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The prevalence of type 2 diabetes (T2D) is currently  reaching 
epidemic proportions, not only in western countries, but 
throughout the world (1). In Europe and the United States, 
~5–8% of the adult population is estimated to suffer from this 
disease, and in genetically prone subpopulations, the preva-
lence may be as high as ~50% (2). One of the first clinical traits 
of T2D is impaired ability of insulin to adequately regulate glu-
cose homeostasis due to insulin resistance in multiple tissues. 
Skeletal muscle constitutes ~40% of human body mass and has 
been reported to account for ~50–75% of insulin-stimulated 
glucose uptake. From a quantitative perspective, skeletal mus-
cle is therefore considered the most important tissue in regard 
to insulin-stimulated glucose disposal, and correspondingly 
maintenance of glucose homeostasis. Based on epidemiologi-
cal evidence, T2D is strongly associated with adiposity and lack 
of physical activity. Conversely, reduced adiposity induced by 
diet interventions combined with physical training programs is 
considered a cornerstone in prevention and treatment of T2D 
(3). Clearly, increased energy turnover in response to exer-
cise is a component in initiating and maintaining weight loss. 
However, independent of changes in adiposity, exercise has 
repeatedly been shown to improve regulation of glucose home-
ostasis in both healthy and T2D subjects (4,5). Considering 
the prevalence of T2D, much research interest is focused on 
elucidating the underlying molecular mechanism explaining 
this beneficial interaction between exercise and insulin action 
in skeletal muscle. Not only will this help designing the best 
exercise strategies in regard to prevent or treat T2D, but fur-
thermore, this knowledge is valuable in regard to developing 
pharmaceutical and eventually genetic approaches to treat the 

disease. This article reviews the ongoing progress in defining 
the interaction between acute exercise and insulin-stimulated 
glucose uptake—with particular focus on the insulin signaling 
pathway.

Improved InsulIn actIon after acute exercIse
Improved insulin action after acute exercise was first demon-
strated in 1982 in perfused isolated rat hindquarters. In that 
study, we observed that after treadmill exercise, the ability of 
insulin to stimulate glucose uptake as well as glycogen synthe-
sis was markedly increased (6). Furthermore, the effect of prior 
exercise was mainly observed in glycogen-depleted muscle 
suggesting that this phenomenon is locally related to muscle 
actually contracting during exercise (7). Subsequently, it was 
demonstrated that following exercise, a residual effect on glu-
cose uptake was still measured 1 h after termination of exer-
cise even in the absence of insulin, whereas 2.5 h after exercise, 
increased glucose uptake was only observed in the presence of 
insulin (8,9). Within the past 25 years, characterizing the ben-
eficial interaction between acute exercise and subsequent insu-
lin action has been an area of much focus; although progress 
has been made recently, the underlying mechanisms are still 
poorly understood.

Improved InsulIn actIon Is maInly  
an Intracellular phenomenon
Consistent with the early observations that improved insulin 
sensitivity is mainly observed in glycogen-depleted muscle, 
it is believed that this effect is due to a local contraction-
 induced mechanism. This interpretation is supported by the 
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subsequent finding that improved insulin sensitivity in rodents 
is still observed after in situ contraction of one leg by electrical 
stimulation of the sciatic nerve followed by measurement of 
insulin sensitivity in both legs by hindquarter perfusion (7). 
Similarly, we have more recently repeated these findings in 
humans in response to one-legged exercise followed by meas-
urement of insulin-stimulated glucose uptake in both legs 
(10–13). Because improved insulin sensitivity still exists when 
measured in vitro after in vivo exercise, intact systemic delivery 
does not appear to be a necessary component (14,15). In fact, 
intact systemic delivery is not necessary even during exercise 
because improved insulin sensitivity can be observed after in 
vitro contractions in serum (16). Interestingly, in a matching 
in vitro study, improved insulin sensitivity was not observed 
when muscle was incubated in Krebs–Henseleit bicarbonate 
buffer. This shows that the presence of a serum factor (likely 
a protein) is pivotal for contractions to improve insulin sen-
sitivity (17). From the above mentioned, it seems evident that 
improved insulin action after exercise at least to a large extent 
relates to a local intracellular phenomenon, despite the require-
ment of systemically circulating protein. Consistent with this 
interpretation, based on exofacial photolabeling of GLUT4 
in rodents, improved insulin-stimulated glucose uptake 2.5 h 
after exercise seems to be accounted for by changes in mem-
brane content of GLUT4 (18,19).

Intracellular adaptatIons leadIng to Improved 
glut4 translocatIon
When elucidating on intracellular mechanisms leading to 
improved insulin-stimulated GLUT4 translocation, two main 
sites of regulation may be involved. Either exercise interacts 

with the insulin signaling pathway stimulating this process 
or alternatively, exercise interacts with the GLUT4 transloca-
tion machinery allowing for the same insulin signal to recruit 
more GLUT4 to the membrane. In Figure 1, insulin signaling 
to glucose uptake in skeletal muscle is illustrated. In the follow-
ing sections, interactions between exercise and insulin signal-
ing will be evaluated focusing on the time point 3–4 h after 
exercise, when the acute effect of exercise on glucose uptake is 
reversed but before major alterations in protein composition of 
muscle should be expected.

InsulIn sIgnalIng 3–4 hours after exercIse
Proximal insulin signaling involves binding of insulin to the 
insulin receptor (IR). This leads to increased IR tyrosine phos-
phorylation, IR tyrosine kinase activity, IR substrate-1 (IRS-1) 
tyrosine phosphorylation, and IRS-1-associated phosphatidyli-
nositol-3 kinase activity (see Figure 1). This signaling sequence 
does not appear to be acutely regulated by exercise or contrac-
tions either in vitro or in vivo (20,21). Despite this, prior exer-
cise may alter the response to subsequent insulin stimulation. 
In a series of studies evaluating insulin action 3–4 h after termi-
nation of one-legged knee-extensor exercise, we have demon-
strated that prior exercise does not improve insulin clearance, 
IR tyrosine kinase activity, IRS-1 tyrosine phosphorylation, 
IRS-1-associated phosphatidylinositol-3 kinase activity, Akt 
Ser473 phosphorylation, Akt thr308 phosphorylation, glycogen 
synthase kinase-3 (GSK-3)α Ser21 phosphorylation, or GSK-3 
activity despite markedly increased glucose uptake in response 
to physiological insulin stimulation (11–13,22). In those stud-
ies, it was further demonstrated that in contrast to a maximal 
insulin stimulus in rodent muscle (23–25), physiological insulin 
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figure 1 Insulin signaling to GLUT4 translocation and stimulation of glucose uptake. 
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stimulation in humans leads to a sustained activation of insulin 
signaling. Thus, based on the available data from human stud-
ies, 3–4 h after exercise, improved insulin-stimulated glucose 
uptake is not associated with improved proximal insulin signal-
ing from the association of insulin to the receptor to activation 
of phosphatidylinositol-3 kinase. Furthermore, based on phos-
phorylation markers, neither Akt, nor PDK-1, nor mTORC2, 
the two upstream kinases responsible for phosphorylation of 
Akt seem to be more potently regulated by insulin after exercise 
(11,13). This would also be consistent with normal Ser21 phos-
phorylation and deactivation of GSK-3 as observed. It should 
be emphasized that these observations are based on in vitro 
analyses on whole muscle preparations. Thus, it cannot be ruled 
out if interactions localized in specific cellular compartments 
are not detected. However, the consistency of the findings as 
well as the repeated use of site-specific phosphorylations as 
markers of in vivo upstream regulation support this interpreta-
tion. In this context, it has been speculated whether exercise 
results in alterations in subcellular localization of insulin sig-
naling molecules allowing for more potent distal actions (26). 
Consistent with this proposal, IRS proteins have been detected 
in plasma membrane, nucleus, and a cytosol fraction. However, 
when evaluating protein content in these fractions of IR, IRS-1, 
Akt, and GSK-3, no changes in localization were observed in 
response to 1 h of cycling (~70% VO2 peak) (26). Collectively, 
if prior exercise results in positive interaction with insulin sig-
naling to GLUT4 translocation in human skeletal muscle, this 
most likely occurs at a signaling step not yet investigated.

the search for new candIdates
Within recent years, several novel insulin signaling molecules 
have been characterized as downstream of phosphatidylinosi-
tol-3 kinase. In particular, emerging evidence suggests that 
atypical protein kinase C (aPKC) and “Akt substrate of 160 
kDa” (AS160) play key roles for normal insulin-stimulated glu-
cose uptake as reviewed (27,28). As described, acute exercise 
has not been observed to regulate proximal insulin signaling 
adding support to the concept of two conceptually different 
signaling cascades stimulating GLUT4 translocation. This 
view is further supported by the observation of distinct pools 
of GLUT4 with different potential for translocation in response 
to insulin and exercise allowing for an additive effect of these 
stimuli on GLUT4 translocation and glucose uptake. However, 
as understanding of intracellular signaling to GLUT4 trans-
location is evolving, it has become clear that signaling is not 
a linearly propagating process, and furthermore, that several 
branches of signaling probably have to be coordinated for nor-
mal GLUT4 translocation to occur. This allows for the specula-
tion that some branches of insulin and exercise signaling may 
converge at distal levels.

as160 as a convergIng sIgnalIng molecule
Within the past years, several potential target molecules 
downstream of Akt have been identified, including Synip and 
PIKfyve (29–31). In particular, an important role of AS160 in 
regulation of insulin-stimulated glucose uptake has become 

evident as reviewed (27). Presently, the model of regulation 
of AS160 suggests that AS160 in the basal nonphosphorylated 
state acts as a brake inhibiting GLUT4 translocation. When 
phosphorylated by Akt in response to insulin stimulation, a 
Rab GTPase–activating protein domain on AS160 is inacti-
vated, allowing for activation of one or more Rab molecules, 
likely including Rab8A, 10, and 14. This model is intriguing 
because Rab molecules have previously been shown to play 
crucial roles in regard to vesicle docking and fusion (32–34); 
thus, AS160 may be the first molecule identified to be directly 
involved in transferring the insulin signal to GLUT4 mem-
brane-trafficking events. In response to insulin stimulation, 
AS160 is phosphorylated on five of six phospho-Akt substrate 
motifs (RXRXXS*/T*) (Ser318, Ser570, Ser588, Thr642, and Thr571) 
(29). Using site-specific antibodies, results from our labora-
tory have confirmed that in human skeletal muscle, all five 
sites are phosphorylated in response to physiological insulin 
stimulation (35). Interestingly, it appears that phosphorylation 
of AS160 is also involved in the signal leading to contraction-
stimulated glucose uptake in rodent muscle, at least in part 
mediated by AMPK (36,37). However, extrapolation to humans 
should be done with caution particularly because AS160 phos-
phorylation is observed in response to low (but not high) 
exercise intensities in humans and not as an early response to 
exercise initiation (38,39). These observations do not support 
that AS160 phosphorylation is necessary for exercise-induced 
glucose uptake in muscle.

Disregarding the role of AS160 in exercise-stimulated glu-
cose uptake, it is interesting to note that moderate exercise 
induces a time-dependent effect on AS160 phosphorylation 
in muscle. This delayed effect of exercise on AS160 phos-
phorylation could be of importance in regard to subsequent 
insulin-stimulated glucose uptake. In fact, 4 h after a 2-h swim 
in rat epitrochlearis muscle, glucose uptake in response to a 
physiological insulin dose is significantly increased coincid-
ing with increased basal as well as insulin-stimulated AS160 
phosphorylation (40). In that study, a greater Thr308 phos-
phorylation of Akt was observed. As described, Akt does not 
appear to be activated to a greater extent in human skeletal 
muscle in response to insulin stimulation 4 h after acute exer-
cise (11,13). However, data from our laboratory show that in 
human muscle, prior exercise leads to increased basal as well 
as insulin-stimulated site-specific phosphorylation on Ser318, 
Ser570, Ser588, and Thr571 (35). Considering the role of AS160 
for insulin-stimulated glucose uptake, these findings may 
well be important in regard to improving insulin sensitivity 
at this time point. It should be emphasized that the effects of 
exercise on AS160 phosphorylation are of a minor magni-
tude (10–20%), whereas insulin-stimulated glucose uptake is 
increased by ~70% in the previously exercised muscle. Thus, 
either AS160 phosphorylation is not linearly related to glu-
cose uptake or spatial localization of a subfraction of AS160 
proteins results in altered functional impact. Alternatively, the 
observed additive effect of prior exercise and AS160 phospho-
rylation is not causally linked to improved insulin-stimulated 
glucose uptake.
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apKc as a convergIng sIgnalIng molecule
In response to insulin stimulation, activation of aPKC is 
thought to involve both allosteric binding of PIP3 in the vicin-
ity of the membrane as well as phosphorylation of Thr410 by 
PDK-1 collectively leading to autophosphorylation on Thr560 
(41–43). These observations are primarily based on studies in 
rat adipocytes, and thus, in vivo activation of aPKC in skel-
etal muscle and human skeletal muscle in particular is not well 
documented. The precise role of aPKC in regulating GLUT4 
translocation is still at an evolving state; however, several lines 
of evidence suggest that parallel to Akt, activation of aPKC is 
critical in both the process of translocation and docking/fusion 
of GLUT4 to the plasma membrane (44).

In contrast to the volume of information on insulin-stim-
ulated aPKC activation, only a few studies have looked into 
exercise regulation of aPKC. In human skeletal muscle, in vitro 
aPKC activity is increased in response to acute exercise (45–48), 
although not in an exercise intensity–dependent manner when 
the activity of aPKC is evaluated in vitro (48). Whether this 
truly reflects in vivo regulation is not established, but this sug-
gests that activation of aPKC in response to exercise may only 
be part of the signal leading to glucose uptake.

Considering the important role of aPKC for insulin-
 stimulated glucose uptake and the observation that aPKC is 
activated in response to exercise makes aPKC another poten-
tial candidate linking exercise and insulin signaling. We 
recently evaluated this 4 h after exercise, using the one-legged 
knee- extension protocol (11). Interestingly, in that study, we 
observed that immunoprecipitated aPKC from previously 
exercised muscle was more potently activated by the allosteric 
activator PIP3 when compared to rested muscle (Figure 2). 
Changes in PIP3 responsiveness under these conditions should 
be considered as a consequence of altered functional properties 
of the enzyme. Furthermore, because increased PIP3 respon-
siveness is observed after immunoprecipitation including sev-
eral washing steps, the interaction seems robust and thus may 
be of a covalent nature. Interestingly, PIP3 stimulation leads 
to increased Thr560 autophosphorylation of purified aPKC 

when investigated in vitro (49). An obvious  target of future 
 investigations in this regard is the impact of prior exercise 
on Thr560 phosphorylation during insulin stimulation in vivo. 
However, functional antibodies targeting this site on human 
skeletal muscle aPKC are not available. Currently, no abso-
lute measure of PIP3 concentrations in skeletal muscle exists, 
but if improved responsiveness of aPKC to PIP3 is supposed 
to play a physiologically relevant role, it would be expected to 
also reflect on aPKC activity in response to insulin stimula-
tion. Curiously, we do not observe this. However, based on 
a ~40% greater (P = 0.17) delta increase in aPKC activity in 
exercised muscle in response to insulin stimulation, it could be 
hypothesized that sensitivity of the in vitro assay does not allow 
for detection of improved PIP3 responsiveness within a lower 
physiological range of PIP3 concentrations.

summary and perspectIves
The effect of acute exercise to improve insulin-stimulated glu-
cose uptake has been known for >25 years; however, despite 
considerable scientific interest, the underlying molecular 
mechanisms are still poorly understood. The present consen-
sus is that improved insulin action should primarily be ascribed 
to increased translocation of GLUT4 to the membrane. This 
does not rule out that other coinciding adaptations may be 
involved. Thus, improved capacity for delivery and intracellu-
lar metabolism of glucose may be necessary coadaptations in 
order to optimally benefit from improved insulin-stimulated 
glucose membrane permeability after exercise. In this context, 
a well-described effect of exercise is to reduce glycogen content 
in muscle. As previously reviewed (50), this not only leads to a 
marked increase in glycogen synthase activity per se, but also the 
effect of insulin to further increase glycogen synthase activity 
is improved under these conditions (6,13). In order to under-
stand how insulin- stimulated GLUT4 translocation might be 
improved after exercise, an obvious strategy has been to evaluate 
whether interactions exist between prior exercise and the signal-
ing pathway utilized by insulin to stimulate GLUT4 transloca-
tion. Within the past 10 years, we have examined this possibility 
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locally in human muscle inspired by the parallel unraveling of 
the insulin signaling cascade. As illustrated in Figure 3, it seems 
evident that proximal insulin signaling is not influenced by prior 
exercise when evaluated 3–4 h after termination of exercise—a 
time point where insulin-stimulated glucose uptake is markedly 
improved. In contrast, interactions appear to exist in regard to 
regulation of AS160 and aPKC, proteins likely involved in both 
the GLUT4 translocation process as well as the process of dock-
ing/fusion of GLUT4 to the membrane. This may explain how 
more GLUT4 can be translocated to the muscle membrane 
in response to the same proximal insulin signal after exercise. 
Clearly, a causal relation needs to be established, and further-
more, the exercise-induced signal responsible for these interac-
tions needs to be identified. However, considering the important 
role of both AS160 and aPKC for insulin-stimulated glucose 
uptake, these observations should inspire future research.
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