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Improved Random Drift Particle Swarm
Optimization With Self-Adaptive Mechanism for
Solving the Power Economic Dispatch Problem

Wael Taha Elsayed, Graduate Student Member, IEEE, Yasser G. Hegazy, Senior Member, IEEE,
Mohamed S. El-bages, and Fahmy M. Bendary

Abstract—This paper proposes an improved version of
the random drift particle swarm optimization algorithm for
solving the economic dispatch problem. The improvement
is achieved through adding a crossover operation followed
by a greedy selection process while replacing the mean
best position of the particles with the personal best posi-
tion of each particle in the velocity updating equation. The
improved algorithm is also augmented with a self-adaption
mechanism that eliminates the need for tuning the algorithm
parameters based on characteristics of the considered op-
timization problem. Practical features such as valve point
effects, prohibited operating zones, multiple fuel options,
and ramp rate limits are considered in the mathematical
formulation of the economic dispatch problem. In order to
demonstrate the efficacy of the proposed algorithm, five
benchmark test systems are utilized. The obtained results
showed that the improved random drift particle swarm opti-
mization algorithm is capable of providing superior results
compared to the original algorithm and the state of the art
techniques proposed in previous literature.

Index Terms—Economic dispatch (ED) problem, meta-
heuristic technique, random drift particle swarm optimiza-
tion (RDPSO), valve point effects.

NOMENCLATURE

Indices

i Index of a generating unit or an individual of the swarm.
j Index of a fuel type, a generating unit, a prohibited operating

zone, or an element of a vector.
t Index of an iteration.
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Variables and Parameters

FT Total operational cost.
Pi Power output of unit i.
Fi(Pi) Cost function value of unit i.
n Total number of generating units.
PD Total system demand.
PLoss Total transmission losses.
Pmin

i Minimum power output of unit i.
Pmax

i Maximum power output of unit i.
Pi0 Power output of unit i at the previous

time interval.
URi Upper-ramp rate limit for unit i.
DRi Down-ramp rate limit for unit i.
P l

i,j Lower limit of the jth prohibited zone
for unit i.

P u
i,j Upper limit of the jth prohibited zone

for unit i.
nj Number of prohibited operating

zones for unit i.
ai , bi , ci , ei, and fi Fuel cost coefficients of unit i.
aij , bij , cij , eij , and fij Fuel cost coefficients of unit i using

fuel type j.
Pmin

ij Lower bound of unit i using fuel
type j.

Pmax
ij Upper bound of unit i using fuel

type j.
Bij , B0i , and B0 Loss coefficients.
Xt

i Position of particle i at iteration t.
Y t−1

i Personal best position of particle i at
iteration t − 1.

Y t
i Personal best position of particle i at

iteration t.
np Population size.
Xt−1

i Position of particle i at iteration t− 1.
Y t−1

i∗ Global best position at iteration t− 1.
V t

i Velocity of particle i at iteration t.
V t−1

i Velocity of particle i at iteration t− 1.
ω Inertia weight.
C1 and C2 Acceleration coefficients.
R1

t
i and R2

t
i Two random vectors generated in

correspondence to particle i at
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iteration t with elements distributed
uniformly between zero and one.

ϕt
i,j Parameter of the random drift par-

ticle swarm optimization algorithm
determined in correspondence to the
jth element of particle i at iteration t.

Zt
i,j jth element of the local focus position

for particle i at iteration t.
d Problem dimension.
R1i, j

t and R2i, j
t Two different random numbers dis-

tributed uniformly between zero and
one. Each of these two numbers are
generated in correspondence to the
jth element of particle i at iteration t.

Xt−1
i,j jth element of the position for parti-

cle i at iteration t − 1.
Ct

j jth element of the mean best position
at iteration t.

α Thermal coefficient.
δt
i,j Random number that obeys the stan-

dard normal distribution generated in
correspondence to the jth element of
particle i at iteration t.

V T t
i , j jth element of the velocity of the ther-

mal motion associated with particle
i at iteration t.

Y t−1
i,j jth element of the personal best po-

sition for particle i at iteration t − 1.
Zt

i Local focus position for particle i at
iteration t.

β Drift coefficient.
V Dt

i Velocity of the drift motion associ-
ated with particle i at iteration t.

V t
i,j jth element of particle i’ velocity at

iteration t.
Xt

i,j jth element of particle i’ position at
iteration t.

rt
i,j Random number uniformly dis-

tributed between zero and one, and
generated in correspondence to the
jth element of particle i at iteration t.

C Crossover probability.
Xt

i,j (trial) jth element of the trial vector gener-
ated in correspondence to particle i
at iteration t.

I. INTRODUCTION

THE economic dispatch (ED) problem is to find the most
economic distribution of system loads among system

generators. Theoretically, the problem can be modeled as an
optimization problem with a convex cost function. This opti-
mization problem is relatively easy to solve; however, in real
power systems, practical features such as valve point effects,
prohibited operating zones, ramp rate limits, and multiple fuel
options are usually encountered. Neglecting these features, im-
proper or approximated handling of these features while solving
the ED problem may lead to significant monetary losses through

presenting inaccurate solutions of the problem [1], [2]. On the
other hand, considering these practical features converts the ED
problem to a complex and hard to solve optimization problem
in which the cost function is nonconvex and nonsmooth. In the
previous literature, many techniques have been proposed for
solving the ED problem. Classical methods such as the lambda
iteration method require a convex cost function. The dynamic
programing does not impose any constraints on the shape of
the cost function; however, as the problem dimension increases,
the computational effort required by the dynamic programming
exponentially increases, and large-scale ED problems cannot
be solved within a satisfactory computational time. Similar to
the dynamic programming, the metaheuristic techniques do not
impose specific characteristics of the cost function. There are
numerous metaheuristic techniques proposed in the previous lit-
erature, and several techniques succeed to find the global optimal
solution of some benchmark systems. Some metaheuristic tech-
niques have been applied in their basic form for solving the ED
problem such as particle swarm optimization (PSO) [3] and dif-
ferential evolution (DE) [4]. Modified and improved versions of
the metaheuristic techniques have also been applied for solving
the ED problem such as modified particle swarm optimization
(MPSO) [5] and improved differential evolution [6]. Hybrid
methods in which two or more metaheuristic techniques are
combined to solve the ED problem have been proposed such as
in [7]. One major limitation that exists in many of the previously
proposed metaheuristic techniques is the need for tuning the pa-
rameters of these techniques before applying them for solving
a specific ED problem. A certain setting of parameters for a
certain metaheuristic technique may provide satisfactory results
with specific benchmark systems. However, this specific setting
may fail to provide satisfactory results with another set of bench-
mark systems. It even may fail if the benchmark system char-
acteristics have been changed such as changing the total system
load or the number of generating units. To solve this problem,
the metaheuristic techniques have to be augmented with a self-
tuning capability. Nonetheless, augmenting any metaheuristic
technique with a self-tuning capability may reduce the efficacy
of the results obtained by this technique due to the fact that
some additional computational efforts have to be consumed by
the algorithm for tuning its own parameters while solving the
main optimization problem. As a result, to augment any meta-
heuristic technique with a self-tuning capability, this technique
has to be a highly efficient technique. A novel efficient variant
of the PSO algorithm, random drift particle swarm optimization
(RDPSO), has been proposed in [8]. Sun et al. [8] showed that
the RDPSO can compete and outperform many of the state of the
art metaheuristic techniques. This paper proposes two modifica-
tions to the RDPSO algorithm in order to increase the efficacy of
the RDPSO algorithm significantly. The proposed modifications
are to add a crossover operation followed by a greedy selection
process and to replace the mean best position of the particles
with the personal best position of each particle in the velocity
updating equation. An improved random drift particle swarm op-
timization (IRDPSO) algorithm is then developed. In addition,
a self-adaption mechanism is suggested to produce a self-tuning
IRDPSO (ST-IRDPSO) algorithm. The proposed IRDPSO and
ST-IRDPSO algorithms have the following advantages:
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1) Remarkable money savings can be achieved compared to
the savings attained by the previously proposed state of
the art techniques in the field of solving the nonconvex
economic dispatch problem. These savings are achieved
through providing lower minimum cost values, average
cost values, and standard deviation values compared to
those obtained by the state of the art techniques.

2) The execution time required for a single run of the pro-
posed algorithms is much less than the 5 min interval,
which is required for updating the load forecasting [9],
[10].

3) The self-tuning capability of the ST-IRDPSO algorithm
minimizes the human interference, which helps to mini-
mize the operation cost, the associated human errors, and
the required time for tuning the algorithm parameters.

The paper is organized as follows. The ED problem formula-
tion is presented in Section II. Section III reviews the PSO and
RDPSO algorithms. The proposed IRDPSO algorithm with the
self-tuning capability is introduced in Section IV. Simulation
results are shown in Section V. Discussion of the results and
expected future studies are presented in Section VI, followed by
the conclusion in Section VII.

II. MATHEMATICAL FORMULATION OF THE ED PROBLEM

A comprehensive mathematical formulation of the ED prob-
lem is as follows:

Minimize : FT =
n∑

i=1

Fi(Pi). (1)

Subject to :
n∑

i=1

Pi =PD + PLoss (2)

max(Pmin
i , Pi0 − DRi) ≤ Pi ≤ min(Pmax

i , Pi0 + URi)
(3)

Pmin
i ≤ Pi ≤ P l

i,1 (i = 1, 2, ...., n)

Pu
i,j−1 ≤ Pi ≤ P l

i,j (j = 2, 3, ...., nj) (i = 1, 2, ...., n)

Pu
i,nj ≤ Pi ≤ Pmax

i (i = 1, 2, ...., n).
(4)

If the valve point effects are not considered, the cost function
is convex and can be modeled as follows:

Fi(Pi) = ai + bi Pi + ci P 2
i . (5)

On the other hand, when the valve point effects are consid-
ered, the cost function becomes nonconvex and can be written
as follows:

Fi(Pi) = ai + bi Pi + ci P 2
i +

∣∣ ei sin(fi × (Pmin
i − Pi))

∣∣ .
(6)

If there are units with multiple fuel options in the system, the
cost function of these units while considering the valve point
effects can be modeled as follows [11]:

Fi(Pi)= aij + bijPi + cijP
2
i +

∣∣eij × sin(fij× (Pmin
ij − Pi))

∣∣

if Pmin
ij ≤ Pi ≤ Pmax

ij . (7)

Equation (2) represents the power balance constraint in which
PLoss is computed as follows:

PLoss =
n∑

i=1

n∑

j=1

PiBijPj +
n∑

i=1

B0iPi + B00 . (8)

Equation (3) represents the upper and lower bounds imposed
to the generated power of unit i in the case of considering the
ramp rate limits. If the ramp rate limits are not considered,
constraint (3) is replaced by the following constraint:

Pmin
i ≤ Pi ≤ Pmax

i . (9)

Finally, (4) is used to model the prohibited operating zones.

III. PSO AND RDPSO ALGORITHMS

The following sections review the PSO and RDPSO algo-
rithms.

A. PSO Algorithm

The PSO is an algorithm used for finding the global optimal
solution of nonsmooth and nonconvex optimization problems.
The concept of the PSO algorithm was inspired while simulating
a simplified social model of bird flocks or fish schools [12]. The
PSO achieved a remarkable success through presenting high-
quality solutions for nonsmooth and nonconvex optimization
problems in many research fields and applications. The success
of the PSO algorithm oriented a great portion of the research
toward improving the algorithm. Many hybrid methods that
incorporate the PSO algorithm have also been tested in different
disciplines. The PSO algorithm starts by initializing a population
of particles with size np . Each particle has a position Xi in a
d-dimensional space. The particle moves from one position to
another in the search space with a velocity Vi . The position of
each particle i at iteration t represents a possible solution to the
optimization problem under consideration. The best position
found so far by a particle i is known as the personal best Yi .
The personal best is updated from one iteration to the next in a
minimization problem as follows:

Y t
i =

{
Xt

i if f(Xt
i ) < f(Y t−1

i )

Y t−1
i if f(Xt

i ) ≥ f(Y t−1
i )

(10)

where i ϵ N and N = 1, 2, . . . , np . The best solution found
so far in the whole population is known as the global best Y t

i∗
where

i∗ = arg min
i∈N

f(Y t
i ). (11)

The velocity equation, by which the particles update their
positions, is given as follows:

V t
i = ω V t−1

i + C1 R1
t
i(Y

t−1
i − Xt−1

i )

+ C2 R2
t
i(Y

t−1
i∗ − Xt−1

i ). (12)

The inertia weight ω is used to balance the local and global
search of the particles [8]. After calculating the velocity of
particle i, the position of particle i is updated in each iteration
as follows:

Xt
i = Xt−1

i + V t
i . (13)
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B. RDPSO Algorithm

According to [8] and the trajectory analysis provided in [13],
moving each particle toward its local focus improves the conver-
gence characteristics of the PSO algorithm. Based on this, Sun
et al. [8] modified the velocity equation of the PSO algorithm
such that the particles move toward their local focus, which is
calculated using [8]

Zt
i,j = ϕt

i,j Y t−1
i,j + (1 − ϕt

i,j ) Y t−1
i∗,j (14)

where j ϵ D and D = 1, 2, . . . , d. In (14), ϕt
i,j is calculated as

follows:

ϕt
i,j =

C1 Rt
1i,j

C1 Rt
1i,j + C2 Rt

2i,j

. (15)

The RDPSO is inspired by the model of a free electron mov-
ing in a metal conductor exposed to an electric field. According
to the free electron model [8], [14], in addition to the random
movement caused by the electron thermal motion, the electron
is also in a drift motion due to the electric field to which it is
exposed. Therefore, the movement of the electron is the super-
position of the thermal motion and the drift motion. Thereafter,
based on the free electron model, the velocity of the particles in
the RDPSO algorithm has two components. The first one rep-
resents the velocity of the thermal motion and is computed as
follows [8]:

V T t
i , j = α

∣∣Ct
j − Xt−1

i,j

∣∣ δt
i,j . (16)

In (16), the jth element of the mean best position at iteration
t (Ct

j ) is computed as follows:

Ct
j =

∑np

i=1 Y t−1
i,j

np
. (17)

The second component represents the velocity of the drift
motion and is computed as follows:

V Dt
i = β (Zt

i − Xt−1
i ). (18)

The effect of the drift velocity is to pull the solution toward
the local focus. Combining the two types of motion, the velocity
equation of the RDPSO algorithm can be expressed with

V t
i,j = α

∣∣Ct
j − Xt−1

i,j

∣∣ δt
i,j + β (Zt

i − Xt−1
i ). (19)

After calculating the velocity of each particle using (19), each
particle updates its position using (13).

IV. PROPOSED ALGORITHMS

The proposed improvement of the RDPSO and suggested
self-adaptive mechanism are presented in this section. The first
section discusses the modifications proposed to improve the
RDPSO algorithm, and the second section presents the proposed
self-adaption mechanism.

A. Improved RDPSO Algorithm

Two modifications are proposed to improve the RDPSO per-
formance. These two modifications significantly improve the
RDPSO algorithm performance as demonstrated in Section V
of this paper. The first modification is to add a crossover oper-
ation to the RDPSO algorithm. This modification enhances the

diversity of the population, and hence it improves the perfor-
mance of the algorithm. In the crossover operation, a mating
process is done between the new solution obtained by (13) and
the local best position to create a new trial vector, as described
by the following equation:

Xt
i,j (trial) =

{
Xt

i,j if rt
i,j < C

Y t−1
i,j otherwise

. (20)

After the crossover operation, a greedy selection process [15],
[16] is applied in which the local best position is replaced by
the trial vector if the latter has a lower fitness value.

Based on extensive experimentation with the RDPSO algo-
rithm, the authors observed that if the personal best is used
instead of the mean best position in (16), the minimum total
cost obtained over a certain number of runs will be improved.
Therefore, the second proposed modification is to replace the
mean best position in (16) with the local best position. Conse-
quently, the velocity of the thermal motion is computed in the
IRDPSO algorithm using

V T t
i , j = α (Y t−1

i,j − Xt−1
i,j ) δt

i,j . (21)

The velocity equation of the IRDPSO is now described as
follows:

V t
i,j = α (Y t−1

i,j − Xt−1
i,j ) δt

i,j + β (Zt
i − Xt−1

i ). (22)

Similar to the PSO and RDPSO algorithms, the IRDPSO al-
gorithm starts by initializing a population of particles. In this
population, each particle has a position Xi in a d-dimensional
space, and moves from one position to another with a veloc-
ity Vi . The position of each particle i at iteration t represents a
possible solution to the optimization problem under consider-
ation. In the first iteration, the local best Yi is set equal to the
initial population. In the subsequent iterations, the local best po-
sition is updated in a minimization problem using (10). During
evaluating the fitness function for each solution, the solution
that violates any of the constraints is penalized by assigning
it a remarkable high cost value. This strategy is used to guide
the algorithm toward the feasible solution region. The IRDPSO
algorithm can be summarized as follows:

The IRDPSO algorithm
1: Initialize the population of particles randomly
2: Set the local best equal to the current population
3: Evaluate the fitness function for the population and

determine the global best position
4: While stopping criteria is not met do
5: Calculate the local focus using (14) and (15)
6: Calculate the velocity of the particles using (22)
7: Calculate the new position of the particles using

(13)
8: Perform the crossover operation using (20)
9: Update the local best position using a greedy

selection
10: Update the global best position
11: End While
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B. Sensitivity Analysis and Parameters Selection for the
Self-Adaptive Mechanism

Before applying the IRDPSO for solving the ED problem,
the parameters of the IRDPSO algorithm have to be tuned. As a
solution for tuning the parameters of a metaheuristic technique,
chaotic sequences have been used in some previous publications,
such as in [17], to provide values for the algorithm parameters
during the search. Although the chaotic sequences slightly miti-
gate the dependence of the algorithm performance on the nature
of the problem considered and eliminate the need for manual
tuning of the algorithm, there is no learning process involved in
using chaotic sequences in order to improve or adapt the val-
ues of the algorithm parameters during the search. Therefore,
there are a lot of chances that the chaotic sequences fail to find
the suitable parameters setting during the search. Consequently,
chaotic sequences are not used in this paper to adapt the algo-
rithm parameters, and a different methodology that involves a
learning process is used for assigning values to the algorithm
parameters.

The IRDPSO algorithm has five parameters; the acceleration
coefficients C1 and C2 , the thermal coefficient, the drift coeffi-
cient, and the crossover probability. The algorithm performance
varies with the chosen parameters setting and the problem con-
sidered. A certain parameters setting can be used to provide sat-
isfactory results for a specific optimization problem. However,
if the problem has been changed, another parameters setting
may be required to provide satisfactory results. Allowing the
IRDPSO algorithm for tuning all its own five parameters in-
creases the problem dimension by five and reduces the IRDPSO
capability of finding the global optimal solution for the origi-
nal problem. On the other hand, if one or two parameters only
of the IRDPSO have been chosen to be self-adaptive, the self-
adaption capability of the algorithm will be weak, since there
are at least three other parameters requiring tuning based on
the optimization problem considered. Therefore, a compromise
solution is required. It is observed using extensive experimenta-
tion that, among the five parameters of the IRDPSO algorithm,
the crossover probability and the drift velocity coefficient be-
come less sensitive to the problem characteristics when assigned
specific values, and hence fixed values can be chosen for them.
A value of the drift coefficient equal to 1 has been found to
provide satisfactory results for all the considered case studies.
In addition to this, a crossover probability value of 0.6 provided
satisfactory results in all the case studies except in the case of
large-scale systems, such as 140-units system, in which a value
of 0.9 provided superior results. On the other hand, the thermal
coefficient and the acceleration coefficients have to be varied
from one problem to another in order to provide satisfactory re-
sults in all the case studies. Based on this, the IRDPSO algorithm
has been augmented with a self-adaptive mechanism, in which
the thermal coefficient and the acceleration coefficients have
been tuned by the IRDPSO itself. This is done by increasing
the problem dimension by three. Before starting the IRDPSO,
the three parameters are generated randomly and are used by
the algorithm in the first iteration. If the solution obtained by
the IRDPSO algorithm in a certain iteration is better than that
in the previous iteration, the parameters setting used to generate

TABLE I
LIST OF ACRONYMS FOR ALGORITHMS REPORTED IN THE PREVIOUS

LITERATURE

Method Acronyms

Simulated annealing SA ([18], [20])
Tabu search TS [18]
Particle swarm optimization PSO ([18], [20], [23])
Tabu search algorithm TSA [19]
Genetic algorithms GA [3]
Chaotic teaching-learning-based optimization with
Lévy flight

CTLBO [20]

Random drift particle swarm optimization RDPSO [8]
Chaotic bat algorithm CBA [21]
Conventional genetic algorithm with multiplier
updating

CGA-MU [22]

Improved genetic algorithm with multiplier updating IGA_MU [22]
Differential evolution DE [23]
Particle swarm optimization with local random search PSO-LRS [23]
Fuzzy adaptive particle swarm optimization FAPSO [24]
Improved differential evolution IDE [6]
Modified particle swarm optimization MPSO [5]
Self-tuning hybrid differential evolution ST-HDE [26]
Bat algorithm BA [27]
Particle swarm optimization technique with the
sequential quadratic programming

PSO–SQP [28]

Evolutionary programming with the sequential
quadratic programming (SQP)

EP–SQP [28]

Hybrid differential evolution and gravitational search
algorithm

DEGSA [29]

Root tree optimization RTO [30]
Teaching learning based optimization TLBO [31]
Group search optimizer GSO [32]
Immune algorithm for economic dispatch problem IA_EDP [33]
Chaotic particle swarm optimization CPSO [34]
Fuzzy adaptive chaotic ant swarm optimization
algorithm and the sequential quadratic programming

FCASO-SQP [35]

Tournament-based harmony search with tournament
size (t) equal to eight

THS (t = 8) [36]

Continuous greedy randomized adaptive search
procedure with a self-adaptive differential evolution
approach

C-GRASP–SaDE [37]

Grey wolf optimization GWO [38]
PSO augmented with chaotic sequences and
crossover operation

CCPSO [11]

PSO with a certain constraint treatment strategy CTPSO [11]
Continuous quick group search optimizer CQGSO [32]
Differential Evolution based on truncated Levy-type
flights

DEL [39]

Cuckoo search algorithm CSA [40]
Kinetic gas molecule optimization KGMO [41]
Synergic predator-prey optimization SPPO [42]

this better solution will remain the same in the next iteration,
otherwise, the parameters obtained by the IRDPSO algorithm
in the current iteration will replace the existing parameters in
the next iteration.

V. SIMULATION RESULTS

Five case studies, with one benchmark test system in each
case study, are presented for validating the performance of the
proposed algorithms. The benchmark systems are 6-units sys-
tem, 10-units system, 13-units system, 40-units system, and
140-units system. The performance of the IRDPSO and the ST-
IRDPSO algorithms have been compared with the performance
of several state of the art algorithms. Table I presents a list of
these algorithms and their respective acronyms. There are 36
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TABLE II
SIX GENERATORS TEST SYSTEM: STATISTICAL RESULTS OF PROPOSED

ALGORITHMS AND PREVIOUS LITERATURE

Method Minimum cost
($/h)

Average cost
($/h)

Average time per
run (s)

Standard
deviation

SA [18] 15461.10 15488.98 50.36 28.3678
TS [18] 15454.89 15472.56 20.55 13.7195
PSO [18] 15450.14 15465.83 6.82 10.1502
TSA [19] 15451.631 15462.263 5.98 18.09
GA [3] 15459 15469 41.58 0.057
CTLBO [20] 15,441.697∗ 15441.763 NA 0.0194
RDPSO [8] 15442.757∗ 15445.024 NA 2.28
CBA [21] 15,450.238 15,454.76 0.704 2.965
RDPSO 15449.89 15458.01 0.707 13.647
IRDPSO 15449.89 15456.55 0.676 10.9865
ST-IRDPSO 15449.89 15450.70 0.727 1.416

∗The computed total losses corresponding to the optimal generation values reported in [20]
and [8] do not obey (8).
NA: - Data are Not Available.

algorithms in Table I. The references for these algorithms are
also indicated in the same table.

The values of the parameters used for the original RDPSO
are the same as those reported in [8]. These values are C1 =
C2 = 2, drift coefficient β = 1.5, and the thermal coefficient
α decreases from 0.9 to 0.3 as the search progresses. For the
IRDPSO, the values of the parameters used with the RDPSO
have also been used except for β = 1. The crossover probability
in the IRDPSO is selected to be 0.6. For the ST-IRDPSO algo-
rithm, all the parameters are either self-tuned or fixed at specific
values, as explained in Section. IV-A, population size of 10 is
used in the RDPSO, IRDPSO, and ST-IRDPSO algorithms for
all the case studies. The statistical results are obtained using 100
runs in each case study. The MATLAB platform on a personal
computer with core i7 (2.4 GHz) processor and 8 GB of RAM
has been used for simulating all the case studies.

A. Case Study 1

Prohibited operating zones, ramp rate limits, and transmission
losses are considered in this case study. The used benchmark
system has six thermal units. The total system load is 1263 MW.
The cost coefficients, loss coefficients, and generator limits data
of this benchmark system are provided in [3]. The prohibited
operating zones and the ramp rate limits are also the same as
those defined in [3]. Total number of iterations is fixed to 1000.
The average time required by a single run of the ST-IRDPSO
algorithm is 727.5 × 10–3 s. Table II shows a comparison be-
tween the results obtained by the proposed algorithms and the
results obtained by other algorithms from previous literature.
Fig. 1 shows the convergence characteristics of the RDPSO,
IRDPSO, and ST-IRDPSO algorithms. The convergence char-
acteristics in Fig. 1 are recorded for the run where the minimum
cost value is obtained. From Fig. 1, it can be observed that the
three algorithms converged to the minimum cost in less than
200 iterations.

As noted in Table II, the IRDPSO and the ST-IRDPSO al-
gorithms have provided satisfactory results compared to the re-
sults in the previous literature. However, it should be noted that

Fig. 1. Convergence characteristics of the RDPSO, IRDPSO, and
St-IRDPSO algorithms (6-units system).

TABLE III
OUTPUT POWER OF SIX-GENERATOR TEST SYSTEM USING ST-IRDPSO

p1 P2 P3 P4 P5 P6

447.5131 173.2975 263.4668 139.0360 165.4843 87.16047

Total power (MW) 1275.958 Total losses (MW) 12.958
Power Mismatch (MW) –99.13 × 10–12 Total Cost ($/h) 15449.8945

ST-IRDPSO is the only algorithm that includes the self-tuning
capability. Excluding the average cost values of the CTLBO
[20] and RDPSO [8], the ST-IRDPSO has the lowest average
cost value with a low standard deviation value. The GA [3]
has a lower standard deviation value compared to that of the
ST-IRDPSO; however, this is not an advantage in the GA [3],
since the average cost value of the GA [3] is much higher than
the corresponding value of the ST-IRDPSO, which implies that
the GA has been trapped in a local minima during most of the
runs. The standard deviation value of the CTLBO [20] is lower
than that of the ST-IRDPSO, yet the optimal solution reported
in [20] does not satisfy (8). Based on the comparison in Table II,
it can be concluded that the ST-IRDPSO algorithm presented
the best performance followed by the IRDPSO and the CBA
[21] algorithms. The optimal solution obtained by the proposed
algorithms is shown in Table III. This solution achieves a power
mismatch equal to –99.13 × 10–12 MW.

B. Case Study 2

In this case study, the multiple fuel options and the valve
point effects are considered. The benchmark system used in this
case study has ten units. All the relevant data of this system are
available in [22]. The total system load is 2700 MW. The total
number of iterations is 5000. Table IV presents the minimum
cost value, average cost value, standard deviation, and aver-
age computational time per one run for the RDPSO, IRDPSO,
ST-IRDPSO, and other algorithms reported in the previous lit-
erature. The average time of a single run of the ST-IRDPSO is
0.845 s.

According to [2], the total computed cost values for the op-
timal solutions reported in [5] and [6] are examples of class
I inaccuracy. Excluding the results of MPSO [5] and IDE [6],
it can be observed from Table IV that the IRDPSO and the
ST-IRDPSO succeed to provide minimum and average cost val-
ues better than the RDPSO and many other algorithms proposed
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TABLE IV
TEN GENERATORS TEST SYSTEM: STATISTICAL RESULTS OF PROPOSED

ALGORITHMS AND PREVIOUS LITERATURE

Method Minimum cost
($/h)

Average cost
($/h)

Average time
per run (s)

Standard
deviation

CGA-MU [22] 624.7193 627.6087 26.64 NA
IGA_MU [22] 624.5178 625.8692 7.32 NA
DE [23] 624.5146 624.5246 2.8236 NA
PSO [23] 624.5074 624.5074 3.3852 NA
PSO-LRS [23] 624.2297 625.7887 NA NA
FAPSO [24] 624.2189 624.2782 5.9 NA
IDE [6]∗ 608.1227 608.2533 2.34 NA
MPSO [5]∗ 607.98 607.99 2.93 NA
RDPSO 623.915 623.989 0.842 0.0276
IRDPSO 623.83 623.838 0.846 0.00519
ST-IRDPSO 623.83 623.836 0.845 0.00529

∗The total computed cost values by the authors for the optimal solutions reported in [5] and
[6] are much higher than those reported in these references.
NA: - Data are Not Available.

Fig. 2. Convergence characteristics of the RDPSO, IRDPSO, and ST-
IRDPSO algorithms (10-units system).

in the previous literature. Table IV shows that the difference be-
tween the average cost value and the minimum cost value is
very small for the proposed algorithms. The standard devia-
tion values of the IRDPSO and ST-IRDPSO are lower than the
standard deviation value of the RDPSO. Fig. 2 depicts the con-
vergence characteristics of the proposed algorithms in addition
to the RDPSO algorithm. In this case study, the convergence
characteristics of the IRDPSO algorithm is better than that of
the ST-IRDPSO algorithm, whereas the IRDPSO algorithm con-
verged in less than 300 iterations, as shown in Fig. 2.

C. Case Study 3

In the third case study, the valve point effects are consid-
ered. The benchmark system considered in this case study has
13 units. The cost functions of all the units are nonconvex due
to the valve point effects. The cost function coefficients and
the generator limits are provided in [25]. The total system load
is 1800 MW. The total number of iterations in this case study
is 13 500. Table V provides a comparison between the results
obtained by the following algorithms: RDPSO, IRDPSO, ST-
IRDPSO, ST-HDE [26], BA [27] PSO–SQP [28], EP–SQP [28],
DEGSA [29], SA [20], PSO [20], CTLBO [20], and RTO [30].

The average computational time required by one run of the
ST-IRDPSO is 2.28 s. The best minimum cost and the best
average cost are obtained by the ST-IRDPSO algorithm followed

TABLE V
THIRTEEN GENERATORS TEST SYSTEM: STATISTICAL RESULTS OF

PROPOSED ALGORITHMS AND PREVIOUS LITERATURE

Method Minimum cost
($/h)

Average cost
($/h)

Average time per
run (s)

Standard
deviation

ST-HDE [26] 17,963.89 18,046.38 NA NA
BA [27] 17,963.83 18,085.06 NA NA
PSO–SQP [28] 17,969.93 18,029.99 33.97 NA
EP–SQP [28] 17,991.03 18,106.93 121.93 NA
DEGSA [29] 17963.83 17994.04 9.61 27.75
SA [20] 18048.17 18173.73 NA 81.2
PSO [20] 17975.65 18253.82 NA 179
CTLBO [20] 17972.81 18013.38 NA 43.2
RTO [30] 17969.802 18056.936 NA NA
RDPSO 17972.83 18039.24 2.25 52.34
IRDPSO 17965.848 17972.8090 2.26 0.8326
ST-IRDPSO 17963.83 17966.57 2.28 3.307

Fig. 3. Convergence characteristics of the RDPSO, IRDPSO, and ST-
IRDPSO algorithms (13-units system).

by the IRDPSO algorithm. The best standard deviation value is
obtained by the IRDPSO followed by the ST-IRDPSO. Both the
DEGSA [29] and the ST-IRDPSO provided the same minimum
cost value; however, the average cost and the standard deviation
values of the ST-IRDPSO are lower than those of the DEGSA
[29]. Table V shows also that the RDPSO and the IRDPSO
algorithms provide the lowest values with respect to the average
computational time per run. Fig. 3 displays the convergence
curves of the RDPSO, IRDPSO, and ST-IRDPSO algorithms.

D. Case Study 4

In this case study, a 40-units benchmark system is utilized.
The valve point effects are considered in all the units. The cost
function coefficients and the generator limits of this system can
be found in [25]. This problem is difficult to solve due to the ex-
istence of 40 nonconvex cost functions. Solving the ED problem
of this system may be more difficult than that of real systems in
which some generating units have valve point effects instead of
all the system units. Finding the global optimal solution of this
system consumed several years of research in which numerous
number of algorithms have been studied. Table VI provides a
comparison between the performance of the RDPSO, IRDPSO,
ST-IRDPSO, and other algorithms in the previous literature.

Among all the algorithms in Table VI, the results of the
ST-IRDPSO have the lowest average cost value and the low-
est standard deviation. The lowest minimum cost value has
also been provided by the ST-IRDPSO algorithm, as indicated
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TABLE VI
FORTY GENERATORS TEST SYSTEM: STATISTICAL RESULTS OF PROPOSED

ALGORITHMS AND PREVIOUS LITERATURE

Method Minimum cost
($/h)

Average cost
($/h)

Average time per
run (s)

Standard
deviation

TLBO [31] 129960 NA NA NA
GSO [32] 124265.4 124609.18 14.636 NA
IA_EDP [33] 121436.972 122492.701 1.092 182.527
CPSO [34] 121,865.23 122,100.87 114.65 NA
FCASO-SQP [35] 121,456.98 122,026.21 133.54 NA
BA [27] 121414.91 122094.67 NA NA
CTLBO [20] 121553.83 121790.23 NA 150
DEGSA [29] 121412.545 121625.74 40.095 155.93
THS (t = 8) [36] 121425.15 121528.65 NA NA
C-GRASP–SaDE [37] 121414.621 121736.025 NA 166.894
RDPSO 121722.03 121972.90 3.2898 243.798
IRDPSO 121506.040 121623.369 3.39 103.96
ST-IRDPSO 121412.535 121443.792 3.54 33.44

NA: - Data are Not Available.

Fig. 4. Convergence characteristics of the RDPSO, IRDPSO, and ST-
IRDPSO algorithms (40-units system).

in Table VI. The IA_EDP [33] provided the lowest average
computational time; however, the ST-IRDPSO algorithm pro-
vided lower minimum cost, average cost, and standard deviation
values compared to the ones obtained by the IA_EDP [33]. Fig. 4
presents the convergence curves of the RDPSO, IRDPSO, and
ST-IRDPSO. From Fig. 4, it can be observed that the IRDPSO
and ST-IRDPSO algorithms converged faster than the RDPSO
algorithm to the corresponding minimum cost values.

E. Case Study 5

A real large-scale system is utilized in this case study. This
system is the power system of Korea [11]. The system has
140 units. The total system load is 49 342 MW. In this system,
12 units have cost functions with valve point effects, and four
units have prohibited operating zones. The complete data of
this system are provided in [11]. Table VII shows a comparison
between the statistical results of the RDPSO, IRDPSO, ST-
IRDPSO, and 12 other algorithms presented in the previous
literature.

The best solution observed in the previous literature of this
system has a total generation cost equal to 1,559,953.18 $/h [38].
The optimal solution found by the RDPSO, IRDPSO, and ST-
IRDPSO has a total generation cost equal to 1,559,708.679 $/h.
Both the IRDPSO and the ST-IRDPSO have provided average
cost values lower than the ones of the other algorithms. The

TABLE VII
ONE FORTY KOREAN POWER SYSTEM: STATISTICAL RESULTS OF

PROPOSED ALGORITHMS AND PREVIOUS LITERATURE

Method Minimum cost
($/h)

Average cost
($/h)

Average time per
run (s)

Standard
deviation

GWO [38] 1,559,953.18 1,560,132.93 8.93 1.024
CCPSO [11] 1,657,962.73 1,657,962.73 150 0
CTPSO [11] 1,657,962.73 1,657,964.06 100 7.315
IDE [6] 1,564,648.66 1,564,663.54 27.88 NA
MPSO [5] 1,560,436 1,560,445 18.43 NA
GSO [32] 1,728,151.17 1,745,515.00 53.80 NA
CQGSO [32] 1,657,962.72 1,657,962.74 31.67 NA
DEL [39] 1,657,962.72 1,658,001.70 57.98 57.9836
CSA [40] 1,655,746.14 1,655,904.66 38.90 592.70
KGMO [41] 1,583,944.6 1,583,952.14 28.14 NA
C-GRASP–SaDE [37] 1,657,962.72 1,658,006.27 NA NA
SPPO [42] 1,655,680.0 1,657,265.04 NA 2872.80
RDPSO 1,559,708.679 1,559,775.46 5.986 105.294
IRDPSO 1,559,708.679 1,559,729.70 6.134 41.59
ST-IRDPSO 1,559,708.679 1,559,751.215 6.135 56.969

NA: - Data are Not Available.

Fig. 5. Convergence characteristics of the RDPSO, IRDPSO, and ST-
IRDPSO algorithms (140-units system).

lowest standard deviation value is obtained by GWO [38], but
the minimum and average cost values of the ST-IRDPSO and
the IRDPSO are lower than those of the GWO [38]. The total
number of iterations in one single run is 16 400. The average
computational time for a single run of the ST-IRDPSO algo-
rithm is 6.135 s. This time is much lower than the 5 min interval
between executing the economic dispatch in real systems [9],
[10]. Fig. 5 displays the convergence characteristics of the pro-
posed algorithms and the RDPSO algorithm. From Fig. 5, it
can be observed that the RDPSO and the IRDPSO converged
slightly faster than the ST-IRDPSO. Generally, Figs. 1–5 con-
firm that the number of iterations required by the IRDPSO and
ST-IRDPSO for convergence to the minimum cost value is com-
parable to that required by the original RDPSO algorithm, while
Tables II and IV–VII show that the IRDPSO and the ST-IRDPSO
have provided lower minimum cost, average cost, and standard
deviation values than those obtained by the RDPSO algorithm
and many state-of-the-art techniques presented in the previous
literature.

VI. DISCUSSION OF THE RESULTS AND FUTURE STUDIES

Studying the application of the RDPSO and the IRDPSO
algorithms for solving the ED problem of five benchmark
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systems showed that the average cost and standard deviation
values obtained from the IRDPSO are lower than those ob-
tained from the RDPSO algorithm in all the cases. In addition,
the minimum cost value obtained from the IRDPSO are lower
than the corresponding value obtained from the RDPSO algo-
rithm in all the cases except for the 6-units and 140-units system
in which both the algorithms provided the same minimum cost
value. These statistical results confirm the superiority obtained
from the proposed modifications to the RDPSO algorithm. From
Table VI, it can be observed that unsatisfactory results have been
obtained by the RDSPO algorithm and the IRDPSO algorithm
for the 40-units system due to the fact that the parameters setting
used by these algorithms is not optimized for this case study.
The same parameters setting have been used in all the case
studies. This parameters setting provided satisfactory results in
four case studies but failed to provide satisfactory results for
the 40-units system. This explains the importance of having a
self-tuning capability. The results obtained by the ST-IRDPSO
algorithm showed that the algorithm is capable of hitting the
global optimal or the best known solution of five benchmark
systems while enjoying the advantage of being a self-tunable
algorithm. Future research can be oriented to improve the av-
erage cost value and to reduce the simulation time further per
each run of the ST-IRDPSO algorithm.

VII. CONCLUSION

An improved version of the RDPSO algorithm is proposed in
this paper. The improvements proposed are to add a crossover
operation and to replace the mean best position with the personal
best position in the thermal velocity component. A self-tuning
mechanism is added to the IRDPSO algorithm to eliminate the
need for manually tuning the algorithm. To investigate the per-
formance of the proposed algorithms, i.e., IRDPSO and ST-
IRDPSO, five benchmark test systems have been utilized. Each
benchmark system has been chosen such that it has different
features, or different size compared to the other systems. The
last system is an example of a real large-scale system for which
the IRDPSO and the ST-IRDPSO provided the best minimum
and average cost values compared to the corresponding values
of previously proposed state-of-the-art techniques. The results
showed that the proposed modifications to the RDPSO algo-
rithm have significantly improved the algorithm performance in
terms of the minimum cost, average cost, and standard deviation
values. In addition, the self-tuning version of the algorithm was
capable of hitting the best known solution for each benchmark
considered.
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