

Parallel Implementation of the Range-Doppler
Radar Processing on a GPU Architecture

Guanghui Zhao1, Yongfei Liu1, Shuping Zhang2, Fangfang Shen1, Yaohai Lin3, Guangming Shi1
1. Xidian Univeristy, Xi’an, China

2. Beijing Huahang Radio Measurement & Research Institute, Beijing, 100013
3 . Fujian Agriculture and Forestry University, Fuzhou, China

ghzhao@xidian.edu.cn

ABSTRACT
Graphic processing units (GPUs) is widely used to
accelerate the processing speed of the radar detection
procedure, including the range compression, coherent
integration and constant false alarm rate. Specifically,
detailed parallel design of the radar algorithm and the thread
programming are shown. The experimental results show that,
by engaging the parallel technology into the radar
processing procedure, much high speedup ratio can be
obtained. Furthermore, precise target detection can be
guaranteed.
Index Terms—graphic processing units (GPUs), pulse
compression, coherent integration, constant false alarm rate

1. INTRODUCTION
A typical radar system transmits a wideband pulse, such

as linear chirp, coded pulse, etc., then the radar system
correlates the received target echo with the same pulse in a
matched filter form. Normally, to achieve a high resolution
radar detection performance, large bandwidth is adopted in
the current radar system, therefore, according to the
classical Nyquist sampling theorem, the sampling rate
should be at least two times of the bandwidth. Specifically,
to achieve a range resolution with scale of millimeter, the
requirement of bandwidth will reach several hundreds of
megahertz (MHz). Thus, a traditional radar receiver is
equipped with a high-rate analog-to-digital (A/D) converter
followed by a series of digital processing, and in short, the
larger bandwidth, more complicated and expensive cost are
needed.

Till now, many existing radar system processors are
designed with multi-core DSP processors structures. More
recently, new commercial off-the-shelf architectures such as
multi-core platforms have been adopted in the design of the

This work is supported in part by the National Science Foundation
of China under Grants 61372071, 61401333 and 61201289, in part
by the Young Star Science and Technology Project in Shaanxi
province 2015KJXX-18, in part by the AreoSpace T.T.&.C.
innovation Program 201514A.

radar system, and have demonstrated orders-of-magnitude
performance increase. And among these new schemes,
parallel computing has been rejuvenated with the explosion
of multicore technologies. And graphic processing units
(GPUs) is an outstanding technology. NVIDIA shows that,
its Fermi series GPU products can provide more than 1TF
LOPS computation ability for single precision applications
[1].

As a matter of fact, GPU is so popular in recent years that
it is widely adopted in parallel applications, such as genetic
analysis, seismic analysis, supercomputer design and deep
learning. Recently, Bisceglie show the methodology of
using GPU for radar imaging application [2]. In [3], by
dividing raw data in blocks and implementing the range-
Doppler algorithm (RDA), a novel parallelism is developed.
In [4], a novel processor based on multiple GPU devices is
provided for SAR imaging. In [5], both the range
compression and azimuth compression are done in different
processing cores.

In this paper, the GPUs is adopted to accelerate the speed
for a classical radar signal processing. Specifically, we test
the speedup ration of three typical algorithms, including the
range compression, coherent integration and constant false
alarm rate. The experimental results testify the superior
capability of the adoption of the GPUs.

2. TYPICAL RADAR PROCESSING
In the framework of the monopulse radar system, to

detect a target in the range-Doppler (RD) plane, we need to
compute the parameters of the target, including range, angle
and velocity from the raw data. Normally, these parameters
are obtained via individual one-dimensional processing,
such as pulse compression, coherent integration and
constant false alarm rate (CFAR). Take the chirp signal for
example, if a chirp is adopted in the monopulse radar
system, which can be expressed as

() () ()2/ exp 2 (/ 2)cs t rect t T j f t tπ μ= + (1)
where rect(·) represents the envelope signal, t and T stand
for the fast-time in range and the pulse repetition period,
respectively. fc and are the carrier-frequency and modulat-
ing rate, respectively. For a target from range R0, its echo

2016 15th International Symposium on Parallel and Distributed Computing

978-1-5090-4152-7/16 $31.00 © 2016 IEEE

DOI 10.1109/ISPDC.2016.18

70

2016 15th International Symposium on Parallel and Distributed Computing

978-1-5090-4152-7/16 $31.00 © 2016 IEEE

DOI 10.1109/ISPDC.2016.18

76

2016 15th International Symposium on Parallel and Distributed Computing

978-1-5090-4152-7/16 $31.00 © 2016 IEEE

DOI 10.1109/ISPDC.2016.18

76

can be written as
() () ()mr rx t t mT s tδ τ= − − ⊗ (2)

where stands for the impulse function, is the time-delay
of the target. After range compression, the target echo can
be expressed as

()

()

0 0
0

0 0

2 2
sin c / 2

2 4exp 2 exp exp 2

mr

r

R R
x t T B t rect t T

c c

v
j mT j R j f t

π

ππ π
λ λ

= − −

− ⋅ − ⋅
(3)

It can be found that the peak position varies with respect
to different pulse periods.

Now, with target echo recorded from multiple periods,
we can obtain the information of the target's velocity via the
procedure of coherent integration. In short, the fast Fourier
transform (FFT) can be adopted to achieve the Doppler
frequency, and the corresponding equation can be written as

()

()

0 0
0

0 0

2 2
sin c / 2

2 4sin exp exp 2

mr

m

R R
x t T B t rect t T

c c

vc f j R j f t

π

π π
λ λ

= − −

− ⋅ − ⋅
(4)

It can be found that, after the range compression and
coherent integration, the target can be obtained from the RD
plane, with its coordinate ()02 / , 2 /R c v λ . As the target is
move during the coherent integration, we need to use the
CFAR to detect the target, and record the target's position
accordingly. Next, we will show the procedure of the CFAR.

The detection threshold is computed so that the radar
receiver maintains a constant pre-determined probability of
false alarm. Normally, the relationship between the
threshold value VT and the probability of false alarm Pfa can
be expressed as

()22 ln 1 /T faV Pψ= (5)
If the noise power 2 is assumed to be constant, then a

fixed threshold can satisfy the above equation. However,
due to many reasons this condition is rarely true. Thus, in
order to maintain a constant probability of false alarm the
threshold value must be continuously updated based on the
estimates of the noise variance. The process of continuously
changing the threshold value to maintain a constant
probability of false alarm is known as Constant False Alarm
Rate (CFAR). Three different types of CFAR processors are
primarily used. They are adaptive threshold CFAR,
nonparametric CFAR, and nonlinear receiver techniques.
Adaptive CFAR assumes that the interference distribution is
known and approximates the unknown parameters
associated with these distributions. Nonparametric CFAR
processors tend to accommodate unknown interference
distributions. Nonlinear techniques attempt to normalize the
root mean square amplitude of the interference.

The CA-CFAR processor is shown in Fig.1. Cell
averaging is performed on a series of range or Doppler bins.

The echo return for each pulse is detected by a square law
detector. In analog implementation these cells are obtained
from a tapped delay line. The Cell Under Test (CUT) is the
central cell. The immediate neighbors of the CUT are
excluded from the averaging process due to possible
spillover from the CUT. The output of M reference cell is
averaged. The threshold value is obtained by multiplying
the averaged estimate from all reference cells by a constant
K0, which is used as a scaling parameter. A detection is
declared in the CUT if

1 0Y K Z≥ (6)
Cell-averaging CFAR (CA-CFAR) assumes that the

target of interest is in the CUT and all reference cells
contain zero mean independent Gaussian noise of variance

2. Therefore, the output of the reference cells, Z, represents
a random variable with gamma probability density function
with 2M degrees of freedom. In this case, the gamma pdf is

() ()
()

/ 2 1 2

/ 2

exp / 2

2 / 2

M

M M

z z
f Z

M

ψ
ψ

− −
=

Γ (7)

The probability of false alarm corresponding to a fixed
threshold was derived earlier. When CA-CFAR is
implemented, then the probability of false alarm can be
derived from the conditional false alarm probability, which
is averaged over all possible values of the threshold in order
to achieve an unconditional false alarm probability. The
conditional probability of false alarm when y=VT can be
written as

() ()2exp / 2fa TP V y y ψ= = − (8)
It follows that the unconditional probability of false alarm

is

() ()
0fa fa TP P V y f y dy
∞

= = (9)
where f(y) is the pdf of the threshold, which except for the
constant K0 is the same as that defined in (7). Therefore,

() ()
() ()

1 2
0

2
0

exp / 2

2

M

M

y y K
f y

K M

ψ

ψ

− −
=

Γ (10)

substituting (10) and (8) into (9) yields

()0

1
1

fa MP
K

=
+ (11)

Observing of (11) shows that the probability of false
alarm is now independent of the noise power, which is the
objective of CFAR processing.

Fig.1 processing flow of CFAR

717777

3. PARALLEL PROCESS WITH GPU
ARCHITECTURE

In this section, we will discuss the utilization of GPU to
speedup the process of range compression, coherent
integration and CFAR.

A. Range Compression
According to the principle of the range compression, we

split this algorithm to three parts: zero-padding, FFT, matrix
-vector multiplication, IFFT. Here we use 3 kernel function
and the CUFFT library function to realize the above process.
The pseudocode is list below.

cufftHandle plan planmany_Nbl //build CUFFT handle
cufftPlan1d(); //set handle
cufftPlanMany(); //set handle
for (int i=0;i<Nfft-Ntr+1;i++)
{
if (i == 0)
{
kernelhbbl(); //zero-padding
cufftExecC2C(); //use CUFFT library function to realize
the FFT process
kerneldotc(); //matrix-vector multiplication process
cufftExecC2C(); //use CUFFT library function to realize
the IFFT process
kernelscale() //rescale the magnitude of the results
}
else
{
if (i%N_tr == 0)
{
cudaMemcpy(); //remove the data
cudaMemset(); //clear the remainder data
}
}
}

B. Zero-padding
The processing of zero-padding is prepared for the

following FFT transform, and the corresponding kernel is
kernelhbbl(), and we need to split the RD plane into many
grids, on one GPU, 45×4×32×32 threads are need, and after
the processing, each matrix is assigned one value.

Now, we show the time cost of each step within the range
compression in the GPU architecture.

Table I. Time cost of each step in range compression
Step GPU/ms

Zero-padding 0.059392
FFT 0.161760

Matrix-vector multiplication 0.140320
IFFT 0.158720

Data scaling 0.047104

C. Coherent Integration
According to the theory of coherent integration, we split

the whole procedure into the following procedure, i.e.,
smoothing while canceling and FFT process. It only need
one kernel function and CUFFT library function, the
pseudocode is list below.

cufftHandle planNtr //build CUFFT handle
cufftPlanMany() //set handle
for (int i=0;i<Nfft-Ntr+1;i++)
{
huadongxiangxiao() //smoothing and canceling
cufftExecC2C() //use CUFFT library function to realize
the FFT process
}
Similarly, we show the time cost of each step within the

coherent integration in the GPU architecture.
Table II. Time cost of each step in coherent

integration
Step GPU/ms

Smoothing and canceling 0.059360
FFT 0.024576

D. CFAR
Here, we use the CA-CFAR to detect the target, the

number of the reference cell is 26, the threshold is set to be
10.43, the number of the protectable cell is 8. During the
coding in GPU, we split the whole procedure into two parts,
i.e., transformation between the data format and detection
with constant alarm rate. Two kernels are adopted to finish
this target, and the psudocode is list below.

for (int i=0;i<Nfft-Ntr+1;i++)
{
abshuadongxx() //transformation between the data format
kernelcfar () //detection with constant alarm rate
}

Notes that the transformation between the data format is

to transform the data format after coherent integration, since
the radar signal is normally complex, we need to compute
the magnitude of the real part and the image part, and the
following computation of the square root. Then the complex
data can be transformed as a real data. To facilitate the
processing, a new function named smoothing_kernel() is
defined and adopted, and correspondingly, 42×4×32×32
threads are opened for this process. The time cost of the
CFAR is shown below.

Table III. Time cost of each step in CA-CFAR
Step GPU/ms

CFAR (video memory) 0.841728
CFAR (share memory) 0.327648

727878

4. EXPERIMENTS
In this section, we test the speedup of the utilization of

the GPU in the radar target detection procedure. The version
of the GPU is GV-N970G1 GAMING-4GD GTX970. The
radar parameters are: the carrier-frequency and bandwidth
are 240MHz and 0.5MHz, respectively, the pulse-width and
pulse repetition period are 0.1ms and 1ms, respectively.
The sampling frequency is 1MHz, 128 periods are used for
coherent integration, the range and the velocity of the target
are 115km and 600m/s, respectively.

Firstly, we do the process on MATLAB platform without
the help of GPU. In Fig.2, we show the time cost of each
algorithm by CPU, where the data scales for test are:
128×768, 128×1102, 128×1435, 128×1768 and 128×2102,
respectively.

0.983 1.4106 1.8368 2.263 2.6906

x 10
5

0

100

200

300

400

500

600

700

800

900

1000

Data size

C
P

U
 t

im
e-

co
ns

um
in

g/
m

s

Matched filtering

Coherent integration

CFAR

Fig.2 Time cost of the procedure by CPU

It can be found that, as the scale of the RD plane
increases, the time cost of the whole procedure increases
significantly. Next, we do the same procedure on a GPU
architecture, and the time cost is shown in Fig.3.

0.983 1.4106 1.8368 2.263 2.6906

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data size

G
P

U
 t

im
e-

co
ns

um
in

g/
m

s

Matched filtering

Coherent integration

CFAR

Fig.3 Time cost of the procedure by GPU

Compared with Fig.2, Fig.3 shows a significantly reduced

time cost, and for the largest scale, the maximum time cost
reduced 1000 times. To show the advantage of the GPU
platform, the speedup ratio between CPU platform and GPU
architecture is shown in Fig.4, where the largest ratio is up
to 1800, which demonstrates the effectiveness and
efficiency of the engaging GPU for radar processing.

0.983 1.4106 1.8368 2.263 2.6906

x 10
5

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Data size
S

pe
ed

up
(C

P
U

/G
P

U
)

Matched filtering

Coherent integration

CFAR

Fig.4 Speedup ratio between CPU platform and GPU

architecture

5. CONCLUSION
In this paper, the GPU platform is investigated to

accelerate the processing speed of the radar algorithm, the
experimental results show the effectiveness and efficiency
of the proposed approach.

6. REFERENCES

[1] X. Jang, Z. Minhui, W. Yirong, and P. Hailiang, "Parallel

programming in SAR imaging processing," in Geoscience
and Remote Sensing Symposium, 1999. Proceedings. IEEE
1999 International, 1999, pp.567-568.

[2] Maurizio di Bisceglie, Michele D i Santo, Carmela Galdi,
Riccardo Lanari, Nadia Ranaldo, “Synthetic Aperture Radar
Processing with GPGPU”, IEEE Signal Processing
Magazine, vol. 27, no. 2, pp.69-78, March 2010.

[3] R. Albrizio, G. Aloisio, A. Mazzone, and N. Veneziani,"
Multiprocessors architectures for SAR data processing," in
Geoscience and Remote Sensing Symposium, 1991.
Proceed- ings, 1991, pp. 267-270.

[4] Carmine Clemente, Maurizio di Bi sceglie, Michele Di San,
Nadia Ranaldo, Marcello Spinelli, “Processing of Synthetic
Aperture Radar Data with GPGPU,” IEEE Workshop on
Signal Processing Systems SiPS: Design and
Implementation, p 309-314, 2009.

[5] D. B. Kirk and W. m. W. H. wu, Programming Massively
Parallel Processors - A Hands-on Approach. Second Edition.
Waltham, MA, USA: Morgan Kaufmann, 2013.

737979

