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ABSTRACT  
Graphic processing units (GPUs) is widely used to 
accelerate the processing speed of the radar detection 
procedure, including the range compression, coherent 
integration and constant false alarm rate. Specifically, 
detailed parallel design of the radar algorithm and the thread 
programming are shown. The experimental results show that, 
by engaging the parallel technology into the radar 
processing procedure, much high speedup ratio can be 
obtained. Furthermore, precise target detection can be 
guaranteed.  
Index Terms—graphic processing units (GPUs), pulse 
compression, coherent integration, constant false alarm rate 
 

1. INTRODUCTION 
A typical radar system transmits a wideband pulse, such 

as linear chirp, coded pulse, etc., then the radar system 
correlates the received target echo with the same pulse in a 
matched filter form. Normally, to achieve a high resolution 
radar detection performance, large bandwidth is adopted in 
the current radar system, therefore, according to the 
classical Nyquist sampling theorem, the sampling rate 
should be at least two times of the bandwidth. Specifically, 
to achieve a range resolution with scale of millimeter, the 
requirement of bandwidth will reach several hundreds of 
megahertz (MHz). Thus, a traditional radar receiver is 
equipped with  a high-rate analog-to-digital (A/D) converter 
followed by a series of digital processing, and in short, the 
larger bandwidth, more complicated and expensive cost are 
needed.  

Till now, many existing radar system processors are 
designed with multi-core DSP processors structures. More 
recently, new commercial off-the-shelf architectures such as 
multi-core platforms have been adopted in the design of the 
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radar system, and have demonstrated orders-of-magnitude 
performance increase. And among these new schemes, 
parallel computing has been rejuvenated with the explosion 
of multicore technologies. And graphic processing units 
(GPUs) is an outstanding technology. NVIDIA shows that, 
its Fermi series GPU products can provide more than 1TF 
LOPS computation ability for single precision applications 
[1].  

As a matter of fact, GPU is so popular in recent years that 
it is widely adopted in parallel applications, such as genetic 
analysis, seismic analysis, supercomputer design and deep 
learning. Recently, Bisceglie show the methodology of 
using GPU for radar imaging application [2]. In [3], by 
dividing raw data in blocks and implementing the range-
Doppler algorithm (RDA), a novel parallelism is developed. 
In [4], a novel processor based on multiple GPU devices is 
provided for SAR imaging. In [5], both the range 
compression and azimuth compression are done in different 
processing cores.  

In this paper, the GPUs is adopted to accelerate the speed 
for a classical radar signal processing. Specifically, we test 
the speedup ration of three typical algorithms, including the 
range compression, coherent integration and constant false 
alarm rate. The experimental results testify the superior 
capability of the adoption of the GPUs. 

2. TYPICAL RADAR PROCESSING 
In the framework of the monopulse radar system, to 

detect a target in the range-Doppler (RD) plane, we need to 
compute the parameters of the target, including range, angle 
and velocity from the raw data. Normally, these parameters 
are obtained via individual one-dimensional processing, 
such as pulse compression, coherent integration and 
constant false alarm rate (CFAR). Take the chirp signal for 
example, if a chirp is adopted in the monopulse radar 
system, which can be expressed as 

( ) ( ) ( )2/ exp 2 ( / 2)cs t rect t T j f t tπ μ= +           (1) 
where rect(·) represents the envelope signal, t and T stand 
for the fast-time in range and the pulse repetition period, 
respectively. fc and  are the carrier-frequency and modulat- 
ing rate, respectively. For a target from range R0, its echo 
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can be written as 
( ) ( ) ( )mr rx t t mT s tδ τ= − − ⊗                (2)  

where  stands for the impulse function,  is the time-delay 
of the target. After range compression, the target echo can 
be expressed as 
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It can be found that the peak position varies with respect 
to different pulse periods.  

Now, with target echo recorded from multiple periods, 
we can obtain the information of the target's velocity via the 
procedure of coherent integration. In short, the fast Fourier 
transform (FFT) can be adopted to achieve the Doppler 
frequency, and the corresponding equation can be written as 
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It can be found that, after the range compression and 
coherent integration, the target can be obtained from the RD 
plane, with its coordinate ( )02 / , 2 /R c v λ . As the target is 
move during the coherent integration, we need to use the 
CFAR to detect the target, and record the target's position 
accordingly. Next, we will show the procedure of the CFAR.  

The detection threshold is computed so that the radar 
receiver maintains a constant pre-determined probability of 
false alarm. Normally, the relationship between the 
threshold value VT and the probability of false alarm Pfa can 
be expressed as 

( )22 ln 1 /T faV Pψ=                      (5)  
If the noise power 2 is assumed to be constant, then a 

fixed threshold can satisfy the above equation. However, 
due to many reasons this condition is rarely true. Thus, in 
order to maintain a constant probability of false alarm the 
threshold value must be continuously updated based on the 
estimates of the noise variance. The process of continuously 
changing the threshold value to maintain a constant 
probability of false alarm is known as Constant False Alarm 
Rate (CFAR). Three different types of CFAR processors are 
primarily used. They are adaptive threshold CFAR, 
nonparametric CFAR, and nonlinear receiver techniques. 
Adaptive CFAR assumes that the interference distribution is 
known and approximates the unknown parameters 
associated with these distributions. Nonparametric CFAR 
processors tend to accommodate unknown interference 
distributions. Nonlinear techniques attempt to normalize the 
root mean square amplitude of the interference. 

The CA-CFAR processor is shown in Fig.1. Cell 
averaging is performed on a series of range or Doppler bins. 

The echo return for each pulse is detected by a square law 
detector. In analog implementation these cells are obtained 
from a tapped delay line. The Cell Under Test (CUT) is the 
central cell. The immediate neighbors of the CUT are 
excluded from the averaging process due to possible 
spillover from the CUT. The output of M reference cell is 
averaged. The threshold value is obtained by multiplying 
the averaged estimate from all reference cells by a constant 
K0, which is used as a scaling parameter. A detection is 
declared in the CUT if 

1 0Y K Z≥                                  (6) 
Cell-averaging CFAR (CA-CFAR) assumes that the 

target of interest is in the CUT and all reference cells 
contain zero mean independent Gaussian noise of variance 

2. Therefore, the output of the reference cells, Z, represents 
a random variable with gamma probability density function 
with 2M degrees of freedom. In this case, the gamma pdf is  
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The probability of false alarm corresponding to a fixed 
threshold was derived earlier. When CA-CFAR is 
implemented, then the probability of false alarm can be 
derived from the conditional false alarm probability, which 
is averaged over all possible values of the threshold in order 
to achieve an unconditional false alarm probability. The 
conditional probability of false alarm when y=VT can be 
written as  

( ) ( )2exp / 2fa TP V y y ψ= = −                  (8) 
It follows that the unconditional probability of false alarm 

is 

( ) ( )
0fa fa TP P V y f y dy
∞

= =                  (9) 
where f(y) is the pdf of the threshold, which except for the 
constant K0 is the same as that defined in (7). Therefore,  
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substituting (10) and (8) into (9) yields 

( )0

1
1

fa MP
K

=
+                           (11) 

Observing of (11) shows that the probability of false 
alarm is now independent of the noise power, which is the 
objective of CFAR processing. 

 
Fig.1 processing flow of CFAR 
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3. PARALLEL PROCESS WITH GPU 
ARCHITECTURE 

In this section, we will discuss the utilization of GPU to 
speedup the process of range compression, coherent 
integration and CFAR.  

A. Range Compression  
According to the principle of the range compression, we 

split this algorithm to three parts: zero-padding, FFT, matrix 
-vector multiplication, IFFT. Here we use 3 kernel function 
and the CUFFT library function to realize the above process. 
The pseudocode is list below. 

 

cufftHandle plan planmany_Nbl   //build CUFFT handle 
cufftPlan1d();                                  //set handle 
cufftPlanMany();                             //set handle 
for (int i=0;i<Nfft-Ntr+1;i++) 
{ 
if (i == 0) 
{ 
kernelhbbl();                                   //zero-padding 
cufftExecC2C();    //use CUFFT library function to realize 
the FFT process 
kerneldotc();           //matrix-vector multiplication process 
cufftExecC2C();   //use CUFFT library function to realize 
the IFFT process 
kernelscale()       //rescale the magnitude of the results 
} 
else 
{ 
if (i%N_tr == 0) 
{ 
cudaMemcpy();           //remove the data  
cudaMemset();            //clear the remainder data 
} 
} 
} 
 

B. Zero-padding  
The processing of zero-padding is prepared for the 

following FFT transform, and the corresponding kernel is 
kernelhbbl(), and we need to split the RD plane  into many 
grids, on one GPU, 45×4×32×32 threads are need, and after 
the processing, each matrix is assigned one value. 

Now, we show the time cost of each step within the range 
compression in the GPU architecture.  

Table I. Time cost of each step in range compression 
Step GPU/ms 

Zero-padding 0.059392 
FFT 0.161760 

Matrix-vector multiplication 0.140320 
IFFT 0.158720 

Data scaling 0.047104 

C. Coherent Integration 
According to the theory of coherent integration, we split 

the whole procedure into the following procedure, i.e., 
smoothing while canceling and FFT process. It only need 
one kernel function and CUFFT library function, the 
pseudocode is list below. 

 
cufftHandle  planNtr //build CUFFT handle 
cufftPlanMany()       //set handle  
for (int i=0;i<Nfft-Ntr+1;i++) 
{ 
huadongxiangxiao()  //smoothing and canceling 
cufftExecC2C() //use CUFFT library function to realize 
the FFT process 
} 
Similarly, we show the time cost of each step within the 

coherent integration in the GPU architecture.  
Table II. Time cost of each step in coherent 

integration 
Step GPU/ms 

Smoothing and canceling 0.059360 
FFT 0.024576 

D. CFAR  
Here, we use the CA-CFAR to detect the target, the 

number of the reference cell is 26, the threshold is set to be 
10.43, the number of the protectable cell is 8. During the 
coding in GPU, we split the whole procedure into two parts, 
i.e., transformation between the data format and detection 
with constant alarm rate. Two kernels are adopted to finish 
this target, and the psudocode is list below. 

 
for (int i=0;i<Nfft-Ntr+1;i++) 
{ 
abshuadongxx()  //transformation between the data format 
kernelcfar ()       //detection with constant alarm rate 
} 
 
Notes that the transformation between the data format is 

to transform the data format after coherent integration, since 
the radar signal is normally complex, we need to compute 
the magnitude of the real part and the image part, and the 
following computation of the square root. Then the complex 
data can be transformed as a real data. To facilitate the 
processing, a new function named smoothing_kernel() is 
defined and adopted, and correspondingly, 42×4×32×32 
threads are opened for this process. The time cost of the 
CFAR is shown below. 

Table III. Time cost of each step in CA-CFAR 
Step GPU/ms 

CFAR (video memory) 0.841728 
CFAR (share memory) 0.327648 
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4. EXPERIMENTS 
In this section, we test the speedup of the utilization of 

the GPU in the radar target detection procedure. The version 
of the GPU is GV-N970G1 GAMING-4GD GTX970. The 
radar parameters are: the carrier-frequency and bandwidth 
are 240MHz and 0.5MHz, respectively, the pulse-width and 
pulse repetition period are  0.1ms and 1ms, respectively. 
The sampling frequency is 1MHz, 128 periods are used for 
coherent integration, the range and the velocity of the target 
are 115km and 600m/s, respectively. 

Firstly, we do the process on MATLAB platform without 
the help of GPU. In Fig.2, we show the time cost of each 
algorithm by CPU, where the data scales for test are: 
128×768, 128×1102, 128×1435, 128×1768 and 128×2102, 
respectively. 
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Fig.2 Time cost of the procedure by CPU 

It can be found that, as the scale of the RD plane 
increases, the time cost of the whole procedure increases 
significantly. Next, we do the same procedure on a GPU 
architecture, and the time cost is shown in Fig.3.  
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Fig.3 Time cost of the procedure by GPU 

Compared with Fig.2, Fig.3 shows a significantly reduced 

time cost, and for the largest scale, the maximum time cost 
reduced 1000 times. To show the advantage of the GPU 
platform, the speedup ratio between CPU platform and GPU 
architecture is shown in Fig.4, where the largest ratio is up 
to 1800, which demonstrates the effectiveness and 
efficiency of the engaging GPU for radar processing. 
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Fig.4 Speedup ratio between CPU platform and GPU 

architecture 
 

5. CONCLUSION 
In this paper, the GPU platform is investigated to 

accelerate the processing speed of the radar algorithm, the 
experimental results show the effectiveness and efficiency 
of the proposed approach. 
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