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Abstract—Fault detection is essential in microgrid control
and operation, as it enables the system to perform fast fault
isolation and recovery. The adoption of inverter-interfaced dis-
tributed generation in microgrids makes traditional fault detec-
tion schemes inappropriate due to their dependence on significant
fault currents. In this paper, we devise an intelligent fault
detection scheme for microgrid based on wavelet transform and
deep neural networks. The proposed scheme aims to provide
fast fault type, phase, and location information for microgrid
protection and service recovery. In the scheme, branch current
measurements sampled by protective relays are pre-processed by
discrete wavelet transform to extract statistical features. Then all
available data is input into deep neural networks to develop fault
information. Compared with previous work, the proposed scheme
can provide significantly better fault type classification accuracy.
Moreover, the scheme can also detect the locations of faults, which
are unavailable in previous work. To evaluate the performance of
the proposed fault detection scheme, we conduct a comprehensive
evaluation study on the CERTS microgrid and IEEE 34-bus
system. The simulation results demonstrate the efficacy of the
proposed scheme in terms of detection accuracy, computation
time, and robustness against measurement uncertainty.

Index Terms—Fault detection, fault location, microgrid pro-
tection, wavelet transform, deep neural network.

I. INTRODUCTION

M ICROGRIDS are gathering attention from the industry
and research community, due to advances in distributed

generation (DG) development [1]. They are expected to bring
benefits to the modern power system control thanks to the
improved power efficiency, reliability, and quality. Microgrids
can operate either in grid-connected mode, where the external
grid supports part of the power consumption, or in islanded
mode in case the external grid suffers from disturbances
such as frequency deviations and voltage fluctuations, etc.
Contributed by load-side DGs, critical loads in microgrids can
be supplied in islanded mode without the external grid.

Meanwhile, the protection of microgrids is one of the major
and critical operational challenges [1]–[3]. With the grad-
ual adoption of renewable energy sources in modern power
systems, microgrids are commonly integrated with inverter-
interfaced DGs (IIDG), such as photovoltaic DGs (PVDG) and
battery energy storage systems (BESS). Traditional protective
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relays for distribution system fault detection depend on large
fault currents. However, IIDGs can only contribute insignif-
icant fault currents such that the protection schemes are not
activated [4]. Thus these relays may fail to protect microgrids.
[5] provides a thorough analysis on the current and voltage
dynamics in such microgrids.

Fault detection in microgrid generally has three objectives.
If there is a fault in the system, a fault detection scheme should
determine the fault type (e.g., single-phase-to-ground, three-
phase-short-circuit, etc.), fault phase in unbalanced faults, and
fault location. The former two enable subsequent fault isola-
tion operations, while the latter can benefit service restoration.
According to [5], modern microgrids should maintain the
operation of sound phases in unbalanced short-circuit faults,
which advocates the integration of single-phase protective
devices. Given accurate fault type and fault phase information,
selective phase tripping can be achieved [6]. As a result, sys-
tem reliability can be significantly improved [7], and utilities
are gradually adopting this protection scheme [8]. Moreover,
accurate detection of fault location can remarkably reduce the
effort in service restoration operations [9], and this becomes
increasingly essential if the restoration involves underground
operations.

In recent years, a growing body of research employs data-
driven and digital signal processing approaches for microgrid
fault type and/or phase detection. For instance, decision tree
and random forest are widely employed to detect faults in
both grid-connected and islanded microgrids (see [4], [10]–
[12] for examples). Other machine learning techniques, e.g.,
support vector machine and k-nearest neighbors algorithm,
have also been utilized for fault detection in the literature
[3], [12]. Thanks to the high computation speed of these
data-driven approaches, satisfactory fault classification can
be developed in near real-time. In addition, digital signal
processing approaches such as discrete Fourier transform and
discrete wavelet transform (DWT) are widely adopted to “pre-
process” the input signals to better extract the time-frequency
characteristics for analysis [3], [4], [12]. Interested readers
may refer to [1], [4] for surveys on microgrid fault detection
schemes in the literature.

However, there remains a research gap in the development
of microgrid fault detection schemes. Some existing investi-
gations cannot provide fault type information, thus cannot be
properly adopted in the single-phase tripping paradigm (see
[12], [13] for examples). Moreover, existing work in fault
location detection focuses on low-voltage DC microgrids, e.g.,
[14], [15]. Fault location detection in AC distribution networks
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can typically be achieved through traveling-wave or injection-
based algorithms [9], [16]. However, traveling-wave algo-
rithms suffer from reflected wave detection and discrimination
issues [14], [17], and some of them require synchronized data
over communication links [18]. None of them demonstrated
fault location detection performance on islanded microgrids
or loop/ring-topology networks. Meanwhile, injection-based
algorithms are limited to phase-to-ground faults and are only
applicable in radial networks [14].

To bridge the research gap in fault detection for IIDG-
enabled microgrids, in this paper we present an intelligent
fault detection scheme based on DWT and recent development
of deep neural networks (DNN), which is a class of data-
driven machine learning techniques. While DWT is prone
to noise and power disturbances, DNN is introduced to en-
hance its robustness thanks to DNN’s outstanding capability
of handling data with noise [19], [20]. Fig. 1 presents a
schematic diagram of the proposed fault detection scheme.
The scheme takes branch current magnitudes of three phases
in one cycle sampled by protective relays as input data. The
measurements are processed by DWT to extract the time-
frequency domain features. Afterwards, the features, together
with the measurements, are input into three DNNs for fault
type classification, fault phase identification, and fault loca-
tion detection. Eventually, the fault information is developed,
which can be employed in later protective and remedial control
actions.

The contributions of this work are summarized as follows:
• We propose a fault detection mechanism for AC micro-

grids that can provide accurate and timely fault type,
phase, and location information;

• DNN is combined with DWT to solve the microgrid fault
detection problem from the data-driven viewpoint;

• We perform comprehensive case studies to analyze the
performance of the proposed mechanism and compare
the results with the state-of-the-art.

Compared with existing fault detection mechanisms, the pro-
posed one can develop accurate and fast fault detection result
(type, phase, and location) without communications. It can
adapt to different operating modes and network topologies,
i.e., grid-connected and islanded mode, and radial and loop
topology. In addition, power dynamics with both conventional
synchronous generators and IIDG can be handled.

The rest of this paper is organized as follows. In Section
II we describe the microgrid system employed to analyze the
proposed scheme. Section III introduces the DWT technique,
and Section IV elaborates on the formulation of the proposed
fault detection scheme. We perform a series of simulations to
demonstrate the efficacy of the proposed scheme in Section
V. Finally, this paper is concluded in Section VI.

II. INVESTIGATED MICROGRID SYSTEM

In this paper, we focus on a modified microgrid system
based on the CERTS microgrid [21], which has been employed
in many previous investigations on microgrid fault detection,
see [3], [5] for examples. As shown in Fig. 2, the employed
microgrid operates at 0.48 kV, 60 Hz and can support loads
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Fig. 1. Schematic diagram of the proposed microgrid fault detection scheme.
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Fig. 2. Modified CERTS microgrid system diagram.

in either grid-connected or islanded mode, controlled by the
state of Point of Common Coupling (PCC) switch. In addition,
the loop switch enables the system to be operated in radial
or loop topology. To test the performance of the proposed
scheme on various types of DGs in microgrids, we employ
three DGs in the system, namely, a battery-energy storage
system (DG-BESS in Fig. 2), a photovoltaic power source
(DG-PV), and a typical diesel synchronous generator (DG-
SG). DG-BESS is interfaced to the system by a current
controlled voltage source inverter, whose control strategy is
switched to frequency controlled inverter in islanded mode.
DG-PV is interfaced through a current controlled voltage
source converter, which maintains its control strategy on grid-
connected and islanded modes.

We follow [3] to set the parameters for the loads, transform-
ers, and transmission lines, as shown in Fig. 2. Specifically,
four loads are distributed with the system, whose load values
are (90 kW, 45 kVAr) for L-3 and L-4, (90 kW, -40 kVAr)
for L-5, and (90 kW, -20 kVAr) for L-6 under the nominal
operating condition. Line 12, 34, 56 are of AWG2 type
with lengths equal to 68.58 meters. Line 23 is of AWG00
type, whose length is 22.86 meters. Other parameters are set
according to the record in [3, Table I].

Similar to previous work [3], [5], we focus on four power
lines in the system, i.e., Line 12, 23, 34, and 56 as shown in
Fig. 2. Since multiple DGs are deployed in the system, and
the microgrid can operate in a loop topology, digital protective
relays are installed on both ends of the power lines. With the
assistance of attached current transformers, these relays sample
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the branch current magnitudes at 3.84 kHz rate, which accords
with the configurations in the literature (see [22], [23] for
examples). This microgrid system is modelled in DIgSILENT
PowerFactory [24]. The software package simulates the current
measurements in the fault detection process. The data is
employed in the proposed fault detection scheme to detect
the fault type and location.

III. DISCRETE WAVELET TRANSFORM ANALYSIS

DWT is a digital signal processing technique which trans-
forms a time-series into mutually orthogonal set of data. It can
extract the hidden time-frequency domain characteristics of the
fault current. In the proposed fault detection scheme, DWT
serves an important role in pre-processing the input data for
DNNs in the scheme. In this section, we first briefly introduce
DWT and its properties. Then we discuss the DWT-based time-
frequency domain features to be computed, which will be later
utilized in DNNs.

A. Continuous and Discrete Wavelet Transform

Wavelets are zero-mean functions over time. A wavelet
ψa,b(t) can be derived from its mother wavelet ψ(t) by scaling
and shifting as follows:

ψa,b(t) =
1√
|a|
ψ(
t− b
a

), (1)

where a and b are scaling and shifting parameters, respectively.
Utilizing this relation, the continuous wavelet transform of a
signal s(t) with scale a and shift b is defined as

C(a, b, s(t), ψ(t)) =

∫ +∞

−∞
s(t)ψ∗a,b(t)dt = 〈s(t), ψa,b(t)〉,

(2)
where ψ∗a,b(t) is the complex conjugate of ψa,b(t), and 〈·, ·〉
is the inner product. With different values of a and b, a family
of wavelet coefficients C(a, b, s(t), ψ(t)) can be developed.

DWT is performed over the continuous wavelet transform
by discretizing a and b. Typically, these parameters are set to
powers of two: a = 2j , b = 2j × k, j, k ∈ Z. Substituting the
discrete values into (1), we have

ψj,k(t) =
1√
2j
ψ(

t

2j
− k), (3)

and DWT is derived by

dj,k =

∫ +∞

−∞
s(t)ψ∗j,k(t)dt = 〈s(t), ψj,k(t)〉, (4)

where dj,k is known as the wavelet detail coefficient at level
j and location k [25].

For most signals s(t), however, the analytical solution
cannot be solved [26], [27]. Meanwhile, Mallet developed a
technique to decompose the multi-resolution signal in [26],
which is widely recognized as a standard method to calculate

DWT. Given an arbitrary signal s(t), its multi-resolution
decomposition at level M is defined by

s(t) =
∑

k
aM,k

1√
2M

ϕ(
t

2M
− k)

+
∑M

j

∑
k
dj,k

1√
2j
ψ(

t

2j
− k)

, AM (t) +
∑

j
Dj(t), (5)

where aM,k are the approximation coefficients at level M such
that aM,k = 〈s(t), ϕM,k(t)〉, and ϕ(t) is a companion scaling
function [26]. By this transformation, s(t) is decomposed into
an approximation coefficient AM (t) and a sequence of detail
coefficients Dj(t) at level M . Interested readers can refer to
[26] for the detailed algorithm.

Following (5), DWT represents input signals in the time-
frequency domain [4]. It is widely adopted in fault detection
schemes since it can provide features with the optimal time-
frequency resolution in all frequency ranges, which results
in a better feature extraction ability [28]. Comparing with
Fourier transform and its variants (e.g., fast Fourier transform,
short-time Fourier transform, etc.), wavelet transform can
reveal the time support of frequencies efficiently, and is more
computationally efficient [29].

B. Mother Wavelet and Decomposition Level
Different wavelets have unique time-frequency domain char-

acteristics, which can influence the feature extraction ability
of DWT [26]. Many wavelet families have been adopted in
previous work (see [3], [4] for examples) for DWT in mi-
crogrid fault detection, e.g., coif (coiflets), db (daubechies),
dmey (discrete meyer), haar, bior (biorthogonal), and sym
(symlets). While there must exist an optimal set of wavelet
members in these families that will lead to the optimal per-
formance for fault detection, it is impractical to test all com-
binations of wavelets. They should be selected strategically
according to the properties of the sampled data. Specifically,
this selection is based on the characteristics of the analyzed
data. When the data contains sufficient samples, the db and
sym families are generally preferred thanks to their robustness
regardless of data properties [27], e.g., length and number of
samples. In such cases, the level of decomposition M has
more impact on the system performance than the choice of
mother wavelets. Comparing with db and sym, other mother
wavelets may suffer from their longer filter lengths, resulting
in low levels of decomposition [27]. This can potentially lead
to bad feature extraction capability. Therefore, in this work we
employ nine wavelet members in the two wavelet families db
and sym as the mother wavelets to transform the input signal,
i.e., branch current measurements.

Besides the mother wavelets, decomposition level is another
important parameter that may impact the signal decomposi-
tion performance. A larger level can provide more detailed
description on the input signal, but the computational cost will
increase. There is a maximum level of decomposition in theory
for each wavelet member, which is jointly determined by the
size of input signal and mother wavelet:

L = blog2
N

F − 1
c, (6)
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TABLE I
MOTHER WAVELETS AND DECOMPOSITION LEVELS USED

Wavelet F M = L Wavelet F M = L
db2/sym2 4 4 db4/sym4 8 3
db6/sym6 12 2 db8/sym8 16 2
db10 20 1

where L is the maximum decomposition level, N is the
length of the input signal, and F is the filter size of the
mother wavelet [26]. According to the heuristic in [27], the
decomposition level M should be set to its maximum value
L to handle branch current measurements. The length of the
input signal is the number of measurements in one cycle, i.e.,
3840/60 = 64. Hence the decomposition levels for the mother
wavelets can be calculated using (6), which are listed in Table
I. For a mother wavelet with decomposition level M , the input
signal can be decomposed into one approximation coefficient
and M detail coefficients according to (5). Consequently, 32
coefficients can be calculated from one input signal sequence
using the listed mother wavelets.

C. Feature Selection and Extraction

Using each of the mother wavelets, DWT can decompose a
sequence of input signal into a series of coefficients aM,k and
dj,k. Choosing suitable features to represent the characteristics
of the input signal is critical for fault detection [4]. In the
proposed scheme, we select a series of statistical features
of the coefficients to construct the input feature vector for
DNN, which contains vital information of the investigated
fault. Specifically, we calculate the following features of
each decomposed coefficient (here we use s to represent the
coefficient aM,k or dj,k):
• The maximum value of the coefficient: max{s};
• The minimum value of the coefficient: min{s};
• The mean value of the coefficient: µs = E[s];
• The standard deviation of the coefficient: σs = E[(s −
µ)2]1/2;

• The skewness of the coefficient: E[
(
(s− µs)/σs

)3
];

• The energy of the coefficient:
∑
s2.

These features have demonstrated their efficacy in the previous
literature which employs DWT for classification tasks (see [4],
[27] for references).

Consequently, for each cycle in the microgrid system,
32(coefficients) × 6(features) × 3(phases) = 576 features can
be calculated, which constitute a feature vector representing
the power dynamics in the cycle. This feature vector is later
input into DNN to develop the fault detection results, which
will be introduced next.

IV. DEEP NEURAL NETWORK-BASED FAULT DETECTION

DNN is a type of artificial neural networks (ANN) with
multiple hidden layers of neurons between the input and out-
put. It is widely adopted to model complex non-linear systems
in engineering research [19]. In addition, the computation
of DNN only involves simple algebraic equations, rendering
a fast computation speed. This characteristic makes DNN
capable of handling problems in real-time.

START

DWT feature
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Fault type
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Fault location
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STOP

Output fault
information

N N

Y Y

Fig. 3. Flow chart of the proposed intelligent fault detection scheme.

The proposed DNN-based fault detection scheme is based
on the hypothesis that the branch current measurements can
immediately indicate fault occurrence in the system. This
hypothesis is widely recognized in the literature, see [2]–[5]
for some references. In addition, the temporal data dependency
in sampled current magnitudes can also help identify the fault.
Utilizing the time-series branch current measurements and
the extracted wavelet features introduced in Section III, we
construct an intelligent fault detection scheme in this section.

The fault detection problem is divided into three sub-
problems, namely, fault type classification, fault phase iden-
tification, and fault location detection. Each sub-problem is
handled by a standalone DNN. The flow chart of the proposed
fault detection scheme is depicted in Fig. 3. At an arbitrary
time, a protective relay in the microgrid samples the 3-
phase branch current magnitudes, which are input into the
proposed fault detection scheme. The measurements are first
processed by DWT to extract the features. Then the features
and measurements are input into a fault type classification
DNN. If a fault is detected, the fault location detection DNN
is employed to determine the location of the fault. At the
same time, if the fault is classified as an unbalanced one, the
fault phase identification DNN is used to develop the fault
phase. Finally, the generated information can be employed in
later control operation decision-making processes, e.g., fault
isolation and recovery.

In the remainder of this section, we first introduce the
technique employed to construct the three DNNs. Then we
present the structures of these DNNs, training data preparation
method, and training optimization configuration.

A. Gated Recurrent Unit and Dense Layer

In this work we mainly use gated recurrent unit (GRU) to
construct DNNs to handle the three sub-problems in the micro-
grid fault detection problem. GRU [30] is a modern variant of
ANN, which is among the most commonly used data-mining
and machine learning techniques. ANN has been employed
in many disciplines [31] due to its model-independent and
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computationally efficient properties [31], [32]. ANN tries to
simulate the model of control systems by learning from the
mathematical relationship between system input and output.

However, a typical ANN overlooks the input data cor-
relation in the time domain. GRU, along with some other
neural networks, is designed to overcome this drawback. By
introducing additional recurrent connections in the hidden
layers of a neural network, GRU is capable of maintaining
previous information for later use and capturing the temporal
dependencies in the input data [30].

Given a time series X = [x1,x2, · · · ,xT ], GRU can
develop a sequence of output values H = [h1,h2, · · · ,hT ]
where each output value ht is calculated using all input values
from x1 to xt. This is achieved by its internal structure, which
can be expressed as follows:

ht = zt ∗ ht−1 + (1− zt) ∗ h̃t, (7a)
zt = sigm(wxzxt +whzht−1 + bz), (7b)

h̃t = tanh(wxhxt +whh(rt ∗ ht−1) + bh), (7c)
rt = sigm(wxrxt +whrht−1 + br), (7d)

where ∗ is the element-wise product, and all w and b matrices
are the learning parameters of GRU. From (7) it can be
observed that GRU simulates the relationship between output
ht and input x1, · · · ,xt using the learning parameters, whose
values are initially unknown. In practice, we use known
input and output data to tune these parameters to reflect the
relationship. This process is called training, and is typically
performed off-line. After training, the value of the learning
parameters can be used to calculate the predicted output values
given a new set of input, even if the actual output is unknown.

Besides GRU, another important neural network layer em-
ployed in the structure is the fully connected layer, or Dense
layer. Dense layers are composed of multiple artificial neurons,
each of which calculates its output using the input data as
follows:

y = actv(wdense ∗ x+ bdense), (8)

where x and y are the input and output, respectively, wdense

and bdense are the learning parameters of the Dense layer, and
actv(·) is the activation function [20].

B. Deep Neural Networks Structures

In the proposed intelligent fault detection scheme, three
DNNs are employed to classify the fault type, identify the
fault phase, and locate the fault position, respectively. All these
networks are constructed using GRU as well as standard fully-
connected neuron layers in ANN. Meanwhile, as their outputs
are different, their schemata vary slightly.

We first construct the fault type classification DNN. This
networks accepts the 3-phase time-series current measure-
ments and the DWT-extracted features as input, aiming to
tell if a given sequence of dynamics indicates a fault and
its type. Similar to previous work [3]–[5], we consider four
types of faults: 1) single-phase-to-ground (LG), 2) double-
phase (LL), 3) double-phase-to-ground (LLG), and 4) three-
phase-to-ground (LLLG). The constructed DNN have four 0-1

3-phase current measurements
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GRU Output: 64×128

GRU Output: 64×128
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Dense Output: 1×5
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Sigmoid

Fault type classification

DWT feature extraction

Output: 32×6×3

Flatten Output: 1×576

Soft-max

Soft-max

Fig. 4. Schema of fault type classification DNN.

indicators in the output, each of which represents one fault
type. In addition, as this DNN should distinguish faults from
no-fault cases, an extra no-fault indicator is introduced in the
output, making it of length five.

The schema of fault type classification DNN is depicted in
Fig. 4. In this DNN, we employ four GRU layers and three
Dense layers to process the current measurements and DWT
features. Specifically, the first GRU layer is used to map the
time-series into a higher dimension space, and the next two
GRU layers are utilized to extract the temporal dependency
of input data. The last GRU layer expresses the dependency
in a 1-D vector, which is combined with the extracted DWT
features as the input of subsequent dense neuron layers.
Finally, the fault type characteristics are abstracted in the first
two Dense layers, and the last one transforms the abstracted
features into a human-readable form, i.e., fault type. Since the
activation function for the last layer is sigmoid, values in the
output 1× 5 vector are in (0, 1). The fault type is determined
by the maximum value in the vector. Suppose that the third
element is the largest in the output vector, then we can tell
that a fault of the type represented by the third output, e.g.,
LLG, occurred in the system.

The schemata for fault phase identification and fault location
detection DNNs are similar to that presented in Fig. 4, except
for the last dense layer. If the fault is classified as unbalanced
(LG, LL, or LLG), the second fault phase identification DNN
is utilized to detect the fault phase. This DNN has an output
vector of length three, in which each element represents the
fault state of a phase. For an LG fault, the phase whose
corresponding value is the largest in the output vector is
considered as the fault phase. For LL or LLG faults, the phases
with the two largest values are the fault phases.

Finally, the fault location detection DNN only outputs
one value from the last dense layer, which indicates the
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(a) Fault phase identification.
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Activation: Sigmoid
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Identical to fault type
classification DNN
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Fig. 5. The last dense neuron layers of the fault phase identification and fault
location detection DNNs.

relative (percentage) position on the transmission line from
the sampling protective relay. The last layers of the fault phase
identification and fault location detection DNNs are presented
in Fig. 5.

Note that the proposed DNN only takes the local three-
phase current magnitudes as the input. In some real-world
applications, it is possible that extra information, e.g., fault
resistance values, is available before the detection is executed.
In such cases, such information can be considered as new input
of the first dense layer in Fig. 4, and thus the model can be
further enhanced by learning from the additional information.
In this work, we present a generalized model as depicted in
Fig. 4. Variants of the model incorporated with additional
information may lead to better system performance, which will
be further studied in future work.

C. Time-series Simulation and Training

In order to use the constructed DNNs for fault detection,
their learning parameters need to be trained offline. The
training data, composed of input current magnitude measure-
ments and output fault information, can be obtained from
either historical data or time-series simulation of different
operational events. The input current magnitude measurements
are arranged in the form of

X =

Ia,1 Ia,2 Ia,3 · · · Ia,64
Ib,1 Ib,2 Ib,3 · · · Ib,64
Ic,1 Ic,2 Ic,3 · · · Ic,64

T , (9)

where Ia,t, Ib,t, and Ic,t are the t-th current magnitude mea-
surements on phase a, b, and c in the cycle, respectively. As
the fault information will be revealed in three DNNs, different
output Ytype = (ytype

i ) ∈ B1×5, Yphase = (yphase
i ) ∈ B1×3,

and Yloc ∈ (0, 1) should be constructed for the three DNNs,
respectively:

ytype
i =

{
1 if fault type is represented by i
0 otherwise

, (10a)

yphase
i =

{
1 if phase i is short circuited
0 otherwise

, (10b)

Yloc = relative fault location on the line. (10c)

Given a collection of R training data {X(r),Y
type
(r) ,Yphase

(r) ,

Yloc
(r)}

R
r=1, many gradient descent algorithms can be employed

to train the learning parameters in DNNs [19], [32]. In this
paper, we use the Adam optimizer [33] to find the optimal

values for these parameters. Since the fault type classification
is a multinomial classification problem, we use the multino-
mial cross entropy loss function as the optimization objective.
Similarly, the binary cross entropy loss function is assigned
to the fault phase identification DNN due to its multi-label
classification nature. The loss function for the fault location
DNN is mean squared error loss function. Interested readers
may refer to [20] for the detailed implementation and theory
of these loss functions.

In our DNN model, there are hundreds of thousands of
learning parameters to be trained. It is impractical to simulta-
neously adjust their values without overfitting [34]. Instead, an
effective technique, called “dropout”, is employed to address
this issue [35]. This technique randomly sets the output
value(s) of a neuron to zero at a user-defined probability (30%
in this work). Therefore, the dropped neurons do not contribute
to the result calculation, which can effectively prevent the
network from heavily relying on specific neurons to develop
output. Thus more robust features can be extracted in the
learning process [34], [36]. This “dropout” scheme is only
employed in the training process. When the trained parameters
are used to develop testing results, all neurons contribute to
generate the network output [35].

D. Discussion

In this work, we employ DWT and DNN to construct an AC
microgrid fault detection mechanism. An advantage for DNN
over other conventional computation techniques is that the
time-consuming parameter tuning process can be conducted
offline. The online testing process involves minimal linear
algebraic calculations, which are computationally efficient. In
the meantime, the DWT employed in this work does not have
a pre-processing step to reduce the testing time. As will be
illustrated in Section V-A, in normal settings, the employed
DWT can be computed fast enough to keep the overall system
response time satisfactory. With the recent rapid development
of signal processing techniques, there may also exist wavelet
transform algorithms which are re-constructed in an online
manner to further reduce the computational time. Such online
DWT algorithms can be easily incorporated into our proposed
fault detection mechanism and the resulting detection accuracy
is not influenced as long as the DWT results remain identical.

V. CASE STUDIES

We perform a series of simulations to assess the fault detec-
tion performance of the proposed scheme. We first evaluate the
fault type/phase classification and location detection accuracy,
and compare the results with the state-of-the-art schemes
in the literature. Then we investigate the impact of noisy
measurements on the fault detection performance. Finally, we
test the proposed scheme on another microgrid system besides
the CERTS system to assess the generalization of the proposed
scheme. All time-series simulations and numerical calculations
are conducted on a computer with an Intel Core i7-7700 CPU
and an nVidia GTX 1080 GPU. The time-series simulations
are performed using DIgSILENT PowerFactory [24], and the
DNNs are constructed with TensorFlow [37].
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TABLE II
CONFIGURATIONS FOR FAULT CASES SIMULATION

Parameter Possible Configuration Count
Topology Radial or loop 2
Operating mode Grid-connected or islanded 2

Fault type (A/B/C)G, AB, AC, BC, (AB/AC/BC)G, 10or ABCG
Fault resistance (Ω) 0.01, 1, 10, or 100 4
Fault line Line 12, 23, 34, or 56 4
Fault location 10%, 20%, · · · , or 90% on fault line 9
L-3 and L-4 Load (90 kW, 45 kVAr) or (45 kW, 25 kVAr) 2
L-5 Load (90 kW, -40 kVAr) or (45 kW, -20 kVAr) 2
L-6 Load (90 kW, -20 kVAr) or (45 kW, -10 kVAr) 2

TABLE III
CONFIGURATIONS FOR NON-FAULT CASES SIMULATION

Parameter Possible Configuration Count
Topology Radial or loop 2
Operating mode Grid-connected or islanded 2
L-3 and L-4 Load (90 kW, 45 kVAr) or (45 kW, 25 kVAr) 2
L-5 Load (90 kW, -40 kVAr) or (45 kW, -20 kVAr) 2
L-6 Load (90 kW, -20 kVAr) or (45 kW, -10 kVAr) 2

Event
Topology change, operating mode change,

34L-3, L-4, L-5, or L-6 load change by
±5%, ±10%, ±15%, or ±20%

To train the learning parameters in DNN with supervised
learning, sufficient previous knowledge that represents post-
fault/event power dynamics is critical. The training data should
include adequate information to lead the tuning of these
parameters approximating the system behavior, subject to
different operating conditions and events. In this work, we
generate the training data using CERTS microgrid system
with time-series simulations under different network topolo-
gies, grid-connected modes, types of balanced and unbalanced
faults, fault resistances, fault lines, locations on the line,
and loads. Details of these configurations are listed in Table
II. In total, 46,080 fault cases are generated and simulated.
Moreover, multiple non-fault cases are constructed to train
the parameters. Details of such cases are listed in Table III,
and 1088 non-fault cases are generated and simulated. In each
generated case, the simulated branch currents are employed as
the measurements sampled by the protective relays. In practice,
it is also feasible for utilities to use the historical operation data
for training.

For cross validation and prevention of the over-fitting
problem, we randomly divide the generated fault and non-
fault cases into training and testing sets by the ratio of
3:1, which accords with the common practice, see [4], [38]
for examples. The training cases are employed to train the
learning parameters of DNN, and the testing cases are used
to assess the fault detection accuracy of the trained scheme.
Thus, over-fitting problem (machine learning models learn
from both data characteristics and random noise, rendering
poor generalization performance over new unknown data) can
be avoided.

A. Fault Detection Accuracy and Computation Time

Table IV presents the fault detection performance of the
proposed scheme. We summarize the accuracy of fault type

classification and fault phase identification, which can be
directly obtained from the DNNs in the scheme. In addition,
we further present the accuracy on distinguishing fault cases
from the non-fault ones, and the error of predicted fault
locations.

From the simulation results, we can see that the proposed
intelligent fault detection scheme can successfully develop the
correct information in most training and testing cases. For the
typical fault/non-fault detection performance, each relay can
achieve more than 99% accuracy, rendering an overall 99.60%
accuracy for training cases, and 99.31% for testing ones.
For the fault type and phase classification, the performance
is slightly worse. Despite this, the proposed scheme can
still provide satisfactory 97.60% and 97.92% classification
accuracies in these tests using testing cases.

The errors of predicted fault locations can lead to some
interesting observations. In general, most relays (except R-
23 and R-32) can achieve quite accurate prediction on fault
locations, resulting in 4.32% and 4.65% error for training and
testing cases, respectively. However, the prediction accuracies
of R-23 and R-32 are relatively worse. This is because Line
23 (22.86 m) is significantly shorter than the others (68.58
m). In such case, if the fault resistance is large enough,
the power dynamics for different fault locations on Line 23
are similar. Meanwhile, the proposed scheme can still locate
the fault position with an error of around two meters. This
is acceptable when the fault recovery involves underground
operations, which is quite common in microgrid systems.

Last but not least, we record the computational time for
the proposed scheme in Table V. It can be concluded that the
proposed scheme can be executed in real time. With proper
parallelization, the scheme can develop fault information in
around 0.35 millisecond after the sampling time 1. Even in
the worst case scenario where all calculations are sequential,
the fault detection time is around 1.34 ms (non-fault cases) or
1.69 ms (fault cases).

B. Comparison with Other Fault Detection Schemes

We compare the performance of the proposed scheme with
existing state-of-the-art schemes for microgrid fault detec-
tion. The results are summarized in Table VI, and the best
performing items are bolded. Note that [3] only provided
fault classification accuracy including fault phase information.
Hence it can be inferred that the performance for fault vs. non-
fault and fault type classification should be superior than the
value presented. These inferred accuracy values are appended
with a “+” sign in the table.

From the comparison it can be concluded that the proposed
scheme can outperform existing state-of-the-art microgrid fault
detection schemes. In addition, the proposed scheme can
provide predicted fault locations, which are unavailable in the
compared schemes.

1Assume that DWT feature extraction for nine wavelets is calculated in
parallel, which happens when DNN is executing the calculation for the first
few GRU layers. DNNs also calculate their output values in parallel.
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TABLE IV
FAULT DETECTION ACCURACY ON CERTS MICROGRID SYSTEM

Relay Fault vs. Non-fault Accuracy Fault Type Accuracy Fault Phase Accuracy Location Error
Training Testing Training Testing Training Testing Training Testing

R-12 99.50% 99.56% 98.38% 97.88% 98.39% 97.37% 2.49% 5.63%
R-21 99.99% 99.31% 99.28% 97.46% 97.84% 98.13% 2.09% 4.17%
R-23 99.26% 99.24% 97.96% 98.28% 98.08% 99.03% 8.33% 10.59%
R-32 99.54% 99.70% 97.93% 96.34% 96.87% 96.75% 8.64% 8.70%
R-34 99.21% 99.06% 95.50% 97.32% 96.75% 98.86% 5.68% 4.42%
R-43 99.46% 99.11% 97.27% 97.73% 98.68% 97.39% 6.80% 5.94%
R-56 99.99% 99.20% 97.61% 97.11% 96.83% 97.23% 4.39% 1.93%
R-65 99.76% 99.31% 97.61% 98.67% 97.74% 98.59% 4.50% 5.85%

Average 99.60% 99.31% 97.70% 97.60% 97.64% 97.92% 5.24% 5.90%

TABLE V
SUMMARY OF COMPUTATION TIME

Process DNN training DWT & features DNN classification
Avg. Time 423.94 s/DNN 0.11 ms/wavelet 0.35 ms/DNN

TABLE VI
COMPARISON WITH OTHER FAULT DETECTION SCHEMES

Scheme Accuracy Error
Fault Type Phase Location

Proposed Scheme 99.31% 97.60% 97.92% 5.90%
Decision Tree [3] 90.40%+ 90.40%+ 90.40% -

K-nearest Neighbors [3] 95.63%+ 95.63%+ 95.63% -
Support Vector Machine [3] 93.30%+ 93.30%+ 93.30% -

Naive Bayes [3] 94.24%+ 94.24%+ 94.24% -
Decision Tree [4] 97.00% 85.00% - -

Random Forest [4] 99.00% 94.00% - -
Over-current relay (in [4]) 56.00% - - -
Differential relay (in [4]) 96.00% - - -

C. Deep Neural Network Structure

In this work we adopt a DNN structure as shown in Fig.
1, which contains four GRU layers and two Dense layers2.
The number of layers is one of the most critical hyper-
parameters that significantly influence the system performance.
In this section, we perform a test on the number of layers in
the mechanism to investigate the relationship between fault
detection accuracy and DNN structure. Specifically, we test
different DNN structures with one to five GRU layers and one
to three Dense layers and compare their fault type detection
accuracy. All structures are trained with the same training data,
and all other simulation configurations are identical. The fault
type detection accuracy values at a randomly selected relay
(R-43) are presented in Table VII. From the results, it is clear
that four GRU layers with two Dense layers yield the most
accurate fault type detection information on the testing data.
While more GRU layers may lead to better training accuracy,
the extra layers also potentially introduce over-fitting issue to
the model, rendering a worse testing performance. Note that it
is possible to develop more complex DNN structures for even
better results. How to configure the structure for microgrid
fault detection to further improve the accuracy performance is
out of the scope of this work.

2Here the last Dense layer in Fig. 1 is excluded, since it is compulsory and
fixed-size.

D. Measurement Uncertainty

We investigate the impact of noisy branch current measure-
ments on the fault detection accuracy of the proposed scheme.
Similar to previous work [3], [12], the current time-series data
is distorted with white Gaussian noise. We conduct simulations
on three test cases, namely, (i) 40 dB signal-to-noise ratio
(SNR), (ii) 35 dB SNR, and (iii) 30 db SNR, which accord
with the configuration in [12]. DNNs in these test cases are
trained with the distorted data. The performance on testing set
cases is summarized in Table VIII.

From the simulation results we have the following obser-
vation. While the noise in current measurements does have
an impact on the performance, the influence is insignificant.
In the worse case scenario (30 dB), the accuracy decrease is
only around 0.1% compared with perfect measurements. To
conclude, the proposed scheme can achieve almost the same
performance considering measurement uncertainties.

E. Performance on Modified IEEE 34-bus Microgrid System

All previous analyses and simulations are conducted on
the CERTS microgrid system. It is of interest to assess the
generalization of the proposed scheme. In this sub-section,
we employ a modified IEEE 34-bus system and test the
fault detection performance of our scheme. The system is
constructed according to the descriptions in [39], and we
assume that protective relays are installed on transmission
lines 808-812, 816-824, 834-842, and 846-848. Using a similar
approach as we conducted on CERTS microgrid system, we
develop 11,792 cases for training and testing the proposed
scheme. The simulation results are illustrated in Table IX.
It can be observed that the performance deviation of this
modified IEEE 34-bus system from CERTS system is quite
trivial, despite the much larger test system. This result leads
us to conclude that the proposed fault detection scheme can
be generalized and applied to microgrid systems with various
sizes.

VI. CONCLUSION

In this paper, we propose a new intelligent fault detection
scheme for microgrid systems based on wavelet transform
and deep learning approaches. The branch current magnitude
measurements sampled by protective relays are input into the
scheme, which can develop the detailed information of the
fault type, phase, and location for microgrid protection and
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TABLE VII
FAULT TYPE DETECTION ACCURACY AT R-43 WITH DIFFERENT NUMBERS OF NEURAL NETWORK LAYERS

Number of GRU Layers
Number of 1 2 3 4 5

Dense Layers Training Testing Training Testing Training Testing Training Testing Training Testing
1 95.02% 94.92% 96.57% 95.35% 96.33% 96.21% 97.71% 96.05% 98.06% 96.19%
2 95.77% 95.89% 96.08% 95.94% 97.53% 97.50% 97.27% 97.73% 98.29% 96.17%
3 95.15% 95.37% 96.01% 95.86% 96.82% 96.75% 97.20% 97.33% 97.43% 95.61%

TABLE VIII
IMPACT OF MEASUREMENT UNCERTAINTY ON FAULT DETECTION

PERFORMANCE

SNR Accuracy Error
Fault Type Phase Location

Perfect 99.31% 97.60% 97.92% 5.90%
40 dB 99.29% 97.64% 97.78% 5.93%
35 dB 99.24% 97.55% 97.86% 5.99%
30 dB 99.20% 97.57% 97.69% 6.01%

TABLE IX
PERFORMANCE ON MODIFIED IEEE 34-BUS MICROGRID SYSTEM

Accuracy Error
Fault Type Phase Location

99.06% 98.02% 97.71% 6.43%

service recovery. Specifically, the measurement data are pre-
processed using DWT and statistical features are extracted
from the result. Then the measurements and features are input
into tailor-made DNNs to develop fault information. Different
from previous work, the proposed scheme can provide a
predicted fault location along the transmission line, besides
accurately classifying the fault type. In addition, due to the
computationally efficient nature of DNN, the whole fault
detection process can be conducted in real-time.

To assess the performance of our proposed scheme, we
conducted a series of simulations. We first test the fault detec-
tion accuracy on a CERTS microgrid system, and compare it
with state-of-the-art fault detection schemes in the literature.
The results demonstrate that the proposed scheme can provide
more accurate fault type classification results, and can discover
the fault locations which are unavailable in other approaches.
In addition, we evaluate the influence of noisy measurements
on the fault detection performance. The simulation shows
that measurement uncertainty has a trivial impact on the
performance of the scheme. Last but not least, we also test
the proposed scheme on a modified IEEE 34-bus system and
the fault detection result remains satisfactory. This indicates
that the proposed scheme is practical to be adopted in real-
world microgrids of different sizes and topologies.

APPENDIX A
WAVELET FAMILY SELECTION TEST

In this appendix, we present the fault detection results on the
proposed mechanism with coif and bior families instead of
db and sym. Specifically, the three-phase current magnitude
measurements are processed by wavelets coif1 (M = 3),
coif2 (M = 2), coif3 (M = 1), coif4 (M = 1),
coif5 (M = 1), bior1.1 (M = 6), bior1.3 (M = 3),

TABLE X
COMPARING DB AND SYM WAVELETS WITH COIF AND BIOR

Wavelets Accuracy Error
Fault Type Phase Location

db and sym 99.31% 97.60% 97.92% 5.90%
coif and bior 99.04% 97.53% 97.48% 6.11%

bior1.5 (M = 2), bior2.2 (M = 3), and bior2.4
(M = 2). The simulation results are demonstrated in Table
X. The presented accuracy values accord with our previous
analysis in Section III-B. Therefore, in our design, db and
sym wavelets are employed.
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