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Abstract—As silicon features approach the atomic scale, the
Networks-on-Chip (NoCs) are becoming more susceptible to
faults. Resiliency to device failures is, therefore, a key objective
in the design of the Systems-on-Chip (SoCs). This paper seeks
to address reliability by presenting a routing algorithm for
2D mesh NoCs. Using the proposed method which is designed
based on the Abacus Turn Model (AbTM), the healthy paths
can be dynamically configured according to the location of
faults and congestion in the network. As a result, not only
the functionality of the network is maintained in the vicinity
of faults, but also a high performance communication can be
provided. The presented technique is an adaptive, distributed,
deadlock-free, and congestion-aware routing method which does
not require routing tables or virtual channels. The experimental
results demonstrate the reliability of NoC against multiple link
failures with a small hardware overhead penalty.

Index Terms—Network-on-Chip (NoC); fault-tolerance; rout-
ing algorithm; reconfiguration; deadlock; turn model;

I. INTRODUCTION

The aggressive technology scaling in the semiconductor
industry has introduced two salient challenges: (1) efficient
connection of the increasing number of on-chip resources, and
(2) effective management of the decreasing transistor reliabil-
ity [1]. The first problem concerns the limitation of the bus-
based and ad-hoc interconnects which cannot scale well with
the growing complexity of the Chip Multi-Processors (CMPs).
As a result, the Network-on-Chip (NoC) paradigm has emerged
as a promising alternative to address the heavy communication
demands of such complex platforms. A NoC is a shared and
distributed interconnection network of programmable routers
connected by links which are integrated onto a single chip [2].

The second problem arises from the extreme device scaling
in the VLSI circuits. In fact, on-chip interconnects imple-
mented with deep submicron technology running at GHz clock
frequencies are prone to failures which threaten the reliability
of MPSoCs by low yield and device wear-out. A faulty
Intellectual Property (IP) core may be quarantined or powered
down entirely since it does not affect the packet transmission
between the other cores as long as the connected router and
links can continue functioning. However, once a router or link
has failed, the faulty component cannot be simply discarded
since it will result in the blocking of the packets inside the
network. Thus, the interconnect architecture must be able to
tolerate partial failure due to its critical role in holding all of
the components of the system together [1], [3].

The research in the field of NoC reliability falls into two
main categories: (1) intra-router faults (i.e. faults within the
switches), and (2) inter-router faults (i.e. faults within the links
interconnecting the switches) [4]. Furthermore, the failures are
classified as either permanent or transient. Permanent faults
are introduced by physical damages, such as manufacturing
defects and device wear-out. On the contrary, transient faults
are introduced by power supply noise, ground bounce, inter-
connection noise, etc. Transient faults are beyond the scope of
this paper since they are temporary and unpredictable [3].

The incorporation of fault-tolerance into NoC design mainly
revolves around the routing methods. Routing algorithms con-
trol the distribution of the traffic throughout the network by
determining the paths to deliver the packets from source to
the destination. Deterministic routing algorithms always use a
fixed predetermined path to transmit the packets, oblivious to
the state of the network. Adaptive routing algorithms, on the
other hand, are able to outperform their deterministic counter-
parts in avoiding the congested regions since the packets can
take multiple paths to reach the destination [2], [5].

This paper improves upon our previous work presented
in [6] where an Adaptive and Reconfigurable Fault-tolerant
routing algorithm (aptly called AReF) was proposed based on
the Abacus Turn Model (AbTM) [7]. In [6], the ability of
AReF to tolerate faults is narrowed down to the single switch
failures. The proposed Enhanced-AReF (E-AReF) is designed
to support faulty links such that an 8 × 8 mesh network
remains 100% and 99.94% reliable against single and two
link failures, respectively. Inheriting the properties of AReF,
E-AReF is a reconfigurable, highly adaptive, and distributed
routing scheme which does not rely on routing tables or Virtual
Channels (VCs). Moreover, the deadlock-freedom is ensured
in E-AReF by following the AbTM rules.

The reminder of this paper is organized as follows. The
related works are studied in Section II followed by an explana-
tion of AbTM in Section III. Section IV details the mechanism
of E-AReF. Section V is devoted to the simulation results and
discussion. Finally, the conclusions are drawn in Section VI.

II. RELATED WORK

Most of the existing routing methods [1], [8]–[10], [13]–
[15] rely on detour strategies to sustain the reliability in
NoCs. Thus, once a packet faces a faulty component, it
is rerouted around the fault to reach the destination [16].



TABLE I
COMPARISON OF E-AREF WITH OTHER FAULT-TOLERANT METHODS

Method Topology Fault Reliability Adaptive Minimal Deadlock-free Reconfiguration VCs Routing Table

Fick et al. [1] 2D Mesh/Torus link high 7 7 7 offline 7 3

Vicis [8] 2D Mesh/Torus link high 7 7 7 offline 7 3

Ren et al. [9] 2D Mesh link high 3 7 3 7 7 7

uDIREC [10] Agnostic link high 3 3 3 offline 7 3

ARIADNE [11] Agnostic link high 3 3 3 offline 7 3

MiCoF [3] 2D Mesh switch limited 3 3 3 7 2 7

MAFA [12] 2D Mesh link limited 3 3 3 7 4 7

AReF [6] 2D Mesh switch limited 3 3 3 online 7 7

E-AReF (proposed) 2D Mesh link limited 3 3 3 online 7 7

However, rerouting is a costly solution as it may introduce
deadlock or livelock which are catastrophic to a network. In
general, the methods employing detour can be divided into
three main groups, depending on the mechanism they use to
create a deadlock-free path around the faulty region: some
approaches [1], [9], [13] opt for a more restricted set of path
selection heuristics such as the turn model [5], some [14]
use VCs, and some [1], [8], [10], [14], [15] require offline
reconfiguration of routing tables.

The partially adaptive routing algorithms designed based
on the turn model have a limited fault-tolerance capability
(e.g. up to n − 1 faults in an n-dimensional mesh). This
is the result of the routing restrictions imposed by the turn
model in order to eliminate the formation of cycles in the
network. Exploiting such inferior routes may further aggravate
the network performance [16]. Contrarily, the fully adaptive
routing methods designed using VCs provide a better fault-
tolerance capability. However, incorporating VCs imposes
extra hardware requirements and complex control logic to the
routers [5]. The table-based methods also incur significant
overheads to store and compute the routing tables [16].

Regardless of the mechanism being used, most of the detour
algorithms suffer from two major drawbacks: (1) The hotspots
are more likely to be created around the faults when rerouting
is performed. Furthermore, the aggregated congestion by tak-
ing longer paths degrades the performance, significantly [3].
(2) Strict restrictions on the number and location of faults do
not permit arbitrary fault patterns within the network.

Besides routing algorithms, redundancy is an alternative ap-
proach to boost the robustness in NoCs. However, redundancy
is generally associated with high overhead which is mainly
comprised of extra latency and dramatic hardware costs [17].

Several studies [3], [8], [10], [16], [18], [19] look specifi-
cally into router design to improve the NoC reliability through
microarchitectural modifications. For instance, the mechanism
applied in the MiCoF approach [3] connects the input and
output router ports directly by adding redundant wires to
maintain the connectivity of the network and bypass the faulty
router in the vicinity of faults.

Reconfiguration techniques have also been widely utilized to
design resilient NoCs. In fact, most of the fault-tolerant routing
algorithms perform route-reconfiguration to bypass the faulty
elements. Reconfiguration is approached by ARIADNE [11]

and Hermes [15] for link failures, by [19] for switch fail-
ures, and by Vicis [8] for unconstrained faults. Vicis and
uDIREC [10] present unified frameworks for diagnosis and
subsequent reconfiguration that are robust to a large number
of permanent failures. This comes at the expense of a costly
Built-In Self-Test (BIST) unit and complex reconfiguration
process. In general, reconfiguration solutions require some
extra logic to enable alternative paths compared to a plain
NoC implementation. Besides, it is also necessary to avoid
deadlocks that can result from the interplay between the old
and the new routings in the transition phase, while the network
is still being reconfigured [17].

Table I presents a comparison of the proposed method
with the recent approaches and their attributes. As can be
understood from the literature, it is likely that a combination of
different techniques may be required to address fault-tolerance,
given the numerous fault situations that may occur in a
network. Recent comprehensive surveys on design approaches
to combat failures in NoCs can be found in [17] and [20].

III. ABACUS TURN MODEL (ABTM)

Before presenting the proposed scheme, it is necessary to
elaborate on AbTM which is used to design E-AReF.

Considering that a 90-degree change of the traveling direc-
tion is called a turn [21], eight turns can be formed using the
four directions, east (E), west (W), north (N), and south (S),
in a 2D mesh. The two abstract cycles formed using these
turns are illustrated in Fig. 1(a). The routing function for an
interconnection network becomes deadlock-free by breaking
the cycles formed by the turns. Chiu [21] proposed the
Odd-Even (OE) turn model and proved that a network is
deadlock-free if the rightmost columns in the clockwise and
counter-clockwise cycles never appear. The OE permitted and
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Fig. 1. (a) Clockwise and counter-clockwise cycles formed by eight turns in a
2D mesh [5], (b) permitted and prohibited turns using the OE turn model [21],
(c) clockwise, and (d) counter-clockwise rightmost columns [7].



prohibited turns are shown in Fig. 1(b) by the solid and dashed
arrows, respectively. Note that the permitted and prohibited
turns in OE are static and cannot be changed at run-time [7].

Fu et al. [7] further extended the OE turn model to design
a reconfigurable method which is called AbTM. In AbTM,
the 2D mesh is resembled by an abacus such that each
column corresponds to a wire with two sliding and separately
controlled clockwise and counter-clockwise beads. The main
idea of AbTM is based on the fact that the clockwise rightmost
column is formed when an ES turn occurs above a SW
turn. Analogously, the counter-clockwise rightmost column
is formed when an EN turn takes place below a NW turn
(Fig. 1(c)-(d)). Thus, the AbTM rules are regulated as [7]:

Rule 1: In each column, there is a clockwise bead, above
which all ES turns are prohibited, and below which all SW
turns are prohibited.

Rule 2: In each column, there is a counter-clockwise bead,
above which all NW turns are prohibited, and below which all
EN turns are prohibited.

Rule 3: The clockwise (counter-clockwise) bead holder
allows all of the clockwise (counter-clockwise) turns.

Thus, wherever the beads are located, the clockwise and
counter-clockwise rightmost columns cannot be formed utiliz-
ing the AbTM rules, and the deadlock-freedom is guaranteed.
The distribution of the AbTM prohibited turns in a 4×4 mesh
is illustrated in Fig. 2. The solid and hollow ellipses represent
the clockwise and counter-clockwise beads, respectively [7].

By moving the beads along a column, the permitted and
prohibited turns, and consequently, the degree of routing adap-
tiveness varies. Taking advantage of this important possibility,
the adaptiveness can be adjusted according to the traffic pattern
by moving the beads along each column. Thus, AbTM as an
online reconfiguration strategy, can dynamically reconfigure
itself to grant full adaptivity for the packets traveling towards
the hotspots. Note that in AbTM, four turns (i.e WN, NE, WS,
and SE) are trivial and always assumed to be enabled. On the
contrary, the other four critical turns (i.e. ES, SW, EN, and
NW) are enabled or disabled by moving the beads [7].

Figure 3 presents an example of the AbTM reconfigurable
routing in a 3× 3 mesh. Assume that the clockwise beads are
located in the top row initially, and the source node 5 attempts
to transmit messages to the destination node 0 for a long
period. As shown in Fig. 3(a), there exists just one admissible
path from 5 to 0 because the SW turns are prohibited in the

(a) (b)

Fig. 2. Prohibited (a) clockwise, and (b) counter-clockwise turns using
AbTM [7].

(a) (b) (c)

Fig. 3. AbTM reconfigurable routing example [7].

routers below the beads. Since this deterministic path is highly
prone to congestion, the source node makes a request to node 2
to activate the prohibited SW turn. Node 2 collects the requests
and negotiates with the bead holder (node 8) to release the
bead. Once the bead is passed to node 2, the SW turn is
enabled in this node and there are two available paths between
the source and destination, leading to a more balanced traffic
distribution (Fig. 3(b)). Eventually, node 4 requests the bead
movement in a similar fashion. The final states of the beads
are shown in Fig. 3(c), where full adaptiveness is granted to
this source-destination pair without using VCs [7].

Moving beads needs to be handled with extreme care in
AbTM to ensure the deadlock-freedom. In [7], a safe opera-
tion called bead passing is introduced to keep the network
deadlock-free during the reconfiguration. Furthermore, two
reconfigurable routing algorithms (i.e. arm-wrestling and tug-
war) are proposed to evaluate the requests and determine the
direction of the bead movement [7].

IV. PROPOSED ROUTING METHOD

In general, designing a routing protocol that is both fault-
tolerant and deadlock-free poses a major challenge [6]. Thus,
most of the adaptive fault-tolerant routing methods proposed
in the literature [3], [12], [14] exploit VCs to maintain the
reliability and deadlock-freedom in the presence of faults.

As indicated in [6], AReF is the first fault-tolerant rout-
ing method which is able to minimize rerouting and ensure
deadlock-freedom by reconfiguring the healthy minimal paths
without utilizing VCs or routing tables. In this work, similar
to AReF [6], we adopt the idea of the AbTM reconfigurable
routing method and combine that with fault-tolerance. The
packet routing regulations in AReF were designed for a single
faulty switch. In this paper, we devise E-AReF targeting the
faulty links in the network. Moreover, similar to AReF, the
packets can be routed through alternative paths using E-AReF.

A. Fault Model

The routers in a NoC are connected through bidirec-
tional (i.e. pairs of unidirectional) links. We have employed
a coarse-grained fault model similar to ARIADNE [11] where
link failures are assumed to be bidirectional. In other words, a
faulty link in each direction is modeled by tagging the entire
bidirectional link as faulty. A NoC with two broken links
is illustrated in Fig. 4(a). Note that faults may be present
on each of the constituent’s unidirectional links or both. The
corresponding undirected topology after the application of the
fault model is shown in Fig. 4(b).
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Fig. 4. (a) A 4×4 2D mesh NoC with two faulty links, and (b) the resulting
network topology considering the fault model.

B. Fault Information

In order to avoid traversing unnecessary non-minimal paths,
each router should be informed about the healthiness or defec-
tiveness of its surrounding components (i.e. fault information
or look-ahead). This information is used by the algorithm
to make reliable routing decisions. As shown in Fig. 5, E-
AReF requires each router to be aware of the status of
its 16 surrounding links (i.e. 2-hop distance look-ahead). In
the Minimal and Adaptive Fault-Tolerant Algorithm (MAFA)
presented in [12], the required fault information is the same.

C. Tolerating Faulty Links

1) Tolerating Single Faulty Link: E-AReF is able to tolerate
any single link failure with 100% reliability. The routing
strategy to bypass a single faulty link is explained as follows:

In the cases where the destination is located on the NE, SE,
NW, or SW of the source, the packets facing a faulty link can
be routed through the minimal paths towards the destination.
Fig. 6 illustrates all of the cases where a NE-ward packet faces
a faulty link and the destination node, D, is one hop away from
the current node, C, along both X and Y dimensions. Note that
C can also refer to the source node throughout the text.

Consider case no. 1 in the figure where the paths from C
to D are both healthy. In such case, the availability of the
EN turn in the right side column is inspected. If the EN turn
is permitted according to the current location of the counter-
clockwise bead, the packet can be adaptively forwarded to
either X or Y directions depending of the congestion condition
of the east and north neighbors, respectively. Otherwise, the
packet is transmitted to the Y direction. The reason why the
Y direction (black path in the figure) is preferred rather than
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Fig. 5. The fault look-ahead in E-AReF.

the X direction (blue path) is that using the Y direction, the
packet takes a trivial NE turn to reach D. However, choosing
the X direction requires the critical EN turn to be activated.
Since bead passing is a costly operation, the paths which do
not require a critical turn are preferred using E-AReF.

In case no. 2 where a broken link on the right side of C is
detected, the packet has to take a NE turn as the only available
path to D. This is also true for case no. 5 where the EN link is
damaged. Cases 3 and 4 indicate faulty links on the north and
northeast side of C, respectively. In those cases, taking the EN
turn is inevitable. Hence, if the counter-clockwise bead on the
right side of C is located above that node, C makes a request
to the bead holder to release the bead. It is worth mentioning
that in E-AReF, similar to AReF, the complaints related to the
fault have the highest priority. Thus, once such a request is
received by the bead holder, it will pass the bead immediately
(considering the deadlock-free requirements) to form a path
towards D. As can be seen, E-AReF is able to configure the
available minimal paths using AbTM so that it is possible to
bypass the fault in the network without rerouting the packets.

2) Tolerating Two Faulty Links: The strategy of E-AReF to
bypass two faulty links is explained in the following, based on
the relative position of the destination with respect to source.

First, we start with the NE-ward packets where the distance
between C and D is one hop along both dimensions. All of
the cases with two faulty links are illustrated in Fig. 7. If the
faulty links affect just one of the minimal paths to D, the
other minimal path is used for routing. This is clearly shown
in cases 6 and 7 in Fig. 7(a) and (b).

In case no. 8, the NE and EN links are both broken. Since
no minimal path is available between C and D, E-AReF
inevitably should forward the packets through a non-minimal
path. In such case, three scenarios may happen: The packets
are normally sent to the Y direction. After two hops, the packet
takes a trivial NE turn and then an ES turn to reach D by
adjusting the location of the clockwise bead, if necessary. Such
a non-minimal path is considered to be healthy assuming the
number of faults is limited to two which are already detected.
This scenario is shown in the left side of Fig. 7(c). The second
scenario occurs when D is located on the top borderline of
the mesh. Therefore, using the path of the first scenario is
impossible. In this case, C sends the packet to the X direction
where after two hops, the counter-clockwise bead has to be
moved to form a path towards D. Although one of the last
two turns in this non-minimal path is prohibited (dashed in
the figure), E-AReF remains deadlock-free and the prohibited
turn can be safely taken. This is due to the fact that a cycle
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Fig. 6. Tolerating single faulty link in E-AReF using minimal paths when
the destination is located on the NE and one hop away from the current node
along both dimensions.
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Fig. 7. Tolerating two faulty links in E-AReF when the destination is located on the NE and one hop away from the current node along both dimensions.

cannot be formed in the borderlines, as proven in [13]. Finally,
the third scenario is shown in the right side of Fig. 7(c) where
D is located on the NE corner of the mesh. As can be seen
in the figure, nor a minimal neither a non-minimal path can
be formed between C and D. Thus, the packets cannot reach
the destination in this particular case and need to be dropped.

As depicted in in Fig. 7(d), the scenarios in case 9 are
similar to those in case 8: The packets are normally forwarded
to the west to be routed through a non-minimal path with
trivial turns. But if C is in the left borderline, the non-minimal
path in the south is selected for routing. However, the packets
are dropped if C is located on the SW corner of the mesh.

Case no. 10 implies E and NE faulty links where the packets
are sent to the north or south if C and D are on the bottom and
top borderlines, respectively. It is noteworthy to mention that
the packets can adaptively take one of those paths to reach D
if both paths are available (i.e. C or D are not on the border).

Finally, when the N and EN links are faulty (case no. 11),
C forwards the packet to the west to use a non-minimal path
with trivial turns. If C is on the left borderline, the packet is
sent to the east. The prohibited turn does not jeopardize the
deadlock-freedom considering the broken links in the border.

Now consider all of the cases with two broken links where
the distance from C to D is one and two hops along the X
and Y dimensions, respectively. Among those cases, routing
the packets when both of the faulty links fall within the scope
of the look-ahead information of C (considering Fig. 5) is
quite straightforward. Hence, only the cases where at least
one of the defective links cannot be detected by C are shown
in Fig. 8 due to the limited space. The faulty link which cannot
be detected by C is marked in red in this figure. The cases
with two broken links where the distance from C to D is two
and one hops along the X and Y dimensions are similar to
those of Fig. 8 and are not repeated here.

As shown in Fig. 8(a), when C detects a faulty link on the

east, the packets are routed to the Y direction. After the first
hop, the packet stands in one of the cases of Fig. 6 (case no. 4
or 5) and is routed accordingly to arrive at the destination. A
similar routing strategy is pursued in Fig. 8(c).

Once the link on the north side of C is faulty and the second
possible fault is undetected, the packets are duplicated and
one copy is sent to the east and the other one to the west. As
depicted in Fig. 8(b), this conservative strategy guarantees the
packets to arrive at the destination assuming the number of
faults is limited to two. This is due to the fact that depending
on the location of the second fault, the packets following one
of the paths may fail to reach the destination. Note that if C is
on the left borderline, there is no need for duplication and the
packet is simply sent to the east. A similar procedure is also
followed in Fig. 8(d) where the NE link is broken. However,
the packets can be transmitted through the minimal paths.

In Fig. 8(e) where the NN link is faulty, the packets are sent
towards the Y direction. After the first hop, the remaining path
is determined depending on the location of the second fault.

Lastly, the cases where the distance from C to D is one and
two hops along the X and Y dimensions and all of the links
within the scope of C are healthy are illustrated in Fig. 8(f).
The packet is forwarded to the greater-distance dimension
in which the offset to D is not zero. This technique which
was employed in MAFA avoids to reduce the offset in one
dimension into zero when the offset along the other dimension
is greater than one. Therefore, the likeliness of finding a
deadlock-free and shorter path towards the destination is
increased. For instance, in this particular case, C sends the
packet to the Y direction. As it is depicted in Fig. 8(f), after
the first hop, the packet stands in one of the cases in Fig. 7(c).

When the distance from C to D is two hops or more along
both dimensions, C forwards the packet to the healthy output
channel (Fig. 9). If both of the neighbors are faulty, the routing
approach is similar to Fig. 7(d). If both of the neighbors
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Fig. 8. Tolerating two faulty links in E-AReF when the destination is located on the NE and one and two hops away from the current node along the X and
Y dimensions, respectively. The broken link which cannot be detected by the current node is marked in red.

are healthy, the less congested neighbor is selected to send
the packet. Afterwards, the packet reaches one of the cases
discussed previously. As a result, the degree of adaptiveness
in E-AReF increases with the distance towards the destination.
But when the packet approaches the destination and the
distance is reduced, E-AReF behaves conservatively and its
adaptivity is limited in order to bypass faults through deadlock-
free and preferably minimal paths.

The routing policy in E-AReF for the NW-, SE-, and SW-
ward packets is similar to the NE-ward packets. Thus, those
cases are not repeated here. Furthermore, when the source and
destination are located in the same row or column, the packets
approach D through the minimal path as long as such a path
is available. Following the same strategy as discussed in this
section, the packet is rerouted through a non-minimal path if
C detects a broken link. Note that the bead passing operation
in E-AReF is the same as AReF to minimize contention and
avoid starvation. More details can be found in [6].

In summary, the main idea behind E-AReF is to reconfigure
the locations of the beads to activate the critical turns where
necessary in order to take advantage of the available minimal
paths without applying VCs. It is worth mentioning that VCs
can be added to E-AReF to increase the performance.
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Fig. 9. Tolerating faulty links in E-AReF when the destination is located on
the NE and two hops away from the current node along both dimensions.

D. Robustness Analysis

As discussed in the previous section, the network drops the
packets if two faulty links are located in diagonal positions
in the corners of the mesh. There are 4 such cases in a given
network which cannot be supported by E-AReF. In order to
analyze the robustness of the network using E-AReF, we first
calculate the total number of different combinations where two
links are broken in an n× n network.

Nall combinations =

(
2n(n− 1)

2

)
= (2n2−2n)(2n2−2n−1)

2

where 2n(n−1) is the total number of links in an n×n mesh.
Thus, reliability, R, can be calculated by:

R = 1− 4
Nall combinations

= 1− 8
(2n2−2n)(2n2−2n−1)

As shown in Table II, E-AReF is highly robust against two
faulty links in the network.

V. SIMULATION RESULTS AND DISCUSSION

In this section, the efficiency of the proposed method is eval-
uated using a modified version of BookSim 2.0 cycle-based
network simulator [2]. The configuration parameters are shown
in Table III. The packet size is uniformly distributed between
5 and 10 flits. In each set of simulations, the location of the
faulty link(s) is selected randomly. E-AReF is implemented
according to the arm-wrestling [7] algorithm. The simulator
was warmed up for 10, 000 cycles to be stabilized and the

TABLE II
ROBUSTNESS OF NETWORKS USING E-AREF AGAINST TWO FAULTS

Network size 4× 4 6× 6 8× 8 16× 16

Reliability 98.55% 99.77% 99.94% 99.99%



TABLE III
SIMULATION PARAMETERS

Parameter Value

Network size & Topology 8× 8 2D mesh
Data width 32 bits
Buffer (FIFO) size 8 flits
Congestion threshold (Cth) 62.5% of the total buffer capacity

results were averaged over the next 200, 000 cycles. The
MAFA routing algorithm [12] was selected for comparison
against E-AReF as the most similar approach to tolerate link
failures (see Table I). Unlike E-AReF, MAFA exploits two
VCs along each dimension to ensure deadlock-freedom. In
order to compare MAFA and E-AReF fairly, the MAFA buffer
queues are equipped with 4 entries in both dimensions.

A. Performance Analysis

1) Uniform Traffic Profile: The average latency curves of
E-AReF and MAFA routing methods as a function of the
network’s message injection rate (i.e. the number of flits
injected into the network per cycle per node) are plotted in
Fig. 10, for a network without fault, with a single faulty link,
and two faulty links. The number of faults are indicated in
the parentheses. As shown by simulations, employing MAFA
results in a lower average latency compared to E-AReF. The
reason is the reconfiguration strategy in E-AReF where the
beads are moved according to the traffic history. In fact, the
reconfiguration policy in E-AReF (and AbTM, in general) is
mostly wrong under the uniform traffic. For instance, consider
an interval where data is sent to the SE direction. E-AReF will
adjust the locations of beads to provide more adaptivity to that
direction. However, SE has the lowest probability to carry
bursty traffic in the next interval, according to the uniform
traffic pattern [7]. On the contrary, MAFA which provides a
static adaptivity achieves better performance results under the
uniform traffic for the network with or without broken links.

2) Hotspot Traffic Profile: In the hotspot traffic pattern, a
few nodes in the network which are designated as hotspot
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Fig. 10. Performance comparison of an 8×8 mesh under uniform (left) and
hotspot (right) traffic profiles.

nodes receive an extra proportion (h) of the traffic in addi-
tion to the regular uniform traffic. In our simulations, four
hotspot nodes at the center of the network were selected with
h = 40%. The average latency curves of MAFA and E-AReF
are plotted in Fig. 10. As discussed earlier, adaptivity improves
the performance in congested networks to a high extent.
Thus, E-AReF is able to outperform MAFA in tackling the
congested areas of the network by providing a higher degree of
adaptiveness, and thereby reducing the average communication
delay. MAFA offers a fixed degree of adaptiveness to the
packets in all of the regions of the network oblivious to the
traffic condition. Therefore, the performance of MAFA drops
significantly with the increasing congestion as a result of the
faulty links in the network. E-AReF, on the other hand, is able
to dynamically allocate more adaptivity to the bursty traffic
which is highly crucial at the occurrence of fault. Note that
for traffic profiles with a predictable pattern such as hotspot,
the number of reconfiguration operations is small and does not
affect the performance negatively.

3) Trace-driven Traffic: For a more realistic traffic analy-
sis, we carried out trace-driven simulations from SPLASH-2
benchmarks across an 8×8 NoC configured with 20 processors
and 44 shared L2 cache memory modules. Figure 11 shows
the average packet latency across five benchmarks, normalized
to MAFA. E-AReF provides lower latency than MAFA and it
shows the greatest performance gain for cholesky with 22%
reduction in latency. The average performance gain of E-AReF
across all benchmarks is up to 16%.

B. Reliability Analysis

In order to assess the reliability of E-AReF, the number of
faulty links was increased from 1 to 10. The faulty links were
selected using a random function with a distinct starting seed
to ensure a fair comparison. The reliability is measured as [3]:

No. of successful packet arrivals at the destination nodes
Total no. of delivered packets

As can be seen in Fig. 12, both methods are 100% reliable
when there is a single defective link in the network. Moreover,
E-AReF can maintain a comparable reliability as that of
MAFA despite refusing to use VCs. Both methods can tolerate
up to ten broken links by more than 80% reliability.

C. Area Analysis

To evaluate the hardware cost of the proposed method,
the routers were modeled with VHDL and synthesized by
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Fig. 11. Performance for application traces.
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TABLE IV
HARDWARE IMPLEMENTATION DETAILS (µm2)

Router FIFO Xbar-Arb. Rout. BIST Reconf. Total

Baseline 11, 568 1, 667 435 − − 13, 670
MAFA 11, 620 4, 857 1, 163 1, 142 − 18, 782

E-AReF 11, 568 1, 756 1, 436 1, 142 1, 440 17, 342

Synopsys Design Compiler using the TSMC 65nm standard
cell library. The E-AReF router was implemented using the
universal Logic-Based Distributed Routing (uLBDR) proposed
in [22]. The Reconfiguration Unit in E-AReF does not add
delay to the critical path of uLBDR (similar to AbTM [7]).
Hence, the time efficiency of uLBDR is inherited by E-AReF.
We have considered the primary components of area overhead
in our model, including the input buffers, crossbar switch and
arbiter, routing unit, BIST and the fault information distribu-
tion mechanism, and reconfiguration unit. The overhead of
each module for MAFA, E-AReF, and the baseline router
without the fault tolerance capability is shown in Table IV.

The E-AReF router imposes around 26% area overhead
compared with the baseline router which is mainly associated
with the routing and reconfiguration technique to tolerate link
failures with a graceful performance degradation. Assuming
that the router area occupies 11% area of a tile as reported
by Intel [7], the increase in the tile area using E-AReF will
be less than 2.9% which can be considered negligible. As
can be predicted, the MAFA router imposes around 8.3% area
overhead in comparison with E-AReF. The area penalty of
MAFA is mostly due to the VC mechanism which increases
the complexity of the crossbar and arbiter.

VI. CONCLUSION

In this paper, a reconfigurable and fault-tolerant rout-
ing method (E-AReF) is presented for wormhole-switched
2D mesh NoCs. The main advantages of E-AReF over the
conventional methods can be summarized as: (1) Dynamic
reconfiguration of the algorithm according to the location of
faults and congestion in the network to tolerate link failures
with a high reliability; (2) E-AReF strives to minimize rerout-
ing; (3) E-AReF can route the packets adaptively, even in the
vicinity of faults; (4) To the best of our knowledge, it is the
first routing algorithms that combats link failures and ensures
deadlock-freedom without adding VCs or routing tables.
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