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a b s t r a c t

The electro-osmotic fully-developed flow in a circular micro-channel is studied under an alternating
electrical field. An analytical approach based on the linearized Poisson–Boltzmann equation is selected
to get an exact solution of the electrical potential inside the channel. An exact solution of the velocity
distribution is then obtained by using the Green’s function approach. The application of the electrical
body force results in a rapid acceleration of the fluid within the double layer. If the diffusion time scale
is much greater than the oscillation period (high frequency), the fluid within the double layer oscillates
rapidly, while the bulk fluid remains almost stationary.

© 2012 Elsevier Masson SAS. All rights reserved.

1. Introduction

In recent years, considerable progress has beenmade in the field
of miniaturization. It is now effectively possible to miniaturize all
kinds of systems—e.g., mechanical fluidic, electromechanical, or
thermal-down to sub-micrometric sizes. In particular, the micro-
fluidic systems have been developed in which a fluid circulates
inside a miniaturized channel, named micro-channel, by applying
an electrical field along it. The rapid expansion of themicro-fluidics
field seems to be driven in part by the possibility of integration.
The domain of integrated analysis systems has been designated
as micro-total analysis systems, or also lab-on-a-chip systems.
Generally, a lab-on-a-chip device has a network ofmicro-channels,
electrodes, sensors and electrical circuits. The advantages of these
labs on a chip include dramatically reduced sample size, much
shorter reaction and analysis time, high throughput, automation
and portability [1]. The electro-osmotic flow is usually preferred
over the pressure-driven flow, because pumping a liquid through a
very small channel requires applying very large pressure difference
depending on the flow rate. Additionally, it does not require any
external pump, but needs electrodes to control the flow field.

Among the researchers that worked on these phenomena,
Anderson [2] studied the particle movement produced by non-
uniform zeta potential in an electric field. The effect of inhomo-
geneously charged surfaces on electro-osmosis was reported by
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Ajdari [3]. Wang and Chen [4] investigated electro-osmosis in ho-
mogeneously charged micro- and nanoscale random porous me-
dia usingmesoscopic simulationmethods which involve a random
generation-growth method for reproducing three-dimensional
random micro-structures of porous media and a lattice Poisson–
Boltzmann algorithm for solving the strongly nonlinear govern-
ing equations. Wang et al. [5] modeled physicochemical transport
due to electro-osmosis of dilute electrolyte solutions through
micro-porous media with granular random microstructures by a
three-step numerical framework. They investigated the effects of
porosity, ionic concentration, pH, and temperature on the electro-
osmotic permeability through the granular micro-porous media.

Among the researchers that worked on DC electro-osmotic
flows, Dutta andBeskok [6] presented analytical results for velocity
distribution, mass flow rate, pressure gradient, wall shear stress,
and vorticity in mixed electro-osmotic/pressure driven flows for
two-dimensional straight channel geometry. Arulanandam and
Li [7] studied the liquid movement in a rectangular micro-channel
by electro-osmotic pumping. Soong andWang [8] studied flow and
heat transfer between two parallel plates.

AC electro-osmotic flows have been studied by some re-
searchers. Among them, Kang et al. [9] solved the electro-osmotic
flow problem in a cylindrical channel for only sinusoidal waveform
by the Green’s function method. Wang and Kang [10] presented a
numerical solution based on coupled lattice Boltzmann methods
for electro-kinetic flows in micro-channels. They also presented
an analytical flow field model, based on a surface slip condition
approach, for an axially applied AC electrical field in an infinitely
widemicro-channel. Comprehensivemodels for such a slit channel
have also been presented by Dutta and Beskok [11] who developed
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an analytical model for an applied sinusoidal electric field, and
Soderman and Jonsson [12] who examined the transient flow field
caused by a series of different pulse designs. Erickson and Li [13]
presented a combined theoretical and numerical approach to in-
vestigate the time periodic electro-osmotic flow in a rectangular
micro-channel.

As an alternative to traditional DC electro-osmosis, a series of
novel techniques have been developed to generate bulk flow using
AC fields. For example, Green et al. [14] experimentally observed
peak flow velocities on the order of hundreds of micrometers per
second near a set of parallel electrodes subject to two AC fields,
180° out-of-phase with each other. The effect was subsequently
modeled using a linear double layer analysis by Gonzalez et al. [15].
Using a similar principle, both Brown et al. [16] and Studer
et al. [17] presented micro-fluidic devices that incorporated arrays
of non-uniformly sized embedded electrodes which, when subject
to an AC field, were able to generate a bulk fluid motion.

In this research, an exact solution of flow induced by unsteady
applied electric fields inside a circular micro-channel has been
developed. The closed-form solution of the momentum equation
presented within the Debye–Huckel approximation can be used to
get the velocity profiles due to applying any time-periodic electric
fields. This kind of micro-channel with its particular applied
electric field has its unique features and applications. Lab-on-a-
chip devices having networks of micro-channels are miniaturized
bio-medical or chemistry laboratories on a small glass or plastic
chip. Applying electrical fields along micro-channels controls the
liquid flow and other operations in the chip. These labs on
a chip can duplicate the specialized functions as their room-
sized counterparts, such as clinical diagnostics, DNA scanning and
electro-phoretic separation.

2. Problem formulation

Consider a fully-developed flow inside a circularmicro-channel
that is produced by an electric field in the absence of any pressure
gradients.

First of all, we must know the local net charge density per unit
volume ρe at any point in the solution. This requires solving the
EDL field [18]:

∇
2ψ =

2Zen0

ε
sinh


Zeψ
kBT


(1)

where, ψ is the electrical potential.
For pure electro-osmotic fully-developed flows of incompress-

ible fluids in circular micro-channels, the Navier–Stokes equations
take the following form [19]:

ρ
∂Vz

∂t
= µ


∂2Vz

∂r2
+

1
r
∂Vz

∂r


− ρeE (ω t) (2)

where, Vz is the only non-zero velocity component along the
channel, ρ and µ are the density and the viscosity of liquid,
respectively, and E (ω t) is a general time-periodic function with
a frequency ω = 2π f that describes the applied electric field
strength.

Eqs. (1) and (2) are the governing equations of this problem. The
boundary conditions are:r = 0 :

dψ
dr

= 0

r = ℜ : ψ = ζ

(3)

r = 0 :
∂Vz

∂r
= 0

r = ℜ : Vz = 0
(4)

where, ℜ and ζ are the channel radius and the zeta potential,
respectively.

Consider the following dimensionless variables:

R =
r
ℜ
, Ψ =

Ze
kBT

ψ, θ =
µ

ρℜ2
t,

Ω =
ρℜ

2

µ
ω, V =

Zeµ
εEzkBT

Vz

(5)

in which, Ez is a constant equivalent to the strength of the applied
electric field. Introducing the above dimensionless variables into
Eqs. (1) and (2) gives the following non-dimensional forms of the
governing equations:

∇
2Ψ = (κℜ)2 sinhΨ (6)

∂V
∂θ

=
∂2V
∂R2

+
1
R
∂V
∂R

+ (κℜ)2 sinhΨ F (Ωθ) (7)

where, F (Ωθ) is a general periodic function of unit magnitude
such that E (Ωθ) = EzF (Ωθ). κ is the Debye–Huckel parameter
defined as follows:

κ =


2Z2e2n∞

εε0kBT

1/2

. (8)

The boundary conditions (3) and (4) also take the following
dimensionless form:R = 0 :

dΨ
dR

= 0

R = 1 : Ψ = Z
(9)

R = 0 :
∂V
∂R

= 0

R = 1 : V = 0.
(10)

Eq. (6), under the condition that the double layer potential
Ψ is small, can be linearized by the so-called Debye–Huckel
approximation, yielding:

d2Ψ
dR2

+
1
R
dΨ
dR

= K 2Ψ (11)

in which, the constant K has been introduced to denote κℜ
(electro-kinetic radius). The solution of (11) subject to the
boundary conditions (9) is:

Ψ (R) =
Z

I0(K)
I0 (KR) (12)

where, Iν(x) is the modified Bessel function of the first kind and
order ν, satisfying the following modified Bessel function:

x2y′′
+ xy′

−

x2 + v2


y = 0. (13)

In order to solve Eq. (7), the Debye–Huckel approximation is
implemented to result in the following form of the equation:

∂V
∂θ

=
∂2V
∂R2

+
1
R
∂V
∂R

+ K 2Ψ (R) F (Ωθ)  
Q (R,θ)

. (14)

A Green’s function approach is now used to find an analytical
solution for the non-dimensional form of the motion Eq. (14). The
Green’s function and the boundary conditions become [20]:

∂g
∂θ

−
1
R
∂

∂R


R
∂g
∂R


=
δ (R − ℓ) δ (θ − τ)

2πR
(15)

lim
R→0

|g (R, θ; ℓ, τ ) | < ∞

g (1, θ; ℓ, τ ) = 0


, 0 < R, ℓ < 1, 0 < θ, τ (16)
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where, δ(x) is Dirac delta function. We begin by taking the Laplace
transform (15):

1
R

d
dR


R
dG
dR


− sG =

−e−sτ

2πR
δ (R − ℓ) . (17)

Next we re-express δ(R−ℓ)
R as the Fourier–Bessel expansion:

δ (R − ℓ)

2πR
=

∞
n=1

AnJ0 (λnR) (18)

where, λn is the nth root of J0 (λ) = 0, and, Jν(x) is the Bessel
function of the first kind and order ν. Also, we have:

An =
2

J21 (λn)

 1

0

δ (R − ℓ)

2πR
J0 (λnR) RdR =

J0 (λnR)
π J21 (λn)

. (19)

So that,

1
R

d
dR


R
dG
dR


− sG = −

e−sτ

π

∞
n=1

J0 (λnℓ) J0 (λnR)
J21 (λn)

. (20)

The solution to (20) is:

G (R, s; ℓ, τ ) =
e−sτ

π

∞
n=1

J0 (λnℓ) J0 (λnR)
s + λ2n


J21 (λn)

. (21)

Taking the inverse of (21) and applying the second shifting
theorem gives:

g (R, θ; ℓ, τ ) =
H (θ − τ)

π

∞
n=1

J0 (λnℓ) J0 (λnR)
J21 (λn)

e−λ2n(θ−τ) (22)

in which, H(x) is the Heaviside step function.
To find the velocity, we use the following simplified formula,

subject to the homogeneous boundary conditions discussed above:

V (R, θ) =

 θ

0

 1

0
g (R, θ; ℓ, τ )Q (ℓ, τ ) dℓdτ . (23)

Now, two different periodic functions are examined; the first is
a sinusoidal function, and the other is a square wave function.

If the periodic function is F (Ωθ) = sin (Ωθ), taking the above
integrals will give the non-dimensional velocity profile which is
given in Box I. And if the following periodic squarewave is applied:

F (Ωθ) =
2
π

∞
m=1

1 − cos (mπ)
m

sin (mΩθ) (25)

the non-dimensional velocity profile will be as follows:
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n=1

∞
m=1

×
J0 (λnR)

mJ21 (λn)
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
×
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
×


mΩ


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− cos (mπ) e−λ2nθ

+ λ2n sin (mΩθ) (1 − cos (mπ))


. (26)

The integrals containing Bessel functions in Eqs. (24) and (26)
can be simply determined by the following series with good
accuracy: 1

0
J0 (λnℓ) I0 (Kℓ) dℓ

∼= 1 +
1
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8
+ · · · . (27)

3. Results and discussion

In this analytical description of electro-osmotic flow in a
circular micro-channel, the governing parameter is Ω which
represents the ratio of the diffusion time scale


tdiff = ρℜ

2/µ


to the period of the applied electric field(tE = 1/ω). Figs. 1–3
compare the time-periodic velocity profiles in a circular channel
for two cases: (a) Ω = 30 and (b) Ω = 300. These two Ω
values correspond to frequencies of 500 Hz and 5 kHz in a 100 µm
channel. To illustrate the essential features of the velocity profile,
a relatively large double layer thickness has been used, κ =

6 × 106 m−1 (corresponding to a bulk ionic concentration n∞ =

10−6 M), and a uniform surface potential of ζ = 12.5mVwas used
(within the bounds imposed by the Debye–Huckel linearization).
Also, in order to have amore realistic view on the problem, another
double layer thickness, κ = 2 × 107 m−1 has been examined.

Figs. 1–3 have been plotted by using κ = 6 × 106 m−1. From
Figs. 1 and 2, it is apparent that the application of the electrical
body force results in a rapid acceleration of the fluid within the
double layer. Fig. 1 shows the non-dimensional velocity profiles
using sinusoidal wave, at Ωθ = ω t = π/2, π, 3π/2, 2π for two
different Ω values. It is seen that applying high Ω values causes
the fluid momentum not to have sufficient time to diffuse far into
the bulk flow; hence the fluid within the double layer oscillates
rapidly, while the bulk fluid remains almost stationary. Fig. 2
shows the non-dimensional velocity profiles using square wave, at
Ωθ = ω t = π/2, π, 3π/2, 2π for two different Ω values. Their
behaviors at highΩ values are like when sinusoidal wave is used;
that is, at highΩ values, the bulk flow is not almost influenced by
alternating electrical field. In this case, the oscillation amplitude
of velocity is higher compared with the sinusoidal waveform. To
illustrate the significant effects of some particular waveforms on
the transient response of the bulk flow, Fig. 3(a) and (b) represent
the channel midpoint velocities (i.e. velocity at R = 0) for Ω =

30 and Ω = 300, respectively. As shown in Fig. 3(a), a square
wave excitation tends to produce higher velocities compared to
the sinusoidal waveform. As Ω is increased, the initial positive
impulsive velocity is observed for both waveforms, as illustrated
in Fig. 3(b). As expected, the fluid excited by the square waveform
exhibits higher instantaneous velocities, which lead to an increase
in the number of cycles required to reach the time periodic quasi-
steady state oscillation.

Fig. 4, that has been plotted using κ = 2× 107 m−1, illustrates
the non-dimensional velocity distributions using sinusoidal and
square waveforms at Ωθ = ω t = π/2, π, 3π/2, 2π for two
different values of Ω . Compared with Figs. 1 and 2, it is clear that
an increase in κ or a decrease in the Debye length results in an
increase in the maximum velocity near the channel wall (at the
same volumetric flow rate). Correspondingly, the EDL potential
field falls off to zero more rapidly with distance, that is, the region
influenced by the EDL is smaller.

Fig. 5 compares the near-wall velocity profiles at various times
with the corresponding results given by Dutta and Beskok [11] in
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V (R, θ) =
K 2Z
π I0(K)

∞
n=1

J0 (λnR)
 1

0 J0 (λnℓ) I0 (Kℓ) dℓ
 
λ2n sin (Ωθ)−Ω cos (Ωθ)+Ω e−λ2nθ



λ4n +Ω2


J21 (λn)

. (24)

Box I.

Fig. 1. Steady-state time periodic non-dimensional velocity profiles with κℜ = 300, for one period (0 < Ωθ ≤ 2π) of the sinusoidal waveform at (a) Ω = 30 and
(b)Ω = 300.

Fig. 2. Steady-state time periodic non-dimensional velocity profiles with κℜ = 300, for one period (0 < Ωθ ≤ 2π) of the squarewaveform at (a)Ω = 30 and (b)Ω = 300.

Fig. 3. Transient stage non-dimensional velocity with κℜ = 300, at the channel midpoint for impulsively started flows using sinusoidal and square waveforms at
(a)Ω = 30 and (b)Ω = 300.

a two-dimensional straight channel. The distance from the wall,
where the normalized electro-osmotic potential reaches 1% of
its base value, is defined as δ99. With the EDL thickness λ =

320 nm and the frequency Ω = 6250 (equivalent to 105 Hz), the
effective EDL thickness is δ99 ≃ 0.03, or according to the non-
dimensionalization, is δ99 = 4.6875λ. As can be seen, the velocity
field within the EDL is similar for identical applied electric field.

In this study, an analytical analysis based on the linearized
Poisson–Boltzmann equation has been developed for liquid flow
in a circular micro-channel induced by unsteady applied electric
fields.

In the case where the diffusion time scale is much greater
than the oscillation period (high Ω), there is insufficient time for
the fluid momentum to diffuse far into the bulk flow and thus,
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Fig. 4. Steady-state time periodic non-dimensional velocity profiles with κℜ = 1000, for one period (0 < Ωθ ≤ 2π) of the sinusoidal and square waveforms at (a)Ω = 30
(sine wave), (b)Ω = 30 (square wave), (c)Ω = 300 (sine wave), and (d)Ω = 300 (square wave).

Fig. 5. Near-wall velocity distribution for κℜ = 156.25 at Ω = 6250 at various
times.

while the fluid within the double layer oscillates rapidly, the bulk
fluid remains almost stationary. But at a lowerΩ value (Ω = 30),
there is more time for momentum diffusion from the double layer;
however the bulk fluid still lags behind the flow in the double
layer. Extrapolating from these results, when Ω < 1, such that
momentum diffusion is faster than the period of oscillation, the
plug like velocity profile characteristic of steady-state electro-
osmotic flow would be expected at all times.

The finite time required formomentumdiffusionwill inevitably
result in some degree of phase shift between the applied
electric field and the flow response in the channel. From figures

represented here, however, it is apparent that within the limit of
Ω > 1, this phase shift is significantly different in the double
layer region than in the bulk flow. It is apparent that the response
of the fluid within the double layer to the AC field is essentially
immediate; however, the bulk liquid lags behind the applied field
by a phase shift depending on the Ω value. Additionally, while
the velocity in the double layer reaches its steady state oscillation
almost immediately, the bulk flow requires a period before the
transient effects are dissipated. In Eq. (24), the out-of-phase cosine
term Ω cos (Ωθ) is proportionally scaled by Ω . A similar term
(Ω cos (mΩθ)) also exists in Eq. (26). Thus as expected, when Ω
is increased, the phase shift for both the double layer and bulk
flow velocities is increased as is the number of cycles required
to reach the steady state. It is interesting to note the net positive
velocity at the channelmidpointwithin the transient period before
decaying into the steady state behavior. This is a result of the initial
positive impulse given to the system when the electric field is
first applied and is reflected by the exponential term in Eq. (24)
(and similarly in (26)). The transient oscillations are observed to
decay at an exponential rate, as expected from the transient term.
Similar to the out-of-phase cosine term, this exponential term
is also proportionally scaled by the non-dimensional frequency,
suggesting that the effect of the initial impulse becomes more
significant with increasing Ω . A square wave excitation tends to
produce higher velocities than the sinusoidal wave form.
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