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Highlights 

 The sine cosine acceleration coefficients (SCAC) as a new parameter adjustment strategy for the 

cognitive component 1c  and the social component 2c , respectively. 

 The opposition-based learning (OBL) is adopted to initialize population. 

 The sine map is utilized to adjust the inertia weight  . 

 Dynamic weight, acceleration coefficient and best-so-far position introduced to update the new 

position with original update formula. 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

A Hybrid Particle Swarm Optimizer with Sine Cosine 

Acceleration Coefficients 

Ke Chen  Fengyu Zhou*  Lei Yin  Shuqian Wang  Yugang Wang  Fang Wan 

(School of Control Science and Engineering, Shandong University, Jinan 250061, Shandong, PR China) 

*Corresponding author (Fengyu Zhou)  fyzhou_sdu@163.com 

Abstract: Particle swarm optimization (PSO) has been widely used to solve complex global optimization 

tasks due to its implementation simplicity and inexpensive computational overhead. However, PSO has 

premature convergence, is easily trapped in the local optimum solution and is ineffective in balancing 

exploration and exploitation, especially in complex multi-peak search functions. To overcome the 

shortcomings of PSO, a hybrid particle swarm optimizer with sine cosine acceleration coefficients 

(H-PSO-SCAC) is proposed to solve these problems. It is verified by the application of twelve numerical 

optimization problems. In H-PSO-SCAC, we make the following improvements: First, we introduce sine 

cosine acceleration coefficients (SCAC) to efficiently control the local search and convergence to the global 

optimum solution. Second, opposition-based learning (OBL) is adopted to initialize the population. 

Additionally, we utilize a sine map to adjust the inertia weight  . Finally, we propose a modified position 

update formula. Experimental results show that, in the majority of cases, the H-PSO-SCAC approach is 

capable of efficiently solving numerical optimization tasks and outperforms the existing similar 

population-based algorithms and PSO variants proposed in recent years. Therefore, the H-PSO-SCAC 

algorithm is successfully employed as a novel optimization strategy. 

Keywords: Particle swarm optimizer; Sine cosine acceleration coefficients; Opposition-based learning; Sine 

map 

1. Introduction 

With the increase in the level of industrialization and the development of artificial intelligence 

technology, stochastic optimization approaches [3, 11] have attracted the attention of technical staff and 

managers over the past two decades. Optimization refers to the process of searching all the reasonable 

solutions to determine the optimal solution based on the parameters of a given system to minimize or 

maximize its output [30]. Optimization tasks are frequently applied in many scientific fields such as 

engineering design [4], chemistry [14], economics [31], pattern recognition [40] and information theory [48]. 

In recent years, an increasing number of complex optimization problems have emerged. It is difficult to solve 

these problems by relying solely on traditional optimization algorithms. Therefore, it is necessary to propose 

new optimization algorithms. Inspired by the biological and physical phenomena of nature, researchers have 

proposed a series of intelligent algorithms. Particle swarm optimization (PSO) [23], biogeography-based 

optimization (BBO) [41], krill herd (KH) algorithm [15], ant colony optimization (ACO) [8], artificial bee 

colony (ABC) [24], gravitational search algorithm (GSA) [38] and sine cosine algorithm (SCA) [30] are all 

the well-known paradigms of these intelligence algorithms. These optimization approaches have been 

adopted by researchers to date and are well suited to solve optimization tasks within various fields such as 

function optimization [5], feature selection [13], electric transmission systems [18], network attacks [25] and 

artificial neural networks [26]. 

The particle swarm optimizer, inspired by the social behaviors of the individuals in flocks of birds, is a 

nature-inspired and swarm optimization algorithm. Similar to other meta-heuristic swarm intelligent 

algorithms, PSO begins with the random initialization of population positions in the search range. However, 
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unlike other population-based algorithms, PSO searches for an optimum solution by simply tuning its flying 

trajectory based on its own best location and its neighborhood’s best location at each period [6]. Because of 

its implementation simplicity and high efficiency, the PSO approach has become a widely accepted 

optimization method and has been successfully applied to many real-world optimization tasks [7, 9]. The 

particle swarm optimizer has the disadvantages of lacking diversity and premature convergence. To 

overcome these problems, variants of PSO have been proposed in the literature, such as orthogonal learning 

PSO (OLPSO) [49], comprehensive learning PSO (CLPSO) [27], levy flight PSO (LFPSO) [16], time 

varying acceleration coefficients PSO (TVACPSO) [19] and dynamic multi-swarm PSO (DMS-PSO) [50]. 

These modified PSO variants have improved search performances over the original PSO. To strengthen the 

global search performance of PSO and overcome the deficiency of premature convergence, we present a 

hybrid particle swarm optimizer with sine cosine acceleration coefficients (H-PSO-SCAC) utilizing a new 

optimization strategy. 

In this paper, we propose three modifications to the PSO approach: Initially, we introduce sine cosine 

acceleration coefficients to avoid premature convergence in the early part of the optimization process and to 

enhance convergence accuracy at the end of the search stage, which is called PSO-SCAC. The simulation 

results of twelve numerical functions (seven unimodal and five multimodal functions) show that the 

PSO-SCAC algorithm has better search accuracy and faster search speed than the PSO and PSO-TVAC 

methods. Additionally, we apply opposition-based learning (OBL) to initialize the population. Meanwhile, 

the sine map is used to adjust the inertia weight   and a new modified formula is proposed to update the 

next generation population position. These three modifications to PSO will be referred to as H-PSO. Finally, 

we combine H-PSO with SCAC as a new population search strategy for the PSO concept, which is called 

H-PSO-SCAC. Again, twelve numerical optimization problems are adopted to verify the performance of 

H-PSO-SCAC. We establish three group contrast experiments. First, we compare H-PSO-SCAC with H-PSO 

and the original PSO. Experimental results show that H-PSO-SCAC has better convergence accuracy and a 

stronger ability to escape local solutions than the original PSO for the majority of test functions, while the 

H-PSO-SCAC shows better search performance than H-PSO in the majority of cases. Second, the 

H-PSO-SCAC approach is compared with state-of-art optimization algorithms (ABC, KH, BBO, SCA and 

GSA). The simulation results show that the H-PSO-SCAC method provides better search results in almost all 

test functions and it is more stable as well. Third, the H-PSO-SCAC approach is compared with other PSO 

variants. The results indicate that the H-PSO-SCAC approach outperforms other PSO variants for the 

majority of numerical functions. In summary, through the above three experiments it can be seen that 

H-PSO-SCAC has shown a very high search performance on numerical optimization problems. Therefore, 

the H-PSO-SCAC algorithm should be employed as a novel optimization strategy. 

The remainder of this paper is organized as follows: Section 2 summarizes previous related works. In 

Section 3, we describe the proposed new algorithms (PSO-SCAC, H-PSO and H-PSO-SCAC) that have an 

extremely strong ability to escape the local optimal solution and have high convergence accuracy. Section 4 

describes experimental settings and simulation strategies for numerical function testing. The simulation 

results and discussions are shown in Section 5. Finally, the paper provides a summary and recommendations 

for future work in Section 6. 

2. Review of previous work 

2.1 Particle swarm optimizer 

Inspired by the social behaviors of the individuals in flocks of birds, PSO is a nature-inspired and global 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

optimization technique originally developed by Kennedy and Eberhart in the mid-1990s [23]. The PSO 

algorithm is becoming very popular due to its simplicity, efficiency and ability to quickly and reasonably 

converge on global optimum solutions. In the simulation, either the best global individual or the best local 

particle will influence the behavior of each particle in the population. In the original PSO algorithm, a 

particle represents a potential solution. 

When searching in the D-dimensional space, each particle i has a position vector ],,,[ 21 iDii xxx d
iX  

and a velocity vector ],,,[ 21 iDii vvv d
iV  to calculate its current state, where D is the dimensions of the 

solution space. Moreover, particle i will retain its personal previous best position vector 

],,,[ 21 D
iii pbestpbestpbest ipbest . The best position discovered by the entire population is denoted as 

][ 21 Dgbest,,gbest,gbest gbest . The position d
iX  and velocity d

iV  are initialized randomly and updates 

to the D-dimension of the i particle. The process are calculated as follows: 

 )()( 2211
d
i

dd
i

d
i

d
i

d
i XgbestrcXpbestrcVV   (1) 

 d
i

d
i

d
i VXX   (2) 

where 1c  and 2c  are the acceleration parameters which are set to 2.0 commonly and 1r  and 2r  are two 

uniform distributed values in the range [0,1]. 

The maxV  and minV  parameters may be set to the velocity values determined for each particle to 

control the velocity value within a reasonable range. In this study, maxV  and minV  are set to 20% of the 

upper and lower values. 

The procedure for implementing the PSO can be described briefly by the following steps: 

Step 1: Initialization. Initialize the population with random position in the search space and random 

velocity in the D-dimensional problem space. 

Step 2: Fitness evaluation. Evaluate the fitness value of each particle based on its position. 

Step 3: Compare each particle’s fitness value with the particle pbest . If the current fitness value is better 

than the particle pbest , then set the pbest  value equal to the current value and the pbest  location equal to 

the current location in the search space. 

Step 4: Compare the particle’s fitness with the previous gbest. If the current fitness value is better 

than gbest, then reset gbest to the current particle’s value. 

Step 5: Based on Eqs. (1) and (2), update the particle’s velocity and position, respectively. 

Step 6: Return to Step 2 until the maximum number of iterations is reached. The algorithm ends and 

outputs the optimal solution. 

2.2 Background 

Since being proposed by Kennedy et al. in 1995, the PSO algorithm has received a high level of 

attention [7, 49, 50]. One disadvantage of the PSO method is the risk of a premature search convergence. 

Many researchers contributed to the improvement of the PSO algorithm, thereby deriving many interesting 

PSO variants. After many numerical simulations, a linear decreasing inertia weight over the course of the 

search was proposed by Shi and Eberhart [42]. In the original PSO method, the linear decreasing inertia 

weight is added in Eq. (1) to avoid premature convergence. The modified velocity update mechanism is as 

follows: 

 )()( 2211
d
i

dd
i

d
i

d
i

d
i XgbestrcXpbestrcVV   (3) 

 )( minmax

max

max  
M

M j
 (4) 

where jM  and maxM  are the current iteration and the maximum iteration, respectively, and max  and 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

min , defined by the user, are the initial and final weights, respectively. Through empirical studies, Shi and 

Eberhart have obtained the range of   as [0.4, 0.9]. 

Clerc and Kennedy [6] proposed a constriction factor to control or tune the flying velocity. This 

modification can be represented as follows: 

 )]()([ 2211
d
i

dd
i

d
i

d
i

d
i XgbestrcXpbestrcVV    (5) 

where 

 




42

2

2 


 (6) 

 21 cc   (7) 

Generally, PSO improvement has primarily the following two aspects: First, improving PSO’s 

performance by combining it with other search approaches. Evolutionary operators such as mutation, 

crossover and selection have been introduced to PSO to enhance its capacity to escape the local optimal 

values [12], to increase the diversity of its population and to retain the global best particles [1], respectively. 

Mutation operators are also used to mitigate the premature convergence problem [34]. In Ref. [47], a 

cooperative approach to particle swarm optimization called CPSO-Sk was proposed and the CPSO-Hk 

method, combining the original PSO with the CPSO-Sk algorithms, was shown to offer a significant 

improvement over the original PSO. Inspired by natural evolution, some researchers have introduced 

speciation [37] and niche approaches [43] into the standard PSO to avoid swarms lacking diversity and to 

locate as many optimal values as possible. Second, topological structures of the PSO have been widely 

researched and different types of topologies have been proposed. In Ref. [44], a neighborhood operator was 

proposed, where the neighborhood of a particle gradually increases until it includes the entire swarm. Liu et 

al. [28] introduced differential evolution to PSO and proposed a hybrid method called PSO-DE. Based on 

grouping and reorganization techniques, Zhao and Suganthan [50] proposed dynamic multi-swarm PSO with 

harmony search to improve PSO’s ability to avoid local optima. To overcome premature convergence, Peram 

et al. [35] developed the fitness-distance-ratio based PSO called FDR-PSO. Mendes et al. [32] proposed a 

fully informed PSO. The cluster centers are calculated in Ref. [29] to replace the personal best position, its 

neighbor’s best position, or both. 

3. Proposed new developments 

Although the PSO algorithm is very robust, straightforward and efficient, when compared with other 

population-based methods, its ability to fine-tune solutions and escape from local optimal are weakened, 

primarily due to the lack of diversity of its search process [32-39]. Based on an in-depth study of the PSO 

algorithm, we propose three modified PSO algorithms to enhance its performance. The details are as follows: 

3.1 Sine cosine acceleration coefficients (SCAC) 

In PSO, 1c  and 2c  are called the cognitive component and the social component, respectively. They 

are the stochastic acceleration coefficients responsible for modifying the particle velocity side with pbest  

and gbest. Therefore, these two components are very important for obtaining the optimal solution rapidly 

and accurately. 

In Ref. [46], research indicates that when the cognitive component value is greater than the social 

component value, it will result in excessive wandering of particles in the search space. In contrast, a 

relatively high value of social component, compared with the cognitive component, will lead individuals to 

escape from the global optimal prematurely. In addition, Kennedy and Eberhart suggested setting the 
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cognitive component and the social component values to two to make the mean of both stochastic factors in 

Eq. (1) equal, so that particles would over fly only half the time of the search. In Ref. [44], Suganthan found 

that the values of the acceleration coefficients change over time. 

Generally, in an evolutionary metaheuristic algorithm, it is desirable that the individuals of populations 

wander through the entire search space. During the early stage of the optimization process, the global search 

capability should be enhanced in the search space. Conversely, during the latter stage of the optimization 

process, the convergence capability toward the global optima should be enhanced around the entire search 

space. 

Based on the above analysis, Ratnaveera et al. [39] proposed time-varying acceleration coefficients 

(TVAC) to balance the early stage’s global search and the latter stage’s global converge abilities effectively. 

When the cognitive component is reduced, the social component will increase. The 1c  and 2c  will be 

changed over time. PSO based on time-varying acceleration coefficients is called PSO-TVAC. In this 

algorithm, the time-varying acceleration coefficients can be represented mathematically as follows: 

   i

j

if c
M

M
ccc 1

max

111   (5) 

 

   i

j

if c
M

M
ccc 2

max

222   (6) 

where fc1 , ic1 , fc2  and ic2  are constants and jM  and maxM  are the current iteration and maximum 

iteration, respectively. Through simulation experiments, Ratnaveera et al. found that the best range of values 

for 1c  is between 2.5 and 0.5 and for 2c  is between 0.5 and 2.5. 

Considering those concerns, in this paper, we propose sine cosine acceleration coefficients (SCAC) as a 

new parameter adjustment strategy for the cognitive and social components. Compared with the TVAC, the 

SCAC can better balance the early stage’s global search and the latter stage’s global convergence. In SCAC, 

the range of 1c  is between 2.5 and 0.5 and the range of 2c  is between 0.5 and 2.5. This sine cosine 

acceleration coefficients improved PSO is called PSO-SCAC. The results of comparing PSO-SCAC with 

PSO and PSO-TVAC will be presented and discussed in Section 5. The SCAC’s trend is shown in Fig. 1. 

0.5
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Fig. 1 Sine cosine acceleration coefficients (SCAC) 

This modification is described mathematically as follows: 
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 (7) 

 
p






























2
1cos

max

2
M

M
c

j
 (8) 

where   and   are constant ( 2 , 5.0 ). 

3.2 A hybrid particle swarm optimizer (H-PSO) 

The crucial advantage of the PSO algorithm is its simplicity and effectiveness, which makes it easy to 

implement and lends itself to parallel computation. However, PSO could reach premature convergence and is 

easily trapped in local optimal solutions. Therefore, a hybrid particle swarm optimizer called H-PSO is 

proposed to enhance the optimization performance of the original PSO. In the H-PSO method, there are three 

major modifications, which are expressed in detail as follows: 

First, opposition-based learning (OBL) [2] is adopted to initialize the population of the PSO algorithm. 

We know that the initial population of the PSO method is generated randomly, which may affect the 

convergence speed and the precision of the final solution. In the absence of any prior knowledge, we use the 

opposition-based learning instead of the random initial population position as the new initial population 

strategy. It can increase the opportunities of reaching the global optimal solution by fifty percent. In addition, 

using the OBL as the initial population strategy can not only improve the quality of the initial solution but 

also accelerate the global convergence rate. Based on the above analysis, in this paper, we use the OBL to 

initialize the population. The initialization process is as follows ( D  denotes the feasible dimension, NP  

represents the number in the population and M  is the current number of iterations): 

ⅰ. Random initial population     ;,,2,1,,,2,10 DjNPixMP ij    

ⅱ. The reverse population    ijxMP '0'   is calculated based on Eq. (9); 

 ijjjij xxxx  min,max,'  (9) 

where jxmax,  and jxmin,  are the population position ix  at j-dimension’s max value and min value, 

respectively. 

ⅲ. Select the smaller half of the fitness values from the combined population     0'0  MPMP  

as the initial position of the population. 

Second, the sine map [33] is used to adjust the inertia weights   of the PSO method during the search 

process. We know from Trelea [46] and Clerc’s [6] studies that the parameter   is an important factor that 

affects the original PSO algorithm’s global convergence. In addition, the PSO’s population diversity 

maintenance is lower, causing premature convergence. The sine map has the properties of ergodicity, 

non-repetition and irregularity. These behaviors can be analyzed based on the attractor theory and the 

meaning of the Lyapunov exponents [45]. The sine map used in the PSO method not only can enhance 

population diversity in the search process but can also strengthen the ability to converge at the global optimal. 

Therefore, this paper introduces the sine map to tune the inertia weight  . The range of the sine map is [0,1]. 

Mathematically, the inertia weight   is given as follows: 

 max1 ,,2,1,40,)1,0()sin(
4

Mkcxx
c

x kkk  p  (10) 

where k  is the current iteration number. 

Third, a modified position update formula is proposed. It is common knowledge that the abilities of 

exploration and exploitation contradict. Therefore, to achieving better optimization performance, we must 

balance the exploration and exploitation abilities effectively. As seen from Eq. (2), the new position obtained 
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depends primarily on two factors: the previous position d
iX  and the velocity d

iV . To further improve the 

performances of PSO, we propose three major changes by introducing dynamic weight, acceleration 

coefficient and best-so-far position to update the new position with these two factors. The search form of the 

improved PSO, described in Eq. (11), can successfully balance the exploration and exploitation abilities. The 

operational process can be modified as follows: 

   d
ij

d
iij

d
i

d
i gbestwVwXX '  (11) 

where ijw  and 'ijw  are the dynamic weights that control the influence of the previous solution d
iX  and 

the velocity d
iV , respectively; dgbest  is current optimal position that can accelerate the convergence 

speed;   is the acceleration coefficient that determines the maximum step size and   is a random number 

between 0 and 1. 

In this paper, dynamic weight and the acceleration coefficient are defined as functions of fitness in the 

PSO search process. The parameters ijw , ijw'  and   are defined as follows: 

 iterij
ujf

ujf
w

)/)(exp(1

)/)(exp(


  (12) 

 ijij ww 1'  (13) 

where u  is the mean fitness value in the first iteration, iter  is the current iteration and )( jf  is the fitness 

of the jth particle. 

3.3 A hybrid particle swarm optimizer with sine cosine acceleration coefficients (H-PSO-SCAC) 

The PSO algorithm is considered to be a very useful technique in many engineering applications. The 

essential advantages of the PSO method are that it is easy, simple and can be implemented in any working 

environment. In recent years, many successive PSO variants have been presented. However, PSO’s 

deficiencies of premature convergence, lack of diversity and being easily trapped in a local optimal solution 

still exist. To overcome these shortcomings, in this paper, we propose a new population search strategy in 

which the hybrid particle swarm optimizer (H-PSO) and sine cosine acceleration coefficients (SCAC) are 

incorporated into the PSO concept. Hereafter, this will be referred to as the H-PSO-SCAC algorithm. 

Simulations are performed with classical benchmark functions (seven unimodal and five multimodal 

problems) to verify the search performance of the H-PSO-SCAC algorithm.  

4. Experimental settings and simulation strategies for numerical function testing 

4.1 Numerical functions 

We choose seven unimodal and five multimodal functions to verify the performance of the proposed 

methods. In addition, based on their properties, these numerical functions are divided into two groups: 

unimodal problems and multimodal problems. The equations and properties of these benchmark functions 

are listed below. 

Group A: Unimodal problems: 

1) Sphere function 

 



n

i

ixxf
1

2
1 )(


 (14) 

where nx ]100,100[ . 

2) Schwefel 2.22 function 

 



n

i

i

n

i

i xxxf

11

2 ||||)(


 (15) 
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where  nx 10,10 . 

3) Schwefel 1.2 function 

 

2

1 1

3 )(  
 
















n

i

i

j

jxxf


 (16) 

where nx ]100,100[ . 

4) Schwefel 2.21 function 

 }1,{max)(4 nixxf i
i




 (17) 

where nx ]100,100[ . 

5) Rosenbrock’s function 

 




 
1

1

222
15 ])1()(100[)(

n

i

iii xxxxf


 (18) 

where nx ]30,30[ . 

6) Step function 

 



n

i

ixxf
1

2
6 ])5.0([)(


 (19) 

where nx ]100,100[ . 

7) Noise function 

 )1,0[)(
1

4
7 randomixxf

n

i

i 



 (20) 

where nx ]28.1,28.1[ . 

In this group, among the seven benchmark functions, 1f  is the sphere function and is easily solved, its 

optimum location is [0]
n
, global optima is 0 and n  denotes its solution space dimension. 2f , 3f  and 4f  

are the Schwefel functions, their optimum locations are [0]
n
 and their global optima are 0. The fifth problem 

( 5f ) is the Rosenbrock function, which may be regarded as a unimodal or multimodal numerical function. It 

has a narrow gap between the perceived local optima and the global optimum; its optimum location is [1]
n
 

and its global optima is 0. 6f  is the step function, its optimum location is [1]
n
 and its global optima is 0. The 

seventh problem ( 7f ) is the noise function. Because there is a perturbation factor (random), it is difficult to 

find the global optimal value, but its optimum location is [1]
n
 and its global optima is 0. Through the seven 

unimodal problems, we can verify the convergence accuracy and convergence speed of the algorithm. 

Group B: Multimodal problems: 

8) Rastrigin’s function 

 



n

i

ii xxxf
1

2
8 )10)2cos(10()( p


 (21) 

where nx ]12.5,12.5[ . 

9) Ackley’s function 
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x
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1
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2.0exp(20)(
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

 (22) 

where nx ]32,32[ . 

10) Griewank’s function 
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where nx ]600,600[ . 

11) Penalized1 function 

 









n

i

ini

n

i

i xuyyyy
n

xf
1

2
1

2
1

1

2
111 )4,100,10,(})1()](sin101[)1()sin(10{)( pp

p
 (24) 

where 
4

1
1


 i

i

x
y ; 

















axaxk

axa

axaxk

mkaxu

i
m

i

i

i
m

i

i

,)(

,0

,)(

),,,( , nx ]50,50[ . 

12) Penalized2 function 
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In this group, there are five multimodal benchmark functions. Rastrigin’s function ( 8f ) has a significant 

number of local optima. Hence, a method capable of maintaining larger diversity will likely yield better 

performance. Ackley’s function ( 9f ) has a narrow global basin and a large number of local optima. 

Griewank’s function ( 10f ) has a component that causes linkage among the dimensions; therefore, it will be 

difficult to reach the global optimum. The penalized functions ( 11f and 12f ) are continuous, but they have 

many minor local optima, thereby making it difficult to determine the global optimum. Through the five 

multimodal problems, we can verify the ability to escape from the local optimum solution of the algorithm. 

4.2 Experimental setting 

In this subsection, to verify the performance of the proposed algorithms, the twelve previously 

mentioned well-known benchmark functions are adopted. A detailed description of the functions was 

provided in subsection 4.1. The appropriate constraint handling strategies must be chosen to address the 

constraint problem. Therefore, this paper adopted penalty-based mechanisms in its proposed algorithms [20]. 

In subsection 4.1, n denotes the dimension. The global optimal positions of Rosenbrock’s function ( 5f ) and 

Step’s function ( 6f ) are [1]
n
 and [-0.5]

n
, respectively. The global optimal position of the other ten numerical 

functions is [0]
n
. All benchmarks’ theoretical optimal values are 0. To obtain an unbiased comparison of CPU 

times, all the simulation experiments are performed using the same PC, whose configuration is shown in 

Table 1. 

Table 1 The PC Configuration 

Name  Detailed settings 

Hardware   

CPU  Intel core i5 2410M 

Frequency  2.3 GHz 

RAM  6 GB 

Hard drive  500 GB 

Software   

Operating system  Windows 7 (64Bit) 

Language  MATLAB R2014a 

4.3 Simulation strategies 
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Simulation experiments are performed to observe the quality of the global optimum solution and the 

rate of convergence of the new algorithms proposed in this investigation in comparison with PSO-TVAC, 

other well-known evolutionary methods and some state-of-the-art PSO variants. The classical benchmark 

functions listed in subsection 4.1 were each tested, with dimensions of 10, 30 and 50. For each optimization 

function, 20 trials were executed and the mean optimal values and the standard deviations (S.D.) are 

presented. 

In this paper, all empirical experiments were conducted with a population size of 40 and the maximum 

number of cycle was set to 1000 for all functions. The control parameters of PSO can be obtained from Ref. 

[21]. In addition, the use of different criteria for different classical benchmark functions is as reported in Ref. 

[29]. However, all test functions have the global optimum solution of zero. Therefore, for benchmark 

numerical functions, the maximum number of cycles is established as the stopping criteria. 

Furthermore, to determine whether the results obtained by H-PSO-SCAC are significantly different 

from the results generated by other methods, the nonparametric Wilcoxon rank-sum tests are executed to 

compare the results of the H-PSO-SCAC and the best result achieved by the other algorithms for each 

numerical function. The k values presented in column 3 of Tables 3 and 5 are the results of the t-tests. A k 

value of one indicates that the performances of the two algorithms are significantly different with 95% 

certainty, whereas a k value of zero implies that the performances are not significantly different. 

5. Results and discussion 

In this section, four groups of simulation experiments are performed to verify the search performance of 

the H-PSO-SCAC method; the specific steps are described below. In all tables, the best mean of objective 

values and the best standard deviations of the benchmark numerical functions obtained by the algorithms are 

shown in bold font. 

5.1 Results and comparison of PSO, PSO-TVAC and PSO-SCAC 

In this subsection, a series of experiments are presented to show the effectiveness of the sine cosine 

acceleration coefficients (SCAC). Table 2 shows the execution time (E.T.), the mean results (mean) and the 

standard deviations (S.D.) of the PSO, PSO-TVAC and PSO-SCAC algorithms. Here, the E.T. represents a 

single run CPU time. Figs. 2 through 5 show the convergence graphs of the PSO, PSO-TVAC and 

PSO-SCAC algorithms, respectively. 

As seen in Table 2, the solutions of the PSO-SCAC algorithm are better than the PSO and PSO-TVAC 

algorithms for the majority of functions. For unimodal functions, the PSO-SCAC algorithm has provided 

better solutions in five functions ( 3f , 4f , 5f , 6f  and 7f ), except for 3f , 4f , 5f  and 7f  under 

Dim=10. In two unimodal functions, the PSO-SCAC could not determine a better solution than the 

PSO-TVAC algorithm. For multimodal functions, the PSO-SCAC method has determined better solutions for 

all functions ( 8f , 9f , 10f , 11f  and 12f ) except for 8f  and 11f  under Dim=10. In addition, when 

comparing the execution times of the three algorithms, we can clearly see that the PSO-SCAC algorithm’s 

execution time is the shortest for all functions, except for 1f  under Dim=10. Until now, there has been no 

clear theory to explain the use of the sine cosine acceleration coefficients to replace the determinate or 

time-varying acceleration coefficients to shorten the execution time of PSO algorithms. However, empirical 

studies indicate that the SCAC strategy can effectively reduce the computational complexity of the PSO 

algorithm. 

Figs. 2 through 5 show the convergence graphs obtained from the PSO, PSO-TVAC and PSO-SCAC 

algorithms on the four functions ( 3f , 4f , 5f  and 11f ), respectively. The values shown in these figures are 
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the average function optimum achieved from 20 independent experiments. From Fig. 2, PSO demonstrates 

better search performance than PSO-TVAC and PSO-SCAC. From Figs. 3 through 5, it can clearly be seen 

that the PSO-SCAC algorithm has better search accuracy and faster search speed than the PSO and 

PSO-TVAC methods. 

Table 2 The means and standard deviations of the PSO-TVAC and PSO-SCAC algorithms 

Function Dim 
PSO  PSO-TVAC  PSO-SCAC 

E.T. Mean S.D.  E.T. Mean S.D.  E.T. Mean S.D. 

1f  

10 0.8736 6.2012×10
-10

 6.6764×10
-10

  0.9906 3.0884×10
-10

 7.5950×10
-10

  0.9828 5.7862×10
-10

 6.6427×10
-10

 

30 1.2792 3.7623×10
-2

 1.3915×10
-2

  1.0764 2.2187×10
-2

 8.9205×10
-3

  1.0682 2.5089×10
-2

 8.1843×10
-3

 

50 1.3962 3.8913 7.3184×10
-1

  1.2090 2.8482 8.1405×10
-1

  1.1462 3.2666 9.6701×10
-1

 

2f  

10 3.0962 2.1333×10
-6

 2.0538×10
-6

  2.7144 1.8667×10
-6

 2.2492×10
-6

  2.5974 2.8053×10
-6

 3.1126×10
-6

 

30 7.2229 6.0732×10
-2

 1.1693×10
-2

  6.2167 4.3466×10
-2

 9.2468×10
-3

  6.1181 5.0465×10
-2

 1.3160×10
-2

 

50 11.1931 9.9744×10
-1

 1.4371×10
-1

  9.9295 7.5040×10
-1

 9.8186×10
-2

  9.8606 8.2716×10-1 1.1160×10
-1

 

3f  

10 3.0030 1.3354×10
-5

 1.6915×10
-5

  2.6520 1.8693×10
-5

 1.6221×10
-5

  2.5846 1.9090×10
-5

 1.5921×10
-5

 

30 7.0903 1.1100×10
2
 4.4931×10

1
  6.4819 6.5456×10

1
 3.3255×10

1
  6.3726 6.4956×10

1
 4.2330×10

1
 

50 11.2399 3.2106×10
3
 9.3806×10

2
  10.6471 1.8610×10

3
 5.8595×10

2
  10.1243 1.6190×10

3
 4.0804×10

2
 

4f  

10 1.3104 2.2019×10
-3

 1.6108×10
-3

  1.2714 3.2268×10
-3

 2.2714×10
-3

  1.1310 3.3616×10
-3

 1.5392×10
-3

 

30 2.3010 1.4001 2.7135×10
-1

  2.0202 1.1493 3.1791×10
-1

  1.9422 1.1216 1.7280×10
-1

 

50 3.1668 5.6272 9.8911×10
-1

  2.8938 4.7231 6.2060×10
-1

  2.6704 4.4259 5.7418×10
-1

 

5f  

10 4.3993 6.4367×10
-2

 7.0667×10
-2

  4.1731 7.2022×10
-1

 9.4804×10
-1

  4.1340 5.0957×10
-1

 1.6571 

30 11.8171 1.2644×10
2
 1.0648×10

2
  10.8265 8.4452×10

1
 4.7906×10

1
  10.7484 7.4741×10

1
 3.7777×101 

50 19.3441 4.3369×10
2
 3.1511×10

2
  18.0805 3.9111×10

2
 2.3500×10

2
  17.9389 3.3778×10

2
 1.3772×10

2
 

6f  

10 1.4664 1.9100×10
-1

 4.6294×10
-1

  1.1856 0 0  1.1700 0 0 

30 2.4258 8.5892×10
1
 3.4675×10

1
  2.0358 5.0000×10

-2
 2.2361×10

-1
  2.0114 0 0 

50 3.3696 4.5276×10
2
 3.7128×10

2
  2.9094 9.7000 2.1300  2.8684 8.8500 2.4339 

7f  

10 1.5678 3.4692×10
-24

 9.1195×10
-24

  1.3338 6.7229×10
-24

 5.9271×10
-24

  1.2246 5.2791×10
-24

 7.3635×10
-24

 

30 3.0108 7.3742×10
-10

 5.6203×10
-10

  2.2776 4.5803×10
-10

 2.8601×10
-10

  2.3322 3.6569×10
-10

 4.5774×10
-10

 

50 3.7908 4.3871×10
-6

 1.8612×10
-6

  3.2994 1.5456×10
-6

 7.0869×10
-7

  3.2292 1.1550×10
-6

 1.1525×10
-6

 

8f  

10 1.5600 9.0701×10
-9

 1.7324×10
-8

  1.3260 1.2834×10
-8

 2.8206×10
-8

  1.3160 1.0068×10
-8

 1.2980×10
-8

 

30 2.5272 1.1057×10
1
 2.7928  2.1840 6.9225 3.1842  2.1431 6.6399 3.5115 

50 3.6036 5.7297×10
1
 1.0915×10

1
  2.9952 4.1930×10

1
 7.9372  2.9576 4.1136×10

1
 7.5375 

9f  

10 1.3182 1.2703×10
-5

 9.4013×10
-6

  1.1310 6.3111×10
-6

 3.8228×10
-6

  1.1266 5.5721×10
-6

 5.9647×10
-6

 

30 2.3556 5.9541×10
-2

 1.6829×10
-2

  2.0514 5.4995×10
-2

 1.4605×10
-2

  1.9968 5.1284×10
-2

 1.3995×10
-2

 

50 3.4242 1.2146 3.5069×10
-1

  2.6832 9.3199×10
-1

 2.7019×10
-1

  2.6288 9.1323×10
-1

 3.9277×10
-1

 

10f  

10 1.3338 6.1674×10
-2

 2.7533×10
-2

  1.2168 6.1248×10
-2

 2.5476×10
-2

  1.1324 5.2034×10
-2

 2.2568×10
-2

 

30 2.6676 9.7200×10
-2

 4.2895×10
-2

  2.1528 8.2009×10
-2

 4.2321×10
-2

  2.1386 8.1617×10
-2

 3.8191×10
-2

 

50 3.8610 1.0200 3.8234×10
-2

  3.4086 9.5009×10
-1

 6.3260×10
-2

  3.2526 9.1036×10
-1

 4.5923×10
-2

 

11f  

10 2.5662 1.4684×10
-12

 2.4656×10
-12

  2.1918 6.6249×10
-12

 2.1086×10
-11

  2.0202 1.4186×10
-11

 3.6858×10
-11

 

30 5.5225 1.2987×10
-4

 8.0601×10
-5

  4.3681 8.3463×10
-5

 3.4879×10
-5

  4.2836 8.1684×10
-5

 6.6072×10
-5

 

50 8.8765 1.6937×10
-1

 3.2479×10
-1

  6.7549 4.3259×10
-2

 6.4539×10
-2

  6.6328 2.7655×10
-2

 3.3493×10
-2

 

12f  

10 2.5506 3.3318×10
-11

 5.9596×10
-11

  2.0403 1.9870×10
-11

 3.7747×10
-11

  2.0124 1.8355×10
-11

 2.4450×0
-11

 

30 5.2807 3.1048×10
-3

 2.9633×10
-3

  4.1185 1.8911×10
-3

 2.5093×10
-3

  4.0730 1.8264×10
-3

 9.8421×10
-4

 

50 8.2681 5.6246×10
-1

 1.6653×10
-1

  6.5443 3.5507×10
-1

 1.5311×10
-1

  6.3570 3.0765×10
-1

 8.8580×10
-2

 

E.T.: Execution time; Mean: mean of objective values; S.D.: standard deviation. 
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Fig. 2 Comparison of performances of three algorithms for minimization of 3f  with Dim = 10 
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Fig. 3 Comparison of performances of three algorithms for minimization of 4f  with Dim = 50 
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Fig. 4 Comparison of performances of three algorithms for minimization of 5f  with Dim = 30 
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Fig. 5 Comparison of performances of three algorithms for minimization of 11f  with Dim = 50 
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As seen from Table 2 and Figs. 2 through 5, although PSO-SCAC could not find better solutions than 

the PSO and PSO-TVAC algorithms for a few functions, the PSO-SCAC algorithm could have a better 

search accuracy and faster convergence speed than the PSO and PSO-TVAC technology for the majority of 

functions. Therefore, the proposed SCAC as a new parameter automation strategy is successful for the PSO 

algorithm. 

5.2 Experimental results and comparison of PSO, H-PSO and H-PSO-SCAC 

In this subsection, a series of experiments are implemented to show the superiority of the H-PSO-SCAC 

algorithm in escaping local optimal, convergence speed and search global optimal over H-PSO and the 

original PSO method. Table 3 shows the convergence iterations, the mean results and the standard deviations 

of the PSO, H-PSO and H-PSO-SCAC algorithms. Figs. 6 through 11 show the convergence curves of the 

PSO, H-PSO and H-PSO-SCAC algorithms. 

Group A (unimodal functions): For the seven unimodal functions, the results show that the 

H-PSO-SCAC algorithm outperforms the H-PSO and the traditional PSO methods. As seen from Table 3, the 

H-PSO-SCAC method is superior to the PSO algorithm on all unimodal functions ( 1f , 2f , 3f , 4f , 5f , 

6f  and 7f ), except for function 5f  under Dim=10. In addition, the H-PSO-SCAC algorithm is superior to 

H-PSO on functions 1f , 2f , 3f , 4f , 5f , 6f  and 7f , except for function 2f  under Dim=30 and 

functions 3f , 5f  and 7f  under Dim=10. The H-PSO-SCAC algorithm located the global optimal 

solutions on two functions ( 4f  and 6f ), except for function 4f  under Dim=10 and Dim=30. For five 

functions ( 1f , 2f , 3f , 4f  and 7f ), except for functions 2f  and 4f  under Dim=30, the H-PSO-SCAC 

algorithm could achieve solutions quite close to the global optimal. However, in only one function ( 5f ) the 

H-PSO-SCAC algorithm could not locate superior values within the specified maximum number of iterations. 

Moreover, analysis of the number of convergence iterations indicates that the H-PSO-SCAC method has 

faster global convergence for the majority of the unimodal functions. 

The plots in Figs. 6 through 8 show the convergence curves of the mean of best function values during 

the 20 executions for functions 3f , 6f  and 7f , respectively. It is apparent that the H-PSO-SCAC 

algorithm performs better than the H-PSO method and the traditional PSO in terms of global convergence, 

escaping from local optimum values and final search solutions. It can be observed from the figures that 

H-PSO-SCAC with SCAC and H-PSO converge considerably faster than the H-PSO and traditional PSO 

algorithms. 

Group B (multimodal functions): The opposition-based learning (OBL), sine map, modified position 

update formula and SCAC strategy are added to the PSO algorithm, which can provide abilities to search, 

preserve and utilize useful information from the learning exemplars. It is expected that the H-PSO-SCAC 

algorithm can enhance search performance and avoid being trapped in local optimal solutions on multimodal 

functions. The experimental results of the five multimodal functions ( 8f , 9f , 10f , 11f  and 12f ) are given 

in Table 3. H-PSO-SCAC surpasses PSO on three functions ( 8f , 9f  and 10f ), achieves the global optimal 

solution on the 8f  and 10f  functions and provides solutions quite close to the global optimal value in the 

9f  function. However, for two multimodal functions ( 11f  and 12f ) the H-PSO-SCAC algorithm could not 

locate better values than PSO under the specified maximum number of iterations. The search performance of 

the H-PSO-SCAC algorithm is slightly better than H-PSO. In summary, it is shown that the H-PSO-SCAC 

algorithm is much more effective and robust for multimodal optimization problems. 

The convergence of the PSO, H-PSO and H-PSO-SCAC algorithms optimizing the multimodal 

functions 8f , 10f  and 12f , are plotted in Figs. 9 through 11, respectively. From Fig. 9, it can be observed 

that the H-PSO-SCAC has better performance for convergence speed and search accuracy than the other two 
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methods. From Fig. 10, it can be seen that H-PSO-SCAC has the best performance in this benchmark 

function, very similar to the 8f  function shown in Fig. 9. From Fig. 11, the H-PSO-SCAC algorithm shows 

lower search accuracy than the PSO method, but the H-PSO-SCAC algorithm has the fastest initial 

convergence speed. 

Table 3 The solution accuracy (convergence iterations, means and standard deviations) of the function values 

Function Dim k 
PSO  H-PSO  H-PSO-SCAC 

C.I. Mean S.D.  C.I. Mean S.D.  C.I. Mean S.D. 

1f  

10 1 1000 6.2012×10
-10

 6.6764×10
-10

  339 4.8578×10
-198

 0  648 1.1602×10
-254

 0 

30 1 1000 3.7623×10
-2

 1.3915×10
-2

  643 4.7212×10
-109

 2.1114×10
-108

  686 3.8701×10
-120

 1.6838×10
-119

 

50 1 999 3.8913 7.3184×10
-1

  697 4.1197×10
-85

 1.8424×10
-84

  969 5.9074×10
-99

 2.6419×10
-98

 

2f  

10 1 1000 2.1333×10
-6

 2.0538×10
-6

  795 1.0746×10
-112

 4.8058×10
-112

  998 6.3050×10
-152

 2.8201×10
-151

 

30 0 1000 6.0732×10
-2

 1.1693×10
-2

  997 7.7567×10
-60

 3.4639×10
-59

  972 6.5128×10
-55

 2.9126×10
-54

 

50 1 1000 9.9744×10
-1

 1.4371×10
-1

  1000 3.1426×10
-43

 1.4054×10
-42

  861 1.2217×10
-54

 5.3981×10
-54

 

3f  

10 0 1000 1.3354×10
-5

 1.6915×10
-5

  850 9.0942×10
-261

 0  443 4.8132×10
-209

 0 

30 1 1000 1.1100×10
2
 4.4931×10

1
  926 2.6831×10

-113
 1.1999×10

-112
  1000 7.2841×10

-117
 3.2575×10

-116
 

50 1 1000 3.2106×10
3
 9.3806×10

2
  798 1.0608×10

-70
 4.7442×10

-70
  656 1.0190×10

-71
 4.5572×10

-71
 

4f  

10 1 1000 2.2019×10
-3

 1.6108×10
-3

  715 1.0093×10
-145

 4.5138×10
-145

  917 6.5368×10
-165

 0 

30 1 1000 1.4001 2.7135×10
-1

  830 5.2121×10
-81

 2.3309×10
-80

  316 2.1974×10
-105

 9.8269×10
-105

 

50 1 1000 5.6272 9.8911×10
-1

  875 3.1305×10
-68

 1.4000×10
-67

  242 0 0 

5f  

10 1 1000 6.4367×10
-2

 7.0667×10
-2

  1000 8.3245 2.5188×10
-1

  993 8.4405 1.9672×10
-1

 

30 1 1000 1.2644×10
2
 1.0648×10

2
  1000 2.8585×10

1
 1.5425×10

-1
  1000 2.3598×10

1
 1.5131×10

-1
 

50 1 1000 4.3369×10
2
 3.1511×10

2
  998 4.8693×10

1
 2.3883×10

-1
  999 4.8608×10

1
 1.5154×10

-1
 

6f  

10 0 1000 1.9100×10
-1

 4.6294×10
-1

  8 0 0  6 0 0 

30 0 1000 8.5892×10
1
 3.4675×10

1
  9 0 0  10 0 0 

50 0 1000 4.5276×10
2
 3.7128×10

2
  10 0 0  9 0 0 

7f  

10 0 1000 3.4692×10
-24

 9.1195×10
-24

  284 0 0  375 5.7180×10
-298

 0 

30 1 1000 7.3742×10
-10

 5.6203×10
-10

  943 1.3760×10
-184

 0  844 3.9422×10
-237

 0 

50 1 1000 4.3871×10
-6

 1.8612×10
-6

  600 1.1154×10
-132

 4.9880×10
-132

  912 8.8460×10
-176

 0 

8f  

10 0 1000 9.0701×10
-9

 1.7324×10
-8

  21 0 0  23 0 0 

30 0 999 1.1057×10
1
 2.7928  22 0 0  21 0 0 

50 0 1000 5.7297×10
1
 1.0915×10

1
  22 0 0  28 0 0 

9f  

10 0 1000 1.2703×10
-5

 9.4013×10
-6

  33 8.8818×10
-16

 0  36 8.8818×10
-16

 0 

30 0 999 5.9541×10
-2

 1.6829×10
-2

  37 8.8818×10
-16

 0  28 8.8818×10
-16

 0 

50 0 1000 1.2146 3.5069×10
-1

  54 8.8818×10
-16

 0  71 8.8818×10
-16

 0 

10f  

10 0 1000 6.1674×10
-2

 2.7533×10
-2

  21 0 0  17 0 0 

30 0 1000 9.7200×10
-2

 4.2895×10
-2

  24 0 0  23 0 0 

50 0 1000 1.0200 3.8234×10
-2

  34 0 0  21 0 0 

11f  

10 0 1000 1.4684×10
-12

 2.4656×10
-12

  996 4.1352×10
-2

 3.1200×10
-2

  991 5.1324×10
-2

 4.7964×10
-2

 

30 0 1000 1.2987×10
-4

 8.0601×10
-5

  999 4.3793×10
-1

 1.7885×10
-1

  1000 4.1109×10
-1

 1.3677×10
-1

 

50 1 1000 1.6937×10
-1

 3.2479×10
-1

  998 7.4533×10
-1

 2.6976×10
-1

  998 9.0511×10
-1

 2.2607×10
-1

 

12f  

10 0 1000 3.3318×10
-11

 5.9596×10
-11

  999 4.2521×10
-1

 1.6747×10
-1

  982 5.0929×10
-1

 1.4419×10
-1

 

30 1 999 3.1048×10
-3

 2.9633×10
-3

  992 2.3142 3.1010×10
-1

  1000 2.3184 2.4370×10
-1

 

50 1 1000 5.6246×10
-1

 1.6653×10
-1

  991 4.2424 2.3087×10
-1

  999 4.4189 2.6983×10
-1

 

C.I.: convergence iteration; Mean: mean of objective values; S.D.: standard deviation. 
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Fig. 6 Comparison of performances of three algorithms for minimization of 3f  with Dim = 30 
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Fig. 7 Comparison of performances of three algorithms for minimization of 6f  with Dim = 10 
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Fig. 8 Comparison of performances of three algorithms for minimization of 7f  with Dim = 50 
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Fig. 9 Comparison of performances of three algorithms for minimization of 8f  with Dim = 30 
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Fig. 10 Comparison of performances of three algorithms for minimization of 10f  with Dim = 10 
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Fig. 11 Comparison of performances of three algorithms for minimization of 12f  with Dim = 50 
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Through the above analysis, we can see that H-PSO-SCAC has better search performance and stronger 

ability to escape from a local optimum solution than PSO and H-PSO. Furthermore, based on the results of 

the t-tests, these results are different from the second best results. Therefore, the H-PSO-SCAC algorithm 

shows a very high efficiency on numerical optimization problems. 

5.3 Results and comparison of H-PSO-SCAC and other similar algorithms 

In this subsection, the H-PSO-SCAC algorithm is compared with the other optimization methods that 

have been proposed in recent years. Artificial bee colony (ABC), krill herd (KH) algorithm, 

biogeography-based optimization (BBO), sine cosine algorithm (SCA) and gravitational search algorithm 

(GSA) are compared with the proposed method. The parameter settings of the experiments for the six 

algorithms are shown in Table 4. Table 5 shows the mean results and the standard deviations of the ABC, KH, 

BBO, SCA, GSA and H-PSO-SCAC algorithms. Figs. 12 through 17 show the convergence curves of ABC, 

KH, BBO, SCA, GSA and H-PSO-SCAC algorithms, respectively. 

Group A (unimodal functions): From Table 5, the H-PSO-SCAC algorithm performs better than the 

other methods on all unimodal functions ( 1f , 2f , 3f , 4f , 5f , 6f  and 7f ) when searching for global 

optimal solutions, except for function 5f  under Dim=10 and Dim=30. The ABC algorithm is the second 

most effective and is superior on function 5f  under Dim=10 and Dim=30. KH and BBO failed to acquire 

the best solution for any unimodal function. The SCA algorithm obtains better values for four functions ( 1f , 

2f , 3f  and 4f ) under Dim=10. GSA yields better results for only three functions ( 1f , 2f  and 6f ), 

except for function 2f  under Dim=50. 

Furthermore, the optimization processes of three unimodal functions ( 1f , 5f  and 7f ) of the six 

algorithms are given in Figs. 12 through 14, respectively. The values shown in these figures are the average 

numerical function optimum achieved from 20 executions. Fig. 12 presents the results obtained from six 

algorithms on the 1f  function, showing that the H-PSO-SCAC algorithm’s performance is superior to the 

other five methods in the optimization process and shows better convergence accuracy and stronger ability to 

escape the local optimal. Fig. 13 shows the optimization results for the 5f  function. For this optimization 

problem, the figure shows that KH, SCA, GSA and BBO fail to determine a better solution. In addition, the 

ABC method shows higher convergence accuracy than the other five algorithms while H-PSO-SCAC shows 

faster convergence initially toward the global optimum. Fig. 14 shows the optimization values for the 7f  

function, showing that H-PSO-SCAC apparently overtakes all other algorithms. 

Group B (multimodal functions): Table 5 shows that, on average, the H-PSO-SCAC method performs 

better than the other five approaches on three multimodal functions ( 8f , 9f  and 10f ) when searching for 

the function minimum. ABC is the second most effective, performing better on function 11f  under Dim=30 

and Dim =50 and function 12f  under Dim=50. GSA is the third most effective, performing better on 

function 11f  under Dim=10 and function 12f  under Dim=10 and Dim=30. 

In addition, the convergence processes of three multimodal functions ( 8f , 9f  and 11f ) of the six 

approaches are given in Figs. 15 through 17, respectively. Fig. 15 shows the results obtained by the six 

algorithms on the 8f  function, which is a multimodal function and has many minor local optima. The 

H-PSO-SCAC approach could determine the theoretical global optima values. Fig. 16 illustrates the function 

values for the 9f  function, which is a difficult multimodal function. The figure shows that ABC, KH, BBO, 

SCA and GSA fail to locate better values in this multimodal function, while H-PSO-SCAC shows higher 

convergence accuracy and faster convergence speed than other approaches. Fig. 17 shows the optimization 

results for the 11f  function. We observe that the H-PSO-SCAC algorithm fails to provide better results than 

the ABC and BBO approaches in this multimodal function, but H-PSO-SCAC shows faster convergence 
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speed than the other five methods. 

In summary, as seen from Table 5 and Figs. 12 through 17, the proposed H-PSO-SCAC algorithm 

shows stable search ability and better convergence accuracy than ABC, KH, BBO, SCA and GSA. Moreover, 

from the results in Table 5, it can be observed that the H-PSO-SCAC algorithm is significantly better than 

the other similar algorithms (except the 11f  and 12f  functions) for the 10, 30 and 50 dimension functions. 

This shows that the difference between the two methods is statistically significant. Therefore, it is concluded 

that the H-PSO-SCAC technique has much better search performance. 

Table 4 Parameters settings of the six algorithms 

Algorithm Population Maximum 

iterations 

The dim of 

each object 

other 

ABC 40 1000 10,30,50 Limit=200 

KH 40 1000 10,30,50 
maxN =0.01, fV =0.02,

maxD =0.005 

BBO 40 1000 10,30,50 Mu=0.005, 8.0  

SCA 40 1000 10,30,50 1r , 2r , 3r  and 4r  are random numbers 

GSA 40 1000 10,30,50 20,1000  G  

    

)sin(
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H-PSO-SCAC 40 1000 10,30,50 
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Table 5 The means and standard deviations of the function values 

Function Dim k 

ABC  KH  BBO  SCA  GSA  H-PSO-SCAC 

Mean S.D.  Mean S.D.  Mean S.D.  Mean S.D.  Mean S.D.  Mean S.D. 

1f  

10 1 1.0074×10
-16

 4.0454×10
-17

  6.3350×10
-4

 4.3871×10
-4

  4.1840×10
-2

 4.0736×10
-2

  2.7766×10
-28

 7.7425×10
-28

  2.6425×10
-18

 1.1316×10
-18

  1.1602×10
-254

 0 

30 1 4.4121×10
-11

 3.3956×10
-11

  1.7515×10
-1

 8.0244×10
-2

  1.5575 9.8810×10
-1

  2.8447×10
-3

 6.9847×10
-3

  4.5361×10
-17

 1.1024×10
-17

  3.8701×10
-120

 1.6838×10
-119

 

50 1 5.6261×10
-6

 1.0666×10
-5

  8.8152×10
-1

 2.6916×10
-1

  1.2591×10
1
 1.3988×10

1
  6.8699×10

1
 1.5411×10

2
  1.5252×10

-16
 3.4254×10

-17
  5.9074×10

-99
 2.6419×10

-98
 

2f  

10 1 3.8012×10
-16

 8.9453×10
-17

  1.0635×10
-3

 1.2820×10
-3

  2.6189×10
-2

 2.0588×10
-2

  4.6684×10
-20

 1.4159×10
-19

  4.5847×10
-9

 9.2715×10
-10

  6.3050×10
-152

 2.8201×10
-151

 

30 1 1.1187×10
-6

 5.0686×10
-7

  1.7345 1.2677  2.7942×10
-1

 9.6707×10
-2

  2.2332×10
-5

 4.7211×10
-5

  3.1787×10
-8

 6.8259×10
-9

  6.5128×10
-55

 2.9126×10
-54

 

50 1 1.5813×10
-3

 5.6842×10
-4

  7.2739 2.4338  9.6060×10
-1

 1.5441×10
-1

  1.3187×10
-2

 3.0370×10
-2

  2.1349×10
-1

 6.7125×10
-1

  1.2217×10
-54

 5.3981×10
-54

 

3f  

10 1 5.3796×10
1
 5.0998×10

1
  8.3246×10

-1
 6.0828×10

-1
  1.4984×10

2
 8.3144×10

1
  6.7510×10

-10
 2.9805×10

-9
  6.2148×10

-6
 2.7794×10

-5
  4.8132×10

-209
 0 

30 1 1.3553×10
4
 2.0534×10

3
  1.6941×10

2
 5.6875×10

1
  5.4877×10

3
 1.8226×10

3
  2.1156×10

3
 1.7034×10

3
  3.1879×10

2
 1.1418×10

2
  7.2841×10

-117
 3.2575×10

-116
 

50 1 4.3035×10
4
 5.7221×10

3
  9.1266×10

2
 2.8919×10

2
  1.9154×104 5.2972×10

3
  3.0406×10

4
 1.0254×10

4
  1.3608×10

3
 4.3799×10

2
  1.0190×10

-71
 4.5572×10

-71
 

4f  

10 1 1.9133×10
-1

 1.2633×10
-1

  1.8890×10
-3

 3.3112×10
-3

  6.8782×10
-1

 1.9982×10
-1

  3.9559×10
-9

 1.1015×10
-8

  1.1167×10
-9

 2.1695×10
-10

  6.5368×10
-165

 0 

30 1 2.6374×10
1
 4.2246  5.2557 2.1108  1.3774×10

1
 4.0268  1.8041×10

1
 1.1969×10

1
  9.2726×10

-2
 1.8637×10

-1
  2.1974×10

-105
 9.8269×10

-105
 

50 1 5.4737×10
1
 5.9766  8.8888 1.4942  2.8006×10

1
 4.2939  6.0838×10

1
 1.0391×10

1
  5.6302 1.4417  0 0 

5f  

10 1 4.2952×10
-1

 4.7747×10
-1

  1.1687×10
1
 1.4494×10

1
  1.1667×10

2
 2.5166×10

2
  7.1143 2.5489×10

-1
  5.4964 1.4103×10

-1
  8.4405 1.9672×10

-1
 

30 1 1.7817 1.7514  8.3563×10
1
 7.9227×10

1
  4.0012×10

2
 2.1139×10

2
  1.6101×10

2
 2.6356×10

2
  26.1027 2.0043×10

-1
  2.3598×10

1
 1.5131×10

-1
 

50 0 5.2165×10
1
 3.6609×10

1
  2.2123×10

2
 1.7400×10

2
  1.3330×10

3
 6.8799×10

2
  3.9556×10

5
 7.7043×10

5
  6.9783×10

1
 4.5043×10

1
  4.8608×10

1
 1.5154×10

-1
 

6f  

10 1 1.1051×10
-16

 5.2204×10
-17

  5.0660×10
4
 3.9406×10

-4
  2.6853×10

-2
 2.3240×10

-2
  3.4748×10

-1
 1.4054×10

-1
  2.6455×10

-18
 9.3311×10

-19
  0 0 

30 1 2.9057×10
-6

 2.3541×10
-6

  1.5101×10
-1

 7.5573×10
-2

  2.4474 1.7506  4.4271 3.5361×10
-1

  4.0717×10
-17

 1.8505×10
-17

  0 0 

50 1 7.7934×10
-6

 1.3149×10
-5

  7.2039×10
-1

 2.5614×10
-1

  7.6833 3.1716  6.5902×10
1
 8.3698×10

1
  1.5413×10

-16
 4.6369×10

-17
  0 0 

7f  

10 1 2.0416×10
-2

 6.8095×10
-3

  5.4603×10
-3

 3.4462×10
-3

  2.0563×10
-3

 3.9514×10
-3

  1.2432×10
-3

 1.2880×10
-3

  6.2395×10
-3

 2.9730×10
-3

  5.7180×10
-298

 0 

30 1 2.6315×10
-1

 8.2781×10
-2

  5.9401×10
-2

 1.4211×10
-2

  6.4414×10
-2

 2.8352×10
-2

  2.9719×10
-2

 3.8158×10
-2

  3.5543×10
-2

 1.6153×10
-2

  3.9422×10
-237

 0 

50 1 7.4393×10
-1

 1.2342×10
-1

  1.7846×10
-1

 3.7119×10
-2

  3.4708×10
-1

 1.2105×10
-1

  5.1277×10
-1

 6.2515×10
-1

  2.4089×10
-1

 1.8334×10
-1

  8.8460×10
-176

 0 
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8f  

10 0 0 0  4.2784 2.6834  1.0160×10
2
 1.0671  2.1132×10

-9
 9.4505×10

-9
  4.6266 1.7762  0 0 

30 1 5.1774×10
-1

 5.2577×10
-1

  1.3903×10
1
 9.2451  3.1610×10

2
 2.8203  1.2694×10

1
 2.0337×10

1
  2.1939×10

1
 6.8209  0 0 

50 1 7.4448 1.9741  1.9278×10
1
 7.0329  5.3442×10

2
 5.9494  7.2273×10

1
 5.6043×10

1
  4.9897×10

1
 1.4556×10

1
  0 0 

9f  

10 1 9.4147×10
-15

 2.4178×10
-15

  76439×10
-1

 1.1537  9.1512×10
-2

 7.0473×10
-2

  7.6383×10
-15

 1.3536×10
-14

  2.1734×10
-9

 4.5479×10
-10

  8.8818×10
-16

 0 

30 1 1.7954×10
-5

 9.9576×10
-6

  5.0605 1.4602  5.5717×10
-1

 3.8137×10
-1

  1.0522×10
1
 9.9199  5.0216×10

-9
 6.3922×10

-10
  8.8818×10

-16
 0 

50 1 2.3159×10
-2

 1.5955×10
-2

  6.3114 1.4692  1.7222 3.3743×10
-1

  1.8624×10
1
 4.7575  7.7005×10

-9
 1.1419×10

-9
  8.8818×10

-16
 0 

10f  

10 1 5.4361×10
-3

 7.6647×10
-3

  1.0903×10
-1

 5.4585×10
-2

  1.0458×10
-1

 4.2481×10
-2

  6.2383×10
-2

 1.5073×10
-1

  3.6415×10
-2

 6.2606×10
-2

  0 0 

30 1 2.6519×10
-3

 8.8454×10
-3

  9.0618×10
-2

 2.8149×10
-2

  2.8142×10
-1

 2.0290×10
-1

  1.8881×10
-1

 2.4642×10
-1

  5.6433 2.2134  0 0 

50 1 7.8661×10
-3

 1.1275×10
-2

  1.9390×10
-1

 4.7779×10
-2

  1.0998 8.8204×10
-2

  1.5218 1.2624  2.3163×10
1
 5.1719  0 0 

11f  

10 1 1.0166×10
-16

 3.8798×10
-17

  1.0249 1.1035  2.2001×10
-3

 4.8006×10
-3

  7.2370×10
-2

 3.7025×10
-2

  5.3512×10
-20

 2.0415×10
-20

  5.1324×10
-2

 4.7964×10
-2

 

30 1 2.9534×10
-12

 4.7247×10
-12

  3.7028 1.7669  2.7006×10
-2

 3.3983×10
-2

  9.4187×10
-1

 7.3544×10
-1

  3.5602×10
-2

 7.3620×10
-2

  4.1109×10
-1

 1.3677×10
-1

 

50 1 4.2356×10
-7

 4.7965×10
-7

  4.1634 8.9551×10
-1

  1.3797×10
-1

 1.5682×10
-1

  1.3555×10
6
 2.9909×10

6
  9.6896×10

-1
 5.1461×10

-1
  9.0511×10

-1
 2.2607×10

-1
 

12f  

10 1 1.8502×10
-9

 3.3634×10
-9

  7.0992×10
-6

 8.5244×10
-6

  6.6163×10
-3

 6.9851×10
-3

  2.3513×10
-1

 6.3064×10
-2

  1.2148×10
-32

 1.4556×10
-32

  5.0929×10
-1

 1.4419×10
-1

 

30 1 2.7256×10
-8

 2.9729×10
-8

  2.1867×10
-4

 4.2770×10
-4

  1.4260×10
-1

 7.4042×10
-2

  3.5488 1.9763  9.1240×10
-32

 1.4357×10
-31

  2.3184 2.4370×10
-1

 

50 1 5.2223×10
-6

 5.5914×10
-6

  2.2187×10
-1

 3.3949×10
-1

  7.7534×10
-1

 3.2384×10
-1

  3.1732×10
6
 5.6513×10

6
  6.9656×10

-2
 2.1491×10

-1
  4.4189 2.6983×10

-1
 

Mean: mean of objective values; S.D.: standard deviation. 
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Fig. 12 Comparison of performances of six algorithms for minimization of 1f  with Dim = 10 
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Fig. 13 Comparison of performances of six algorithms for minimization of 5f  with Dim = 30 
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Fig. 14 Comparison of performances of six algorithms for minimization of 7f  with Dim = 50 
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Fig. 15 Comparison of performances of six algorithms for minimization of 8f  with Dim = 30 
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Fig. 16 Comparison of performances of six algorithms for minimization of 9f  with Dim = 10 
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Fig. 17 Comparison of performances of six algorithms for minimization of 11f  with Dim = 50 
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5.4 Results and comparisons of H-PSO-SCAC and PSO variants 

In this subsection, the H-PSO-SCAC method is compared with other PSO variants, namely, GPSO, 

LPSO, SPSO-40, FIPSO, HPSO-TVAC, DMS-PSO, CLPSO, OPSO, OLPSO-G, ELPSO and LFPSO. The 

parameter settings in the experiments for the twelve algorithms are shown in Table 6. The results of the 

PSO variants algorithms in Table 7 are received from [49] and [16], while the results of ELPSO were 

obtained by experiments. The functions used to compare the approaches are four unimodal numerical 

functions ( 1f , 2f , 5f , and 7f ) and five multimodal numerical functions ( 8f , 9f ,  10f , 11f  and 12f ) 

described in subsection 4.1. The dimension of the nine test functions is 30. The best results among the 

twelve algorithms are shown in bold font. 

From Table 7, it can be observed that the H-PSO-SCAC method achieves the best solution on the 

majority of the numerical functions. The CLPSO approach appears successful at unimodal numerical 

function 5f  and the OLPSO-G and LFPSO algorithms perform best on 11f and 12f , respectively. The 

remaining nine algorithms (GPSO, LPSO, SPSO-40, FIPS, HPSO-TVAC, DMS-PSO, OPSO, OLPSO-G 

and ELPSO) fail to determine better solutions than LFPSO, OLPSO-G and H-PSO-SCAC. Overall, 

H-PSO-SCAC performs best on 1f , 2f , 7f , 8f , 9f  and 10f . In the unimodal functions, 

H-PSO-SCAC is shown to offer superior performance among all the PSO variants, except CLPSO on the 

5f  function. In the multimodal functions, H-PSO-SCAC generally outperforms all other PSO variants on 

three functions ( 8f , 9f  and 10f ). 

Furthermore, Table 7 ranks the algorithms’ performance in terms of their mean solution accuracy. It 

can be observed from the final ranking that H-PSO-SCAC offers the best overall performance, followed by 

LFPSO, OLPSO-G, HPSO-TVAC, GPSO, CLPSO, SPSO-40, ELPSO, OPSO, DMS-PSO, FIPS and 

LPSO. 

Through analysis, the following conclusions can be drawn: Compared with 11 other algorithms, the 

H-PSO-SCAC approach can effectively increase the diversity of the search process and the chance of 

finding the global solution. Thus, H-PSO-SCAC can avoid premature convergence and being trapped in 

the local optimum. In summary, H-PSO-SCAC can be considered a very efficient optimization algorithm. 

Table 6 PSO algorithms for comparison 

Algorithms Population size Dim Parameter settings Reference 

GPSO 40 30  : 0.9~0.4, 21 cc  =2.0, maxV =0.2×Range [42] 

LPSO 40 30  :0.9~0.4, 21 cc  =2.0, maxV =0.2×Range [10] 

SPSO-40 40 30  =0.721, 21 cc  =1.193, K =3, without maxV  [36] 

FIPS 40 30  =0.729, ic =4.1, maxV =0.5×Range [32] 

HPSO-TVAC 40 30  :0.9~0.4, 1c :2.5~0.5, 2c : 0.5~2.5, maxV =0.5×Range [39] 

DMS-PSO 40 30  : 0.9~0.2, 21 cc  =2.0, m =3, R =5, maxV =0.2×Range [50] 

CLPSO 40 30  : 0.9~0.4, c =1.49445, m =7, maxV =0.2×Range [27] 

OPSO 40 30  : 0.9~0.4, 21 cc  =2.0, maxV =0.5×Range [17] 

OLPSO-G 40 30  : 0.9~0.4, c =2.0, G =5, maxV =0.2×Range [49] 

LFPSO 40 30  : 1.0~0.0, 21 cc  =2.0, maxV =0.2×Range [16] 

ELPSO 40 30  :1.0~0.0, 21 cc  =2.0, maxV =0.2×Range [22] 

H-PSO-SCAC 40 30  : 1.0~0.0, 1c :2.5~0.5, 2c : 0.5~2.5, maxV =0.2×Range -- 
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Table 7 The means and standard deviations of the function values 

f  Criteria GPSO LPSO SPSO-40 FIPS HPSO-TVAC DMS-PSO CLPSO OPSO OLPSO-G LFPSO ELPSO H-PSO-SCAC 

1f  

Mean 2.05×10-32 3.34×10-14 2.29×10-96 2.42×10-13 2.83×10-33 2.65×10-31 1.58×10-12 6.45×10-18 4.12×10-54 4.69×10-31 4.25×10-10 3.87×10-120 

S.D. 3.56×10-32 5.39×10-14 9.48×10-96 1.73×10-13 3.19×10-33 6.25×10-31 7.70×10-13 4.64×10-18 6.34×10-54 2.50×10-30 1.64×10-10 1.68×10-119 

Rank 5 9 2 10 4 6 11 8 3 7 12 1 

2f  

Mean 1.49×10-21 1.70×10-10 1.74×10-53 2.76×10-8 9.03×10-20 1.57×10-18 2.51×10-8 1.26×10-10 9.85×10-30 2.64×10-17 3.59×10-9 6.51×10-55 

S.D. 3.60×10-21 1.39×10-10 1.58×10-53 9.04×10-9 9.58×10-20 3.79×10-18 5.84×10-9 5.58×10-11 1.01×10-29 6.92×10-17 1.78×10-9 2.91×10-54 

Rank 4 9 2 12 5 6 11 8 3 7 10 1 

5f  

Mean 4.07×101 2.81×101 1.35×101 2.51×101 2.39×101 4.16×101 3.82×10-4 4.96×101 2.15×101 2.38×101 7.23×100 2.36×101 

S.D. 3.22×101 2.18×101 1.46×101 5.10×10-1 2.65×101 3.03×101 1.28×10-7 3.65×101 2.99×101 3.17×10-1 2.94×100 1.51×10-1 

Rank 10 9 3 8 7 11 1 12 4 6 2 5 

7f  

Mean 9.32×10-3 2.28×10-2 4.02×10-3 4.24×10-3 9.82×10-2 1.45×10-2 5.85×10-3 5.50×10-2 1.16×10-2 2.41×10-3 4.03×10-5 3.94×10-237 

S.D. 2.39×10-3 5.60×10-3 1.66×10-3 1.28×10-3 3.26×10-2 5.05×10-3 1.11×10-3 1.70×10-3 4.10×10-3 8.07×10-4 6.83×10-5 0 

Rank 7 10 4 5 12 9 6 11 8 3 2 1 

8f  

Mean 2.60×101 3.51×101 4.10×101 6.51×101 9.43×100 2.72×101 9.09×10-5 6.97×100 1.07×100 4.54×100 5.63×100 0 

S.D. 7.27×100 6.89×100 1.11×101 1.34×101 3.48×100 6.02×100 1.25×10-4 3.07×100 9.90×10-1 1.03×101 4.87×100 0 

Rank 8 10 11 12 7 9 2 6 3 4 5 1 

9f  

Mean 1.31×10-14 8.20×10-8 3.73×10-2 2.33×10-7 7.29×10-14 1.84×10-14 3.66×10-7 6.23×10-9 7.98×10-15 1.68×10-14 1.96×10-1 8.88×10-16 

S.D. 2.08×10-15 6.73×10-8 1.90×10-1 7.19×10-8 3.00×10-14 4.35×10-15 7.57×10-8 1.87×10-9 2.03×10-15 4.84×10-15 9.12×10-2 0 

Rank 3 8 11 9 6 5 10 7 2 4 12 1 

10f  

Mean 2.12×10-2 1.53×10-3 7.48×10-3 9.01×10-12 9.75×10-3 6.21×10-3 9.02×10-9 2.29×10-3 4.83×10-3 8.14×10-17 2.14×10-4 0 

S.D. 2.18×10-2 4.32×10-3 1.25×10-2 1.84×10-11 8.33×10-3 8.14×10-3 8.57×10-9 5.48×10-3 8.63×10-3 4.46×10-16 1.23×10-4 0 

Rank 12 6 10 3 11 9 4 7 8 2 5 1 

11f  

Mean 2.23×10-31 8.10×10-16 7.47×10-2 1.96×10-15 2.71×10-29 2.51×10-30 6.45×10-14 1.56×10-19 1.59×10-32 4.67×10-31 7.17×10-3 4.11×10-1 

S.D. 7.07×10-31 1.07×10-5 3.11×100 1.11×10-11 1.88×10-29 1.02×10-29 3.70×10-14 1.67×10-19 1.03×10-33 9.01×10-31 5.08×10-3 1.37×10-1 

Rank 2 7 11 8 5 4 9 6 1 3 10 12 

12f  

Mean 1.32×10-3 3.26×10-13 1.76×10-3 2.70×10-14 2.79×10-28 2.64×10-3 1.25×10-12 1.46×10-18 4.39×10-4 1.51×10-28 4.78×10-4 2.32 

S.D. 3.64×10-3 3.70×10-3 4.11×10-3 1.57×10-14 2.18×10-28 4.79×10-3 9.45×10-13 1.33×10-18 2.20×10-3 8.00×10-28 5.06×10-4 2.44×10-1 

Rank 9 5 10 4 2 11 6 3 7 1 8 12 

Ave. rank 6.67 8.11 7.11 7.89 6.56 7.78 6.67 7.56 4.33 4.11 7.33 3.89 

Final rank 5 12 7 11 4 10 5 9 3 2 8 1 

Mean: mean of objective values; S.D.: standard deviation. 
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6. Conclusion and future work 

In this paper, a novel optimization algorithm, named hybrid PSO with sine cosine acceleration 

coefficients (H-PSO-SCAC), has been presented to overcome the traditional PSO method’s drawbacks of 

premature convergence, trapping in local minima and being unable to balance exploration and exploitation. 

In H-PSO-SCAC, the sine cosine acceleration coefficients, opposition-based learning, sine map and a new 

position update formula are used to modify the search process. To validate H-PSO-SCAC, twelve numerical 

optimization problems (seven unimodal and five multimodal problems) with different levels of difficulty and 

features are used to test the proposed algorithms. 

We established four group simulation experiments to evaluate the achievements of the proposed 

methods. First, the optimization results of PSO-SCAC are compared with PSO and PSO-TVAC. The 

simulations show that the novel parameter update strategy of the sine cosine acceleration coefficients is 

effective. Next, the simulation results of H-PSO-SCAC are compared with PSO and H-PSO. It can be seen 

clearly that H-PSO-SCAC shows better performance with quicker convergence speed and higher 

convergence accuracy for the majority of the functions. In addition, it is also observed that the SCAC 

strategy can effectively enhance the performance of H-PSO. Then, H-PSO-SCAC is compared with the other 

evolutionary algorithms. Finally, the H-PSO-SCAC algorithm is compared with other state-of-the-art PSO 

variants. The simulation results of the third and fourth experiments clearly demonstrate that the proposed 

method produces better average results in almost all numerical optimization problems and is more robust 

than the majority of other methods. Therefore, H-PSO-SCAC can be considered a novel and efficient 

optimization algorithm. 

However, the performance in terms of the average optimum solution for the 11f  and 12f  functions 

was found to be significantly poor with the H-PSO-SCAC strategy. This indicates that we should further 

avoid the local optimum with non-increasing uncertainty. Future work will be focused on two directions: (i) 

the continued expansion of the study of the H-PSO-SCAC algorithm and (ii) the application of the proposed 

algorithm to real-world engineering problems. 
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