A. Tor-
ralba, and L. Franquelo, “Microprocessor and fpga interfaces for in-
system co-debugging in field programmable hybrid systems,” Microproc.
and Microsyst., vol. 29, no. 2-3, pp. 75–85, Apr. 2005.

[8] P. Amer and L. Cassel, “Management of sampled real-time network
measurements,” in Proceedings of 14th Conference on Local Computer
Networks, October 1989, pp. 62–68.

[9] M. Scholler, T. Gamer, R. Bless, and M. Zitterbart, “An extension
to packet filtering of programmable networks,” in Proceedings of 7th
International Working Conference on Active Networking, Nov. 2005.

[10] C. Ciordas, A. Hansson, K. Goossens, and T. Basten, “A monitoring-
aware network-on-chip design flow,” J. Syst. Archit., vol. 54, no. 3-4,
pp. 397–410, 2008.

[11] K. Goossens, B. Vermeulen, and B. Nejad, Ashkan, “A high-level
debug environment for communication-centric debug,” in Proceedings
of Design, Automation and Test in Europe, Apr. 2009.

[12] Fast Simplex Link (FSL) Bus (v2.11a), available:
www.xilinx.com/support/documentation/ip documentation/fsl v20.pdf,
Xilinx Inc., Data Sheet DS449, Jun. 2007.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

