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Using daily returns of the S&P 500 stocks from 2001 to 2011, we perform a backtesting study of
the portfolio optimization strategy based on the Extreme Risk Index (ERI). This method uses
multivariate extreme value theory to minimize the probability of large portfolio losses. With
more than 400 stocks to choose from, our study seems to be the first application of extreme
value techniques in portfolio management on a large scale. The primary aim of our investigation
is the potential of ERI in practice. The performance of this strategy is benchmarked against the
minimum variance portfolio and the equally weighted portfolio. These fundamental strategies
are important benchmarks for large-scale applications. Our comparison includes annualized
portfolio returns,maximal drawdowns, transaction costs, portfolio concentration, and asset diver-
sity in the portfolio. In addition to that we study the impact of an alternative tail index estimator.
Our results show that the ERI strategy significantly outperforms both the minimum-variance
portfolio and the equally weighted portfolio on assets with heavy tails.
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1. Introduction

In this paperwe propose and test a portfolio optimization strategy that aims to improve the portfolio return by stabilizing the port-
folio value. Minimizing the probability of large drawdowns, this strategy can help to retrieve the portfolio value as good as possible
also in times of high risk in the markets. This intended performance is, of course, not a new aim in portfolio management, and it
became even more vital since the default of Lehman Brothers in 2008. The following years of financial crisis have demonstrated
that the technical progress of financial markets and their globalization have also brought up some new challenges. One of these
challenges is the need for diversification strategies that account for strong drawdowns and increasing dependence of asset returns
in crisis periods. This has raised the relevance of non-Gaussianmodels, tail dependence, and quantile based riskmeasures in portfolio
optimization (Chollete et al., 2012; DeMiguel and Nogales, 2009; DeMiguel et al., 2009; Desmoulins-Lebeault and Kharoubi-
Rakotomalalaé, 2012;DiTraglia andGerlach, 2013;Doganoglu et al., 2007; Garlappi et al., 2007; He and Zhou, 2011; Hu and Kercheval,
2010; Hyung and de Vries, 2007; Mainik and Rüschendorf, 2010; Ortobelli et al., 2010; Rachev et al., 2005; Zhou, 2010).
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1.1. Developments in theory and practice of portfolio optimization

Since its introduction by Markowitz (1952), the mean–variance approach became the industry standard for asset allocation.
However, this popularity also brought up several technical issues in practical applications, and there has been a large amount of
further development addressing them.

One main direction of related research is dedicated to the impact of parameter uncertainty on the investment performance. The
high sensitivity of the estimated mean–variance efficient portfolio to estimation errors in the underlying distribution parameters
(expectations and covariances of asset returns) may lead to highly non-robust results. Barry (1974) and Chopra and Ziemba (1993)
show the high sensitivity in particular when estimating the expected returns. Jorion (1985, 1986, 1991) and Jagannathan and Ma
(2003) find that the pure minimum variance (MV) portfolio may outperform the mean–variance efficient portfolio.

Several approaches addressing the statistical challenge of parameter uncertainty have been suggested in the literature. These
include the use of Bayesian and shrinkage estimators, shrinking the portfolios to some predetermined target which depends on
combination of prior information with sample data (see, e.g., Jorion (1985, 1986)). Black and Litterman (1991) suggest Bayes estima-
tion of means and covariances. However, their findings on the superiority of the Bayes/Stein procedure are not confirmed in some
other studies like Fletcher and Leyffer (1994) and Fletcher (1997) and Grauer and Hakansson (1995). DeMiguel et al. (2009) and
DeMiguel and Nogales (2009) investigate the potential advantage of robust optimization and shrinkage estimators. The resulting pic-
ture is, however, not completely clear, and it turns out that even robustified and optimized procedures in some cases fail to outper-
form simple heuristic strategies like the equally weighted portfolio.

Concerning robust asset allocation, Tütüncü and Koenig (2004) look for robust solutions that have the optimal worst-case perfor-
mance, whereas Goldfarb and Iyengar (2003) choose worst-case estimators in a robust model framework that can be solved by linear
programming. Herold andMaurer (2006) observe that even thesemore stable estimationmethods only outperform simple strategies
when combined with regression models for the expected return.

Another research direction includes several approaches to change the objective function in the optimization problem underlying
the investment strategy. One of the issues addressed here is that quantification of risk by variance does not distinguish between gains
and losses. Hence, to avoid wrong conclusions for asymmetrically distributed returns, application of pure downside risk measures is
advantageous. Young (1998) introduces an alternative optimization criterion based on minimum return instead of variance as
measure of risk, and proposes a minimax approach. This corresponds to a utility principle with an extreme form of risk aversion on
investor's side. Ghaoui et al. (2003) propose a worst-case Value-at-Risk and robustified programming approach based on only partial
information about the return distributions, assuming that only bounds on the moments are known. Jarrow and Zhao (2006) apply
lower partial moments as risk measure for downside loss aversion and compare the resulting optimal portfolios with the mean–
variance based ones. While both methods perform similarly on normally distributed returns, they can lead to significantly different
results on returns with asymmetric, heavy-tailed distributions.

1.2. Portfolio optimization based on the Extreme Risk Index (ERI)

In our paper we follow the basic line of developments on the optimization problem that the investment strategy is derived from.
Our reformulation of the objective function in this optimization problem is based on extreme value theory, and it is specifically
designed for portfolios with heavy-tailed assets. Extreme value theory is an adequate tool to improve the modelling of return tails.

In contrast to the mean–variance optimization, our approach does not rely on existence of second moments for the return
distribution. With increasingly heavy tails, variance and covariance estimators can become unreliable, or even the moment them-
selves may fail to exist. Thus the mean–variance approach tends to face its limitations especially in crisis periods, when financial
returns behave in their most extreme way. Several modifications addressing this issue have been discussed; see, e.g., Rachev et al.
(2005) for the relevance of this type of heavy-tailed models.

In the present study we apply a novel method based on extreme value theory to a portfolio optimization on real data. This study
seems to be the first attempt in extreme-value based portfolio optimization on large scale. Our primary aim is to assess the general
potential of extreme-value based methods in portfolio optimization. At this initial stage, we compare a very basic implementation
of our extreme-value approach with similarly basic and therefore relatively robust benchmarks. Our benchmarks are given by the
minimum-variance portfolio (MV) and the equally weighed portfolio (EW), which invests the 1/N fraction of the total capital in
each of N assets. According to our results, the extreme-value based method stays behind its benchmarks on assets with light tails,
but outperforms each of them (MV and EW) on assets with moderately heavy or very heavy tails. As discussed above, outperforming
these simplemethods on large scale is non-trivial evenwith refined estimation techniques. The advantage of the extreme-value based
method is particularly strong in the case of heaviest tails, which the method is designed for.

More specifically, the mathematical basis of our approach is laid out in Mainik and Rüschendorf (2010). Our portfolio is obtained
by minimizing the Extreme Risk Index (ERI), which quantifies the impact of heavy, dependent tails of asset returns on the tail of the
portfolio return. We apply this strategy and the chosen benchmarks to the daily return data of the S&P 500 stocks in the period from
November 2007 to September 2011. The computationof portfolioweights utilizes thedata from the six years prior to each tradingday.
To assess the impact of delays in portfolio rebalancing, we implement rebalancing not only on daily, but also on weekly basis. For the
sake of stability, the portfolio estimates for both daily andweekly rebalancing are based on daily data. In addition to the portfolio value
we also track some other characteristics related to portfolio structure, degree of diversification, and transaction costs.

In the first round of our backtesting experiments we apply ERI optimization to all S&P 500 stocks with full history in our data set
(444 out of 500). In this basic setting the ERI based algorithm slightly outperforms the MV and EW portfolios with respect to
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annualized returns (6.8% vs. 5.8% and 5.3% for daily rebalancing). All methods significantly outperform the S&P 500 index, which has
the annualized return of −5.2%.

As next stepwe subdivide the stocks into three groups according to their tail characteristics. Our results show that ERI optimization
is particularly useful for assets with heavy tails. On this asset group it clearly outperforms Markowitz and yields an annualized return
of 11.5% for daily rebalancing. This is impressive compared to the 5.0% and 5.1% achieved with the MV and EW strategies, and even
more so because the backtesting period includes the recent financial crisis. Tracking the portfolio turnover, we found that the ERI
strategy tends to increase the transaction costs. However, the turnover of the ERI optimal portfolio for the group with heavy tails is
lower than the turnover of theMV portfolio in the basic experimentwithout grouping. The performance of the EWportfolio is similar
to that of the MV portfolio, especially on assets with heavy-tailed returns.

Our major finding is that the ERI optimization significantly outperforms MV and EW portfolios for assets with very heavy tails.
Furthermore, the structure of the ERI optimal portfolio is very different from its peers, especially in the basic case with portfolio
selection from all 444 assets considered. The ERI based portfolio is build from fewer assets, but nevertheless it shows better diversi-
fication asmeasured by principal component analysis. The overall picture for weekly rebalancing is similar. These results suggest that
ERI optimization can be a useful alternative for portfolio selection in risky asset classes. In some sense, this strategy seems to earn the
reward that the economic theory promises for the higher risk of heavier tails.

A remarkable detail in this study is that none of the three compared methods (ERI, MV, EW) looks at expected returns. Neverthe-
less, each of them significantly outperforms the S&P 500 index, and the annualized return of the ERI strategy on heavy-tailed assets is
surprisingly high if we keep inmind that the data we used includes the financial crisis of 2008 and 2009. The risk-orientated nature of
the ERI strategy suggests that this result is due to improved detection and handling of risk in the portfolio.

Further improvement of the ERI-based portfolio optimization by incorporating expected returns is analogous to the mean–
variance setting. It can bedoneby adjusting the ERI-based optimization problemby a linear constraint that reflects some target return.
Theoretically, this should improve the performance of the ERI strategy even further. However, practical implementation of this
extension faces same statistical challenges as for theMarkowitz strategywith a target return. The literature discussed above suggests
that outperforming the purely risk-orientated version of the ERI strategy would be non-trivial.

The paper is organized as follows. The alternative portfolio optimization algorithmand its technical backgrounds are introduced in
Section 2. In Section 3 we give an outline of the data used in the backtesting study, define the estimator for the optimal portfolio, and
introduce all additional portfolio characteristics to be tracked. Detailed results of the backtesting experiments are presented and
discussed in Section 4. Conclusions are given in Section 5.

2. Theoretical backgrounds

2.1. Asset and portfolio losses

Let Si (t) denote prices of assets Si, i=1,…,N, at times t=0, 1,…, T. Focusing on the downside risk, let Xi (t) denote the logarithmic
losses of the assets Si,
Xi tð Þ :¼ −log
Si tð Þ

Si t−1ð Þ
� �

¼ log Si t−1ð Þ−log Si tð Þ; ð2:1Þ
and let eXi tð Þ denote the corresponding relative losses:
eXi tð Þ :¼ Si t−1ð Þ−Si tð Þ
Si tð Þ ¼ Si t−1ð Þ

Si tð Þ −1:
For daily stock returns, Xi and eXi are almost identical because eXi is the first-order Taylor approximation to the logarithmic loss Xi.
This approximation also extends to asset portfolios. Consider an investment strategy (static or one-period) diversifying a unit

capital over the assets S1,…, SN. It can be represented by a vectorw of portfolio weights,w ∈ H1 := {x ∈ℝN :∑i = 1
N xi=1}. Excluding

short positions, the portfolio set can be restricted to the unit simplex ΔN := {w ∈ [0, 1]N : ∑i = 1
N wi = 1}. This is the portfolio set

we will work with from now on. Each component wi ≥ 0 corresponds to the fraction of the total capital invested in Si, and the

relative portfolio loss is equal to the scalar productwT eX tð Þ :¼ ∑N
i¼1wi

eXi tð Þ of the portfolio vectorw and the relative loss vector eX tð Þ ¼eX1 tð Þ;…; eXN tð Þ
� �

:

XN
i¼1

wi

Si t−1ð Þ Si t−1ð Þ−Si tð Þð Þ ¼ wT eX tð Þ: ð2:2Þ
Thus the scalar product wTX(t) for the logarithmic loss vector X(t) := (X1(t), …, XN(t)) is the first-order Taylor approximation to
wT eX. This kind of approximation is also relevant to the Markowitz approach, which is typically applied to logarithmic returns.
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2.2. Multivariate regular variation

To define the Extreme Risk Index (ERI) of the random vector X (t), we recollect the notion ofmultivariate regular variation (MRV).
A random vector X = (X1, …, XN) is MRV if the joint distribution of its polar coordinates R :¼ Xk k1 :¼ ∑N

i¼1jXij and Z := ‖X‖1−1X
satisfies
Fig. 2.1.
B r−1R; Z
� ����R N r
� �

→
w
ρα⊗Ψ; r→∞; ð2:3Þ
whereΨ is a probabilitymeasure on the 1-normunit sphere SN1 and ρα is the Pareto distribution: ρα(s,∞)= s−α, s ≥ 1. The symbol→w in
Eq. (2.3) represents theweak convergence of probability measures, and the symbol⊗ refers to the direct product of probability mea-
sures. The intuitivemeaningof Eq. (2.3) is that, conditioned on R N r for a sufficiently large r, the randomvariable r−1R is approximate-
ly Pareto (α) distributed and independent of Z, which is approximately Ψ-distributed.

Besides Eq. (2.3), there are several other equivalent definitions ofMRV; formore details we refer to Resnick (2007). The parameter
α N 0 is called tail index. It separates finitemoments of R from infinite ones in the sense that ERβ b∞ for β b α and ERβ=∞ for β N α. In
the non-degenerate case, the same moment explosion occurs for all components Xi of the random vector X. The measureΨ is called
spectral (or angular) measure of X and describes the asymptotic distribution of excess directions for the random vector X.

Intuitively speaking, MRVmeans that the radius R has a polynomial tail and is asymptotically (i.e., for large R) independent of the
angular part Z. Moreover, if ameasurable set A⊂ℝN is sufficiently far away from the origin, i.e., if ‖x‖1 ≥ t for all x∈ Awith some large t,
then
P X ∈ sAð Þ ≃ s−αP X ∈ Að Þ ð2:4Þ
for s ≥ 1 and sA := {sx : x ∈ A}. The scaling property (Eq. (2.4)) allows extrapolating from large losses to extremely large ones, which
even may be beyond the range of the observed data. Approximations of this kind are the key idea of the Extreme Value Theory
(cf. Embrechts et al. (1997)).

Many popular models are MRV. In particular, this is the case for multivariate t and multivariate α-stable distributions (cf. Araujo
and Giné, 1980; Hult and Lindskog, 2002). In the latter case, the stability index α is also the tail index, and the spectral measure
characterizing the multivariate stability property is a constant multiple of Ψ from Eq. (2.3). In all these models, the components Xi
are tail equivalent in the sense that P(Xi N r)/P(Xj N r) → ci, j N 0 as r → ∞ for all i, j ∈ {1, …, N}. This is equivalent to the following
non-degeneracy condition for the angular measure Ψ:
Ψ x ∈ SN1 : xi ¼ 0
n o

b 1
for i = 1, …, N.
It should be noted that theMRV assumption (Eq. (2.3)) is of asymptotic nature and that it is also quite restrictive. MRVmodels are

often criticized for excluding even slightly different tail indices αi for the components Xi. However, this criticism also affects the
multivariate t and multivariate α-stable models, which are widely accepted in practice despite the resulting restriction to equal αi.
It is indeed true that, estimating the tail index αi for each component Xi separately, one would hardly ever obtain identical values
for different i. But on the other hand, the confidence intervals for αi often overlap, so that aMRVmodel may be close enough to reality
and provide a useful result.

Themajor reasonwhyMRVmodels can be useful in practice is that the practical questions are non-asymptotic. In fact, it is not the
restrictive asymptotic relation (Eq. (2.3)) that matters, but the scaling property (Eq. (2.4)). If Eq. (2.4) is sufficiently close to reality in
−3 −2 −1 0 1 2 3

−
0.

10
0.

00
0.

05
0.

10

normal quantiles

S
&

P
 5

00
  l

og
−

re
tu

rn
s 

(s
or

te
d)

−15 −5 0 5 10 15

−
0.

10
0.

00
0.

05
0.

10

t(3) quantiles

S
&

P
 5

00
  l

og
−

re
tu

rn
s 

(s
or

te
d)

QQ-plots for the logarithmic returns of the S&P 500 index vs. normal and t(3) distribution. The dashed, red lines mark the 0.4%, 10%, 90%, and 99.6% quantiles.
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the range that is relevant to the application, the eventual violation of Eq. (2.3) further out in the tails does not influence the result too
much.

Practical applications often involve heuristics of this kind. In particular, if Si are stock prices and hence non-negative, then the

relative losses eXi are bounded by 1. Going sufficiently far out into the tail, onemust observe quite different behaviours for the relative

portfolio losswT eXi and the logarithmic approximationwTX. However, with typical daily return values in the low percentage area and
values around 10% occurring only in crisis times, relative asset losses do exhibit polynomial scaling of the type
P eXi N rs
� �
P eXi N r
� � ≃ s−α

: ð2:5Þ
This is illustrated in Fig. 2.1, which shows QQ-plots of logarithmic S&P 500 returns (same observation period as in our backtesting
study) versus the normal and the Student-t(3) distribution. The normal distribution is light-tailed, whereas the t(3) distribution sat-
isfies (Eq. (2.5)) with α=3 (more generally, a t distribution with v degrees of freedom satisfies (Eq. (2.5)) with α= v). The dashed,
red lines mark the 0.4%, 10%, 90%, and 99.6% quantiles of the distributions on the x axes (normal or t(3)). The area between the 0.4%
and 10% quantiles corresponds to the worst returns observed every 2 weeks (10 business days) or once a year (about 250 business
days). The area between the 90 and 99.6% quantiles corresponds to the best returns observed every 2 weeks or once a year. This is
the application range mentioned above. A good distributional fit makes the QQ-plot linear in this range. Fig. 2.1 demonstrates clearly
that the normal distribution gives a poor fit to the S&P 500 return data, whereas the heavy-tailed t distribution fits much better. This
picture depends neither on whether one takes the index or single stocks, nor on the observation period. Fig. 2.1 uses the same obser-
vation range as our backtesting study, but even shifting the observation window 10 or 20 years back into the past gives astonishingly
similar results.

Hencewe are lucky to remain in the areawhere X and eX can be treated as if they bothwereMRV, and the approximation wT eX≃wTX
works reasonably well. Thus, even though the scaling property (Eq. (2.5)) eventually breaks down if rs gets too close to 1, it has some
useful consequences in the application range. This is confirmed by our backtesting results.

2.3. Portfolio optimization via Extreme Risk Index

The MRV assumption (Eq. (2.3)) implies that
lim
r→∞

P wTXNr
� �

P Xk k1Nr
� � ¼ γw :¼

Z
SN1
max 0;wTz

� �α
dΨ zð Þ ð2:6Þ
(cf. (Mainik, 2012; Mainik and Rüschendorf, 2010), Lemma 2.2). This implies that for any portfolio vectors v, w ∈ ΔN and large
r N 0
P vTX N r
� �

P wTX N r
� � ≃ γv

γw
: ð2:7Þ
Moreover, for λ ≤ 1 close to 1 one obtains that
VaRλ vTX
� �

VaRλ wTX
� � ≃ γv

γw

� �1=α
ð2:8Þ
(cf. (Mainik and Embrechts, 2013; Mainik and Rüschendorf, 2010), Corollary 2.3). Here and in what follows we define the Value-at-
Risk VaRλ of a random loss X at confidence level λ as the λ-quantile of X:
VaRλ Xð Þ :¼ inf x ∈ℝ : P X ≤ xð Þ ≥ λf g:
Roughly speaking, VaRλ(X) is the smallest x such that X ≤ x holds with probability λ. Typical values of λ are 95%, 99%, and 99.5%.
Motivated by Eqs. (2.7) and (2.8), the functional γw = γw(Ψ, α) is called Extreme Risk Index (ERI). Minimizing the function

w ↦ γw, one obtains a portfolio that minimizes the loss for large ‖X‖, i.e., in case of crisis events. In precise mathematical terms, one
minimizes VaRλ(wTX) for λ→ 1. The practical meaning of this procedure is the utilization of the scaling property(Eq. (2.4)) to obtain
a portfolio that minimizes the downside risk during amarket crash. This approximate result is not perfect, but it can be a step into the
right direction.

Based on the integral representation (Eq. (2.6)), the following portfolio optimization approach was proposed in Mainik and
Rüschendorf (2010):

• Estimate γw by plugging appropriate estimates for α and Ψ into Eq. (2.6);
• Estimate the optimal portfolio by minimizing the resulting estimator eγw with respect to w.s.
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The general properties of the optimization problem are discussed in Mainik and Rüschendorf (2010), Mainik (2010), and Mainik
and Embrechts (2013). In particular, it is known that the function w↦γ̂w is convex forα N 1. Thus, given that the expectations of Xi are
finite, a typical optimal portfolio would diversify overmultiple assets. The consistency of the plug-in estimator eγw and of the resulting
estimated optimal portfolio w⁎ in a strict theoretical sense is studied in Mainik (2010, 2012), and Mainik and Rüschendorf (2010).

3. Outline of the backtesting study

3.1. The data

The contribution of the present paper is a backtesting study of the ERI based portfolio optimization approach on real market data.
Our data set comprises all constituents of the S&P 500 market index that have a full history for the period of 10 years back from
19-Oct-2011. These are 444 stocks out of 500. For each date of the backtest period 19-Oct-2007 to 19-Oct-2011 the estimation of the
optimal portfolio is based on the 1500 foregoing observations – approximately 6 years of history – for all stocks back in time. For
example, the optimal portfolio for 19-Oct-2007 is estimated from the stock price data for the period (19-Oct-2001 to 18-Oct-2007).

Our computations are based on the logarithmic losses Xi(t) as defined in Eq. (2.1). As already mentioned above, we exclude short
positions. This basic framework ismost natural for the comparison of portfolio strategies. The asset index i varies between1 andN=444,
and the time index t takes values between 1 and T=2509 (1500 days history+ 1009 days in the backtest period). To estimate α andΨ,
we transform the (logarithmic) loss vectors X(t) into polar coordinates
R tð Þ; Z tð Þð Þ ¼ ðjjXðtjj1; jjX tjj−1
1 X tð Þ

� �
; t ¼ 1;…; T:
3.2. The estimators and the algorithms

We estimate α by applying the Hill estimator to the radial parts R(t):
α̂ ¼ kXk
j¼1

log R jð Þ;t=R kþ1ð Þ;t
� � ð3:1Þ
where t N 1500 and R(1),t ≥… ≥ R(1500),t is the descending order statistic of the radial parts R(t− 1500),…, R(t− 1) and k=150. That
is, out of the 1500 data points in the historical observationwindow t− 1500,…, t− 1we use the 10%with largest radial parts. Going
back to Hill (1975), the Hill estimator is the most prototypical approach for the estimation of the tail index α. The choice of k deter-
mines which observations are assumed to describe the tail behaviour. Another important criterion for the choice of k is the trade-off
between the bias, which typically increases for large k, and the variance of the estimator, which increases for small k. In addition to the
static 10%-rule we also consider the adaptive approach proposed in Nguyen and Samorodnitsky (2012). See Daníelsson et al. (2001),
Drees and Kaufmann (1998), and Resnick and Stǎricǎ (1997) for further related methods.

As proposed in Mainik and Rüschendorf (2010), we estimateΨ by the empirical measure of the angular parts from observations
with largest radial parts. More specifically, we use the same 10% data points (the so-called tail fraction) in the moving observation
window that were used to obtain α̂. The resulting estimator γw is
γ̂w tð Þ ¼ 1
k

Xk
j¼1

max 0;wTZ i j;t
� �� �α̂

;

where ij,t is the sample index of the order statistic R(j),t in the full data set:
R jð Þ;t ¼ R i j;t
� �

; j ¼ 1;…;1500; t ¼ 1501;…; T:
The resulting estimate of the optimal portfoliow*(t) on the trading day t is the portfolio vectorw∈ΔN thatminimizes γ̂w tð Þ:
γ̂w� tð Þ ¼ min
w∈ΔN

γ̂w tð Þ: ð3:2Þ
Finally, the estimated optimal portfolio w*(t) is used to compose the portfolio for the trading day t. The resulting (relative)
portfolio return is calculated by substituting w*(t) in Eq. (2.2).

The procedure outlined above is repeated for all trading days t N 1500. For instance, the optimal portfolio for 22-Oct-2007 is based
on the observation window from 29-Oct-2001 to 21-Oct-2007, whereas for 23-Oct-2007 we use the observation window from
30-Oct-2001 to 22-Oct-2007, and so on.

The benchmarks for this portfolio optimization algorithmare given by the equallyweighted (EW)portfolio assigning theweight of
1/N = 1/444 to each asset and the minimum variance (MV) portfolio. Analogously to the ERI optimal portfolio, the MV portfolio is
calculated from logarithmic asset returns, with the same moving observation window of 1500 points and empirical estimators for
the covariance matrix. Similarly to the ERI approach, our implementation of the Markowitz approach chooses the portfolio with
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minimal risk, i.e. with minimal variance. That is, given an estimator Ĉ of the covariance matrix of the asset returns S1, …, SN, the
estimated minimum variance portfolio wMV is obtained by minimizing the function
Fig. 4.1.
value of
w↦wTĈw
for w ∈ ΔN. That is, we do not include an additional linear constraint
wT μ̂ ¼ μ ð3:3Þ
with an estimator μ̂ of the daily return and a target return μ N 0.
There are two reasons for this choice. On the one hand, ERIminimization is also a pure riskminimization procedure, so that ignor-

ing estimates of the expected returns in the Markowitz benchmark increases the fairness of competition. Furthermore, since the ERI
approach only changes the quantification of risk and does not yet change the view on gains, it is natural to study its effect in a purely
risk orientated setting. Endowment of the ERI approach with a target return is straightforward. Analogously to the Markowitz
approach, it suffices to add the linear constraint (Eq. (3.3)) to the optimization problem (Eq. (3.2)).

On the other hand, computation of a Markowitz efficient portfolio with target return constraint (Eq. (3.3)) would require estima-
tion of expected asset returns and bring in all the technical issues discussed in Section 1. The same issues must appear in an extended
ERI application that includes Eq. (3.3). In practice, these technical issues can dominate the theoretical performance improvement
associated with a target return.

4. Empirical results

4.1. Basic setting for entire set of stocks

We start with the most crude application of the ERI minimization strategy, estimating the tail index from the radial parts of the
random vector (X1,…, X444) of all stock retrains involved in our study. The resulting estimate α̂ ¼ α̂ tð Þ varies in time, but it is applied
to all N=444 stocks as if their joint distribution were MRV. This is a very courageous assumption, but even in this case we see some
useful results. A first impression of these results is given in Fig. 4.1, where the value of the ERI optimal portfolio is compared to the
performance of its peers (MV and EW) and to the S&P 500 index. The graphic suggests that the value of the ERI based portfolio is
more stable during market crashes.

On the other hand, theMV portfolio seems to catch up again during recovery periods. Markowitz approach also tries to assess po-
tential gains. The cumulative returns achieved with ERI, MV, and EW, are similar in this setting, but still with some advantage for the
ERI based portfolio. Thus it seems that the ERI strategy – even in its crudest implementation – has a potential to stabilize the portfolio
value in crises. The overall performance of the EW portfolio is very similar to that of theMV portfolio, but with lower Sharpe ratio and
higher drawdowns. Thus it suffices to consider the MV benchmark in the present setting.

All actively traded strategies benchmarks (ERI, MV, EW) clearly outperform the S&P 500 index. The real dimension of this advan-
tage is, however, not obvious, because for simplicity of implementation we apply ERI, MV, and EW only to the 444 stocks that remain
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Portfolio optimization backtest for the ERIminimization strategy under the assumption that all stock returns have the same tail indexα. The resulting portfolio
the ERI strategy and its peers (MV, EW, and S&P 500) is scaled to 100 for the first date of the backtest period.
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in the S&P 500 through the whole observation period. Since this information about future developments is not available in reality,
there may be a survivor bias increasing the performance of the three actively traded benchmarks. However, the resulting comparison
between ERI, MV, and EW should be fair because each of them is applied to the 444 survivor stocks.

Further characteristics of the basic ERI approach compared to its peers are shown in Table 4.1. The numbers show that the ERI
strategy indeed outperforms MV and EW portfolios in many respects. In particular, the ERI optimal portfolio gives higher cumulative
returns and a higher Sharpe ratio, whereas the maximal drawdown is lower than with the MV strategy. An extension of the Sharpe
ratio based on the Expected Shortfall (ES) is the STARR ratio (cf. Rachev et al., 2005):
Table 4
Backtes
S&P 500

CR (c
AR (a
AS (a
AST (
MD (m
AC (a
AT (a
PCA (
STARRλ Zð Þ :¼
E Z−r f
� �

ESλ Z−r f
� �
where rf is the risk-free interest rate andλ is a confidence level close to 1. The backtested STARR is also higher for the ERI strategy than
for theMV approach. The computation of the Sharpe and STARR ratios is based on empirical estimators for the expectation and for the
Expected Shortfall. In particular, the estimate of ES0.95 over the backtesting period of 1009 days is based on 51 largest observations of
the portfolio loss. Since a risk-free rate on a daily scale is both difficult to determine and negligibly small, we set rf=0. The annualized
Sharpe and STARR ratios reported in Table 4.1 and all other tables across the paper are obtained from daily ratios bymultiplying them
with the factor

ffiffiffiffiffiffiffiffiffi
252

p
. This heuristic approach is based on the assumption hat that the calendar year has T=252 business days and the

returns scale over time with factor T, whereas the yearly volatility and Expected Shortfall scale with factor
ffiffiffi
T

p
. The resulting annual-

ized values are very rough approximations, but with 10 years of data, more reliable estimation of yearly returns, volatilities, and
Expected Shortfall is not feasible.

To measure the portfolio stock concentration, we compute the Concentration Coefficient (CC). It is defined as
CC tð Þ :¼
Xn
i¼1

w2
i tð Þ

 !−1

ð4:1Þ
where wi(t) is the relative weight of the asset i in the investment portfolio at time t. Conceptually, this approach is well known in
measures of industrial concentration, where it is called as the Herfindahl–Hirschman index (HHI). Brandes Institute introduced the
concentration coefficient by inverting the HHI.

The CC of an equally weighted portfolio is identical with the number of assets. As the portfolio becomes concentrated on fewer
assets, the CC decreases proportionally. The numbers in Table 4.1 indicate that the ERI strategy is quite selective, whereas the number
of stocks in the MV portfolio is on the same scale with the total number of assets.

To assess the level of diversification provided by each optimization algorithm, we performed Principal Component Analysis (PCA)
over the returns of all stocks relevant to the corresponding portfolios. We defined relevance via portfolio weights assigned by the
algorithms and restricted PCA to the stocks with portfolio weights higher than 0.01%. Then we estimated the portion of the sample
variance explained by the first PCA factor and averaged these daily estimates over the backtesting period. The lower the average por-
tion of sample variance explained by the first PCA factor, the higher is the portfolio diversification. The numbers in Table 4.1 are quite
surprising: despite the significantly higher concentration, the diversification level of the ERI based portfolio is higher than that of the
MV strategy.

The only performance characteristic where ERI stays behindMV is the portfolio turnover, which is a proxy to the transaction costs
of a strategy. We use a definition of portfolio turnover that is based on the absolute values of the rebalancing trades:
τ tð Þ :¼
Xn
i¼1

jwi tð Þ−wi t−ð Þj
where wi(t) is the (relative) portfolio weight of the asset i after rebalancing (according to the optimization strategy) at time t, and
wi(t_) is the portfolio weight of the asset i before rebalancing at time t, i.e., at the end of the trading period t − 1. Averages of τ(t)
.1
t statistics for the ERIminimization strategy in the basic setting (applied to all stocks at once) vs. minimumvariance (MV), equallyweighted portfolio (EW), and
.

ERI MV EW S&P 500

umulative return) 30.07% 25.48% 23.24% −19.38%
nnualized return) 6.76% 5.81% 5.34% −5.22%
nnualized Sharpe) 0.4715 0.3469 0.3229 −0.0462
annualized STARR0.95) 0.1926 0.1410 0.1318 −0.0187
ax drawdown) 46.61% 58.61% 63.27% 56.34%

verage concentration coefficient) 8.69 127.22 444 N/A
verage turnover) 0.0400 0.0272 0.01 N/A
first PCA factor explained variance) 31.32% 35.48% 38.80% N/A
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Fig. 4.2. Estimated values of the tail index α for different stocks on the first day of the backtesting period.
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over all t in the backtesting period are given in Table 4.1. The average turnover of the ERI optimal portfolio (0.0400) is higher than that
of the minimum variance portfolio (0.0272).

Some technical details. For the calculation of the portfolio value we use relative returns and do not expect much difference when
using logarithmic approximations. In the calculation of STARR and Sharpe ratio we do not use risk free rates since these are very small
on a daily basis and thus have little influence on the ratio calculations. For the estimation of ES in STARRwe use the average of all sam-
ple values smaller than the 95% VaR of the sample. Our backtest period is of length 1009 and thus the ES estimate is based on n=51
observations.

4.2. Grouping the stocks with similar α

In the previous section we treated all stocks as if their (logarithmic) returns Xi had the same tail index α. This simplification can
influence the quantitative and qualitative results. To obtain a better insight, we divide the stocks into three different groups with re-
spect to their individual α and compare the performance of the portfolio optimization strategies on each of these groups. Fig. 4.2
shows the histogram of the estimates of the tail index α for different stocks on the first day of the backtesting period (t = 1501).
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Fig. 4.3. Portfolio optimization backtest. Stocks with α ≤ 2.2.



Table 4.2
Backtest statistics. Stocks with α ≤ 2.2.

ERI MV EW S&P 500

CR 54.70% 21.58% 22.30% −19.38%
AR 11.48% 4.99% 5.14% −5.22%
AS 0.6623 0.3546 0.3182 −0.0462
AST 0.2695 0.1430 0.1299 −0.0187
MD 53.67% 48.03% 61.32% 56.34%
AC 7.4499 10.9712 134 N/A
AT 0.0269 0.0154 0.01 N/A
PCA 35.02% 33.33% 35.17% N/A
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We consider the following groups:

1. all stocks with α ≤ 2.2
2. all stocks with α ∈ (2.2, 2.6)
3. all stocks with α ≥ 2.6.

The first group contains 134, the second 243, and the third one 67 stocks. These groups remained static during the backtesting
period. That is, the estimated α on the first day of the backtesting period determines in which group each stock is placed.

4.2.1. Selection from the set of stocks with α ≤ 2.2
The backtesting results on stocks with tail index α ≤ 2.2 are summarized in Fig. 4.3 and Table 4.2. In this case ERI minimization

clearly outperforms its peers and yields an impressive annualized return of 11.48%. This is more than the double of roughly 5%
achievedwith theMVorwith the EWportfolio. The overall performance of the EWportfolio is again similar to that of theMVportfolio,
but with greater drawdowns. Thus it suffices to consider the MV benchmark in this case.

The Sharpe and STARR ratios of the ERI strategy are also clearly higher thanwithMV. The concentration of both portfolios is on the
same scale, but still a bit higher for the ERI based one. Similarly to the basic backtesting set-up on all S&P 500 stocks, the ERI strategy
produces a higher portfolio turnover (0.0269 vs. 0.0154 with MV). However, both values are lower than the average turnover of the
MV portfolio in the basic setting (0.0272).

These results suggest that the ERI strategy is particularly useful for optimizing portfolios of stocks with heavy tails, in our case of
134 out of 444 stocks. This is to be expected since the ERI methodology was developed for heavy-tailed MRV models. Beyond that,
there is also a statistical reason for the inferior performance of the MV approach in the present setting. Estimation of covariances
becomes increasingly difficult for heavier tails, and forα b 2 the covariances (andhence correlations) donot even exist. Thus empirical
covariances used in the Markowitz approach can push the investor into the wrong direction.

4.2.2. Selection from the set of stocks with α ∈ (2.2, 2.6)
If the stock selection is restricted to those with α between 2.2 and 2.6, the annualized return of the ERI based portfolio (7.93%) is

somewhat above the MV and EW benchmarks (6.96% and 5.14%, respectively)(Fig. 4.4 and Table 4.3). While the returns are on the
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Fig. 4.4. Portfolio optimization backtest. Stocks with α ϵ (2.2, 2.6).



Table 4.3
Backtest statistics. Stocks with α ϵ (2.2, 2.6).

ERI MV EW S&P 500

CR 35.87% 31.00% 22.28% −19.38%
AR 7.93% 6.96% 5.14% 5.22%
AS 0.5448 0.3711 0.3170 −0.0662
AST 0.2306 0.1517 0.1301 −0.0187
MD 45.56% 57.70% 63.89% 56.34%
AC 7.3987 1.00 243 N/A
AT 0.0249 0.0000 0.01 N/A
PCA 32.78% 100.00% 40.24% N/A
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same scale, the volatilities of the MV and the EW portfolios rare much higher. Thus ERI optimization clearly outperforms its peers in
terms of Sharpe ratio, STARR (both higher for ERI), andmaximal drawdown (lower for ERI). It is somewhat astonishing that the PCA of
the MV portfolio is 100%, i.e. the minimum variance algorithm selects only one stock.

4.2.3. Selection from the set of stocks with α ≥ 2.6
For stocks with α N 2.6 (and hence lightest tails), the performance of the ERI minimization strategy stays behind MV and EW in

terms of annualized return, Sharpe ratio, STARR, and turnover (Fig. 4.5 and Table 4.4). The maximal drawdown is similar for ERI and
MV, and higher for the EW portfolio. The diversification level in terms of PCA is similar for all three competing strategies. The portfolio
concentrations resulting from the ERI and the MV approaches are on the same level, and slightly higher for the ERI optimal portfolio.

Thus the impressive advantage of the ERI minimization strategy seems to be restricted to stocks with pronounced heavy-tail be-
haviour. This advantage turns into near parity for stocks with moderately heavy tails. For light-tailed stocks the MV strategy yields
higher annualized returnswith a similar drawdown, and the EWportfolio even higher returns, but also a significantly highermaximal
drawdown. These findings perfectly accord with model assumptions underlying these twomethodologies: MV uses covariances, and
ERI minimization is particularly applicable in cases when covariances do not exist or cannot be estimated reliably. On the other hand,
ERI minimization strongly relies on the estimation of the tail index α, which is known to become increasingly difficult for lighter
tails — see, e.g., (Embrechts et al., 1997).

4.3. Backtesting with an alternative estimator for α

To assess the suitability of the estimator we used for α, we repeated our backtesting experiments with another estimation
approach. The Hill estimator in Eq. (3.1) uses the tail fraction size k as a parameter. The foregoing results are based on a static 10%
rule, i.e. k = 150. It is well known that the choice of the tail fraction size k can have a strong influence on the resulting estimates —
see, e.g., Embrechts et al. (1997). Thus, as an alternative to the static 10% rule, we tried the recent adaptive approach by Nguyen
and Samorodnitsky (2012), which involves sequential statistical testing for polynomial tails. The results of this backtesting study
are outlined below.
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Fig. 4.5. Portfolio optimization backtest. Stocks with α ≥ 2.6.



Table 4.4
Backtest statistics. α ≥ 2.6.

ERI MV EW S&P 500

CR 3.47% 13.62% 25.27% −19.38%
AR 0.85% 3.23% 5.77% −5.22%
AS 0.1397 0.2636 0.3367 −0.0462
AST 0.0581 0.1114 0.1382 −0.0187
MD 42.58% 43.43% 64.89% 56.34%
AC 3.4817 4.4715 67 N/A
AT 0.0165 0.0091 0.01 N/A
PCA 54.92% 52.43% 47.52% N/A
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4.3.1. Optimization over the entire set of stocks
Fig. 4.6 and Table 4.5 represent the basic settingwithout grouping the stocks according to the estimated tail index α. It is a bit sur-

prising that the adaptive choice of the tail fraction size k does not improve the performance of the ERI based strategy. The annualized
return is significantly lower than with the static 10% rule. The overall result clearly stays behind theMV and the EW benchmarks. The
only aspect where ERI is still better is the maximal drawdown, but it cannot compensate for the lower overall return. The reason for
this outcome is the lower value of the tail fraction size k that is selected by the adaptive approach. Typical values are about 25, and all
values are lower than 150 that come from the static 10% rule. Thus the adaptive approach looks too far into the tail, where the scaling
of excess probabilities may already be different from the scaling in the application range.

4.3.2. Grouping the stocks according to the estimated α
As next step, we grouped the stocks according to their estimates. On average, the Nguyen–Samorodnitsky estimator gave higher

values of α, i.e., it indicated lighter tails than the static 10% rule. Therefore we chose a different grouping of the α values: α ≤ 2.7,
α ∈ (2.7, 4.5), and α ≥ 4.5. The backtesting results are presented in Table 4.6.
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Fig. 4.6. Alternative estimator α̂: portfolio optimization backtest in the basic setup (on all S&P500 stocks).

Table 4.5
Alternative α̂: backtest statistics in the basic set-up.

ERI MV EW S&P 500

CR 11.76% 25.48% 23.24% −19.38%
AR 2.81% 5.81% 5.34% −5.22%
AS 0.2360 0.3469 0.3229 −0.0462
AST 0.0939 0.1410 0.1318 −0.0187
MD 51.39% 58.61% 63.27% 56.34%
AC 64.33 127.22 444 N/A
AT 0.0381 0.0272 0.01 N/A
PCA 46.48% 35.49% 38.80% N/A



Table 4.6
Alternative α̂: backtest statistics on stocks.
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In all three cases the annualized return of the ERI strategy is lower than that of the MV portfolio. Interestingly, the worst perfor-
mance of the ERI based strategy occurs in the middle group, and not in the group with lightest tails. Possible explanations here
may be the different composition of the three groups (heavy, moderate, or light tails) and also the different values of α used in the
portfolio optimization algorithm.

All in all we can conclude that adaptive (and thus fully automatized) choice of the tail fraction size k can be problematic in real
applications. This can be explained by the tail orientation of the Nguyen–Samorodnitsky approach. Roughly speaking, it tests for poly-
nomial tails and chooses the largest value of k for which the test is still positive. While this is perfectly reasonable for data from an
exactMRVmodel, there are at least two reasonswhy thismethod can fail on real data. First, if the data fails to satisfy theMRV assump-
tion far out in the tail, the subsequent testing for small values of k can be misleading. The second reason was already discussed in
Section 2.2: If the polynomial scaling changes for different severities, then the scaling behaviour of the distribution in the application
area can differ from what is suggested by the true, but too asymptotic tail index. Our backtesting results show that these issues are
highly relevant in practice.
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4.4. Behaviour of portfolio characteristics over time

We conclude our analysis by a comparison of the ways the competing portfolios behave over time. This allows for deeper insight
and allows discovering some more points of difference.

4.4.1. Concentration and portfolio composition
We start with the development of the concentration coefficient (CC) introduced in Eq. (4.1). Its behaviour over time in the basic

set-up (no grouping of stocks according to α) is shown in Fig. 4.7. This graphic shows that the number of stocks in the MV portfolio
is permanently about 10 times higher than in the ERI optimal portfolio. The CC oscillation pattern suggests that the ERI based portfolio
is more volatile in the crisis and much less volatile in benign periods.

This impression is confirmed by Fig. 4.8. The dynamics of theMVPortfolio in Fig. 4.9 is similar, but the difference between the crisis
and recovery period is somewhat weaker. All in all it seems that the minimum variance portfolio undergoes many small changes,
whereas the changes in the ERI optimal portfolio are less but much stronger.

4.4.2. Turnover
The impression about stronger changes in the ERI portfolio accords with the findings on the average portfolio turnover in

Sections 4.1 and 4.2. The development of the turnover coefficient over time is shown in Fig. 4.10. The larger the spikes in the turnover
pattern, the greater the instantaneous portfolio shift. The difference between the ERI minimization and the MV portfolio in the crisis
period is remarkable. The turnover pattern of the MV portfolio points to a lot of small portfolio changes that lead to permanent, but
moderate trading activity. The pattern of the ERI based portfolio has a lower level of basic activity, but much greater spikes
corresponding to large portfolio shifts. Thus, if carried out immediately, the restructuring of the ERI optimal portfolio requires more
liquidity in the market. This disadvantageous feature can be tempered by splitting the transactions and distributing them over
time. The tradeoff between fast reaction to events in the market and liquidity constraints is an interesting topic for further research.

4.4.3. Diversification measured by PCA
The development of the first PCA factor over time is shown in Fig. 4.11. The amount of portfolio variance that can be explained by

the first PCA factor increases in the months after the default of Lehman Brothers to a new level. This shows that the recent financial
crisis has changed the perception of dependence in the market and thus increased the dependence between the stocks. Ranging
below 25% before the crisis, the first PCA factors of both strategies are typically above 35% afterwards. This chart indicates a change
in the intrinsic market dynamics. The stronger co-movements of S&P 500 stocks reflect the new perception of systemic risk. As a
consequence, the diversification potential in the after-crisis period is lower than in the time before the crisis.

Most of the time, the first PCA factor of the ERI optimal portfolio ranges somewhat below that of theMarkowitz portfolio. Thus we
can conclude that ERI optimization bringsmore diversity into the portfolio than themean–variance approach. To the use of PCA: There
is one exception to this rule: in February 2009, the first PCA factor of the ERI optimal portfolio peaks out to 100%. It corresponds to a
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Fig. 4.7. Concentration Coefficient in the backtesting experiment on all S&P500 stocks. Total set of stocks with 10% threshold alpha estimation.
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single daywhen the ERI strategy selects only one stock for the investment portfolio. On this remarkable day, the first PCA factor is ob-
viously identical with the investment portfolio. Recalculations let to slightly differentweights but to almost identical portfolio returns.
Results of this kind can be avoided in practice by appropriate bounds on portfolio restructuring.
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Fig. 4.9.Weights of the minimum variance portfolio in backtesting on all S&P 500 stocks.
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Fig. 4.10. Portfolio turnover.
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4.4.4. Tail index estimates
In addition to the backtesting studies where the tail index α is estimated for the radial part of the random vector X, we also esti-

mated α for each stock separately. The estimated values of α for the radial parts are shown in Fig. 4.12, and the development of α es-
timates for single stocks is shown in Fig. 4.13. Beginning in summer 2008, there is a common downside trend for all stocks, i.e. all
return tails become heavier in the crisis time. This trend stops in spring 2009. The missing recovery since then can be explained by
the width of the estimation window. Based on the foregoing 1500 trading days, our estimators remain influenced by the crisis for
6 years. This effect is visible in both figures. In addition to that, Fig. 4.12 shows that after the crisis the estimated values of α in all
three sub-groups are very close to each other and even change their ordering compared to the pre-crisis period: the groupwith lowest
α before crisis does not give the lowest α after the crisis. These effects may be explained by the strong influence of extremal events
during the crisis on the estimates in the after-crisis period. As the historical observation window includes n = 1500 days, the crisis
events do not disappear from this window until the end of the backtesting period. It seems that the estimated values of α tend to
20

25

30

35

40

45

01
−N

ov
−2

00
7

20
−D

ec
−2

00
7

11
−F

eb
−2

00
8

01
−A

pr
−2

00
8

19
−M

ay
−2

00
8

08
−J

ul
−2

00
8

25
−A

ug
−2

00
8

13
−O

ct
−2

00
8

01
−D

ec
−2

00
8

21
−J

an
−2

00
9

11
−M

ar
−2

00
9

29
−A

pr
−2

00
9

17
−J

un
−2

00
9

05
−A

ug
−2

00
9

23
−S

ep
−2

00
9

10
−N

ov
−2

00
9

30
−D

ec
−2

00
9

19
−F

eb
−2

01
0

09
−A

pr
−2

01
0

27
−M

ay
−2

01
0

16
−J

ul
−2

01
0

02
−S

ep
−2

01
0

21
−O

ct
−2

01
0

09
−D

ec
−2

01
0

28
−J

an
−2

01
1

18
−M

ar
−2

01
1

06
−M

ay
−2

01
1

24
−J

un
−2

01
1

12
−A

ug
−2

01
1

30
−S

ep
−2

01
1

E
xp

la
in

de
 V

ar
ia

nc
e 

(%
)

Explained Variance from the first PCA factor

ERI
Markowitz

Fig. 4.11. Variance explained by the first PCA factor.
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ignore the recovery of the stocks in the after-crisis period. This may be one more explanation to the different performance of the ERI
strategy in the different stock groups. This effect can be tempered by downweighting the observations in the historical windowwhen
they move away from the present time. The choice of this weighting rule goes beyond the scope of this paper and should be studied
separately.

Another issue that may be relevant here is the sensitivity of tail estimators (including Hill's α̂) to non-i.i.d. data and volatility clus-
tering. Consistency and asymptotic normality results for tail estimators require that n→ ∞, k→ ∞ and k/n→ 0 where k = k(n) is the
number of observations considered extremal (we use n= 1500 and k= 150). Asymptotically, volatility clustering featured in many
popularmodels (e.g. GARCH) increases the effective sample size by the reciprocal value of the average cluster size. In addition to these
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Fig. 4.13. Estimated tail index α for the S&P 500 stocks.
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Weekly rebalancing: backtest statistics.
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asymptotic results, finite sample behaviour of each particular estimator can be relevant as well (cf. (Chavez-Demoulin and Davison,
2012; Drees, 2003), and references therein).
4.5. Weekly rebalancing

In this part of the studywe switch fromdaily toweekly rebalancing. The calculation of portfolio weights is still based on daily data.
This allows using all observations in the historical window, and not only the weekly returns. In some sense, trading once a week re-
flects the delayed execution of large orders. To avoidmoving themarket, trading of high volumes is often split into parts and executed
step by step.

The results of this experiment are shown in Tables 4.7 and 4.8. For simplicity, the numbers for S&P 500 are taken from the tables on
daily rebalancing. The overall picture is very similar to the daily rebalancing set-up: ERI compares favourable to its peers in all
backtesting runs except for the one experiment with light-tail stocks. The particularly high performance improvement on stocks
with heavy tails achieved with daily rebalancing can also be achieved with weekly rebalancing.
5. Conclusions

Our backtesting results suggest that the Extreme Risk Index (ERI) could be useful in practice. Comparing basic implementations of
the ERI methodology with the minimum-variance (MV) portfolio and the equally weighted (EW) portfolio, we obtained promising
results for stocks with heavy tails. Tailored to such assets, the ERI optimal portfolio not only outperforms MV and EW portfolios,
but it also yields an annualized return of 11.5% over 4 years including the financial crisis of 2008. This advantage should outweigh
the higher transaction costs caused by the ERI based approach. Thus, taking into account the special nature of diversification for
heavy-tailed asset returns, the ERI strategy increases the reward for the corresponding risks.

Our study also shows that theMV and EW approaches can catch up with ERI optimization in some cases, especially when applied
to stocks with lighter tails. Therefore a combined algorithm switching between ERI and variance as risk measure (depending on the
current volatility in themarket)may be a good choice. First empirical studies confirm this. However, the results obtained so far are not
very stable, and the choice of the switching strategy needs a deeper investigation. Other improvements of the ERI methodology may
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be achieved by downweighting the crisis events when they reach the far end of the historical observationwindow and by smoothing
the pattern of trading activities. All these questions will be subject of further research.
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