
Appl Intell
DOI 10.1007/s10489-014-0617-y

Discrete gbest-guided artificial bee colony algorithm
for cloud service composition

Ying Huo · Yi Zhuang · Jingjing Gu · Siru Ni · Yu Xue

© Springer Science+Business Media New York 2014

Abstract The widespread application of cloud computing
creates massive application services on the Internet, which
is a new challenge for the models and algorithms of cloud
service composition. This paper proposes a new method
for cloud service composition. Time attenuation function
is added into the service composition model, and service
composition is formalized as a nonlinear integer pro-
gramming problem. Moreover, the Discrete Gbest-guided
Artificial Bee Colony (DGABC) algorithm is proposed,
which simulates the search for the optimal service com-
position solution through the exploration of bees for food.
Experiments show that the service composition model with
the time attenuation function can make the quality of service
more consistent with the current characteristics of services.
Compared with other algorithms, the DGABC algorithm
has advantages in terms of the quality of solution and effi-
ciency, especially for the large-scale data, and it can obtain
a near-optimal solution within a short period of time.

Keywords Quality of service · Reputation · Service
composition · Artificial Bee colony algorithm

Y. Huo (�) · Y. Zhuang · J. Gu · S. Ni
College of Computer Science and Technology,
Nanjing University of Aeronautics and Astronautics,
Nanjing 210016, China
e-mail: huoying@nuaa.edu.cn

Y. Xue
School of Computer and Software, Nanjing University
of Information Science and Technology,
Nanjing 210044, China

1 Introduction

The service-oriented computing model can solve the
problems of resource sharing and compatibility for
heterogeneous platforms, making it possible to implement
the cross-platform service composition. Increasing popu-
larity of cloud computing enables small companies which
could not build a data center in the past to rent the infrastruc-
ture and develop new services. This decreases the cost but
results in the rapid growth of the number of services on the
Internet. Facing the large number of cloud application ser-
vices, it has become an important issue in the field of service
composition to obtain the optimal cloud service composi-
tion solution which can meet the requirement within a short
period of time.

Since more and more services can meet the same require-
ment, nonfunctional characteristics such as Quality of
Service (QoS) should also be considered during the ser-
vice selection and composition. QoS is usually applied to
describe nonfunctional characteristics of services, and it has
been discussed a lot in previous research. In [1], five generic
quality attributes are considered, including execution price,
execution duration, reputation, reliability and availability.
In [2], five similar QoS properties, execution time, avail-
ability, price, reputation and data quality are considered.
The WS-DREAM dataset focuses on the user-dependent
QoS properties such as failure probability, responsetime
and throughput, which vary widely among different users
[3]. Some other quality attributes of service have been
considered including accessibility, interoperability analysis,
etc [4]. However, instability caused by the lack of credi-
ble and professional third-party certification institutions has
intensified. Some malicious services may even threaten the
safety of people’s identity information and their property.

mailto:huoying@nuaa.edu.cn

Ying Huo et al.

Therefore, trustiness of service is becoming more and more
important.

Several individual services are usually composed into
a new complex service to provide an aggregation func-
tion. Up to now, there are three typical methods for service
composition, namely local selection method [5, 6], global
optimization method [1, 2], and intelligent optimization
method [7–11]. The intelligent optimization method can
obtain the optimal service composition solution within a
short period of time, thus it has attracted great attention in
recent years.

However, for the large-scale data in cloud computing,
existing algorithms are not perfect in terms of solution qual-
ity and efficiency because of the larger solution space. Arti-
ficial Bee Colony (ABC) is a new evolutionary algorithm
proposed in 2005 [12]. Compared with other similar evo-
lutionary techniques, it has some attractive characteristics
and it has proven to be more effective in many cases [13].
It incorporates a flexible and well-balanced mechanism to
adapt to the global and local exploration and exploitation
abilities within a short period, thus this method is efficient
in dealing with the large and complex search space [14].
To the best of our knowledge, few researches have applied
ABC algorithm to solve the service composition problem.

This paper proposes a novel method for cloud service
composition. Time attenuation function is added into the
service composition model in order to increase the weight
of the recent scores during the comprehensive evaluation
so that accuracy of the assessment can be improved. The
Discrete Gbest-guided Artificial Bee Colony (DGABC)
algorithm, which is proposed based on ABC, simulates the
search for the optimal service composition solution through
the exploration of bees for food. Experiments have proved
the effectiveness and efficiency of this approach.

The rest part of this paper is organized as follows. In
Section 2, the related work is discussed. In Section 3,
the trusted service composition is modeled, including the
trusted service quality model and the composition model.
Section 4 describes the DGABC algorithm for service com-
position in details, including encoding, initialization, and
the iteration process. In Section 5, the effectiveness and
efficiency of the model and the algorithm are verified
through experiments. Finally, the conclusion is given in
Section 6.

2 Related work

2.1 Trusted service evaluation

The common method for evaluating the trustiness of ser-
vice is to add the trust attributes into the traditional QoS
indicators and then calculate the final evaluation value of

service through a weighted algorithm or an aggregation
algorithm [5].

In most of the current researches, trustiness of the ser-
vice is measured by its reputation, which is subjective to
some degree. In order to improve the accuracy and relia-
bility of the assessment, in [15], trustiness of the service
depends on the synthetical evaluation of service providers,
customers context and historical statistics, and the slight
non-uniform mutation operator is employed to make the
evaluation more reasonable. In [16], a trustworthy service
selection method is proposed based on preference recom-
mendation. Those who recommend the service are selected
according to the similarity rating computed by the Pear-
son correlation method, and their recommendations are
filtered according to the users’ recommendation level, rela-
tive domain degrees, and similarity ratings. The two levels
of filtration can make the recommendation more credi-
ble. Furthermore, a reputation evaluation approach includ-
ing feedback checking, feedback adjustment, and feedback
detection is proposed in [17]. With the examination of the
accuracy of the feedback from users, evaluation values from
trusted users are selected to eliminate confusing informa-
tion. The feedback harmony is calculated based on users’
feedback and the context, and it is compared with the actual
feedback value to eliminate preference information. Mali-
cious feedback can be detected through the sampling and
detection algorithms, which can improve accuracy of the
assessment.

These studies can eliminate subjectivity of the evaluation
to a certain extent. However, timeliness of the reputation
has not been considered. In the competitive market, service
providers will improve the quality of service continually
according to the feedback in order to attract more users.
However, the previous methods of computing reputation
simply calculate the average of all the ratings obtained at
different moments, which cannot reflect the variation of
service reputation in time.

2.2 Service composition

Service composition is the process to find the existing and
appropriate service components to compose a new service
which has an aggregation function. Currently, there are three
methods: 1) Local selection method. Different QoS index
values are mapped into a single one through the utility func-
tion, and the Multiple Criteria Decision-Making (MCDM)
process is applied to select the appropriate concrete ser-
vices from each abstract service group for composition [6].
This method has the best efficiency, whereas it can guaran-
tee only local QoS constraints. For example, the demand of
the minimum overall operating time of composite service
cannot be met. 2) Global optimization method. The global
service composition problem is transformed into a Mixed

Discrete gbest-guided artificial bee colony algorithm

Integer Linear Programming (MILP) problem, and solved
by a linear solver [1, 2]. It can obtain a solution of high qual-
ity quickly, but it requires that both the objective function
and constraints are linear functions, which limits the algo-
rithm to some extent. 3) Intelligent optimization method. It
is also a global optimization method. The difference is that
the problem is nonlinear and can be solved with intelligent
optimization algorithms, such as Genetic Algorithms (GA)
[7, 8], Particle Swarm Optimization (PSO) algorithm [9,
10], Ant Colony Optimization (ACO) algorithm [11], and so
on. Intelligent optimization methods can solve the complex
service composition problem within a short period of time
with high quality, thus it has got the widespread concern in
recent years.

Service composition can be regarded as a nonlinear inte-
ger programming problem. The difficulty of the research is
that the solution space is too large to be searched completely
in polynomial time. In particular, for the large-scale data in
the cloud environment, existing algorithms cannot reach a
satisfactory result within limited time. The key to designing
a new algorithm for service composition is to improve the
quality of the solution and decrease time complexity at the
same time.

3 Trusted service composition model

3.1 Service composition

With reference to [2], the complex task of users is decom-
posed into m abstract tasks {T ask1, T ask2, ...T askm}. Each
abstract task T aski can be performed by the abstract service
Si , which is a group of services with the same functional-
ity but different QoS. ni concrete services constitute Si =
{wsi,1, wsi,2, ..., wsi,ni }, where ni is the size of group cor-
responding to Si . During the service composition, wsi,j is a
candidate service, representing the certain service entity for
a specific task.

The QoS model is an important index for assessing the
quality of service. It is composed of several dimensions to
evaluate the service from different aspects. In this paper, the
QoS attributes set of each concrete service is represented by
q(wsi,j) = {q1, q2, ..., qr}, where qk denotes the evaluation
value of the kth dimension attribute of wsi,j .

The functions of an individual service are limited. In
order to meet the increasingly complex demand, individual
services need to be composed into a composite service cs

to provide an aggregation function. The attribute set of cs is
denoted by Q(cs) = {Q1, Q2, ..., Qr}, where Qk denotes
the aggregated value of the kth dimension attribute of cs,
which is aggregated by the attribute values of individual
services.

Figure 1 is the process of service composition. Service
composition is to find a sequence of services which can

meet the requirement when there is a given set of services
and a user’s request. During the process, QoS is the best
[18]. The process of service composition is described below:

Step 1. Decompose the complex task into m abstract
tasks.

Step 2. Construct an abstract service Si to perform
T aski .

Step 3. Discover a group of concrete services that can
perform T aski but with different QoS. Service
composition is to select one service from each
Si , and there are n1 ∗ n2 ∗ ... ∗ nm composition
paths. What is necessary is to find a path with the
optimal QoS.

Step 4. Define the service quality model and evaluate
each concrete service of a composition path based
on QoS attributes.

Step 5. Calculate the aggregated QoS attribute values of
the composition path based on the service com-
position model, and then the QoS of composite
service (csQoS) can be obtained.

Step 6. Among all the composition paths, the path with
the maximum csQoS will be selected as the opti-
mal composition solution.

3.2 Trusted service quality model

The QoS model of service is an important index for eval-
uating the quality of service. It is made up of several
dimensions to evaluate the service from different aspects,
such as responsetime, price, reputation, etc. In this paper,
the QoS attribute set of each single service wsi,j is
q(wsi,j) = {qrt , qa, qt , qp, qre}. The specific meaning is as
follows.

• Responsetime qrt : The responsetime is the interval
between sending a request and receiving a response
from wsi,j . The equation is (1), including the signal
transmission time of sending tsend and that of receiving
tresponse, and the execution time of service tprocess . It is
usually measured by milliseconds.

qrt (wsi,j) = tsend + tprocess + tresponse (1)

• Availability qa: It represents the probability of suc-
cessful invocation, which can be calculated through the
following two ways. In (2), qa is the ratio of the time
being invoked successfully, tsuccess , to the total running
time ttotal [1]. Equation 3 is the ratio of the success-
ful invocations, Nsuccess , to the total invocations, Ntotal

[4]. qa is a number in the range of [0, 1].

qa(wsi,j) = tsuccess/ttotal (2)

qa(wsi,j) = Nsuccess/Ntotal (3)

Ying Huo et al.

Fig. 1 Service composition
process

q1

…

S1 S2 Sm

S1

Task1 Task2 … Taskm

S2 … Sm

ws1,j ws2,j wsm,j

INPUT: Complex Task

Discovery

Service Quality Model

qr… q1 qr… q1 qr…

Aggregation Function of q1

Q1 Qr……

Aggregation Function of qr

Service Composition

Model

Value of csQoS

Select the path with the maximum csQoS

OUTPUT: Concrete Services of the optimal path

Abstract Task

Abstract Service

Concrete Service

Service Quality Attribute

Composition Path

For a composition path

……

, mm nws

,2mws

,1mws2,1ws

2,2ws

22,nws

1,1ws

1,2ws

11,nws

• Throughput qt : The total invocations of wsi,j within a
given period of time can be calculated by (4), the ratio
of the total invocations Ntotal to the total time ttotal.
And it is measured by invokes/second.

qt (wsi,j) = Ntotal/ttotal (4)

• Price qp: The fee that a service requester has to pay the
service provider for invocating wsi,j . qp is measured by
dollars.

• Reputation qre: The reputation of service is an impor-
tant criterion for trusted service evaluation. Values of
the above four service attributes can be obtained from
Service Level Agreement (SLA) [19], but the reputation
value is derived from the feedback of users, so it is sub-
jective and timely to some extent. Usually services will
improve because their providers will improve the qual-
ity of services according to the feedback to attract more
users. However, the previous reputation models just
simply calculate the average of all the ratings obtained
at different time instances [1, 2, 15], thus the results
cannot reflect the latest tendency of the service. Assume

that there are evaluation values of T time instances, qre

is calculated as follows:

qre(wi,j) = 1

T
∗

∑T

t=1
(Ratet) =

∑T

t=1

(
1

T
∗ Ratet

)
(5)

In the average method, the reputation value Ratet is mul-
tiplied by the same weight 1/T . If quality of the service
changes at this moment, it cannot be reflected in the com-
prehensive evaluation value in time. In order to increase the
weight of the recent score, the weight calculation method is
improved. The time weight θt is added, which will attenu-
ate over time, and then Ratet is multiplied by θt . The new
equation is as follows:

qre(wi,j) =
∑T

t=1
(θt ∗ Ratet) (6)

In order to make θt attenuate over time, the time attenuation
function is designed.

f (l) = e− l
λ (7)

In (7), l is the interval between T and the evaluation times-
tamp t , l = T − t . λ is an attenuation parameter to control

Discrete gbest-guided artificial bee colony algorithm

0 5 10 15 20 25 30 35

0.0

0.2

0.4

0.6

0.8

1.0

f(
l)

l

 λ=3
 λ=4
 λ=5

Fig. 2 Time attenuation function

the attenuation speed and it can be set based on applica-
tion domains. Figure 2 is the distribution of f (l) when λ is
different.

As shown in Fig. 2, f (l) decreases with time, so it can
meet the demand of the attenuation. Increasing the value of
λ slows down the rate of decrease. However, if f (l) is sim-
ply regarded as the time weight, it will cause a serious error
since the sum of all the time weights is not 1. For example,
there are scores of five time instances, and all the values are
0.8. When λ = 3, the related f (l) is 1, 0.72, 0.51, 0.37,
0.26 according to (7). According to (6), the reputation is
2.29, much higher than 0.8, which is apparently irrational.
Therefore, the normalization should be done first.

When calculating the reputation value, assume there are
p valid periods. When T > p, the time weight θt is
calculated as follows:

θt =
{

1
p

∗ ∑p−1
l=0 f (l), l < p

0, l ≥ p
(8)

For the newly released service, there isn’t enough infor-
mation about the reputation, i.e. when T ≤ p, θt can be
calculated by (9).

θt = 1

T
∗

∑T −1

l=0
f (l) (9)

3.3 Service composition model

In order to complete the complex task, the individual ser-
vices usually need to be composed. The composition mode
includes sequential, parallel, conditional and loop. This
paper only considers the sequential mode, while the oth-
ers can be simplified or converted into the sequential mode.
For example, the conditional mode can be simplified into
the sequential mode by execution probability, and the loop
mode can be converted into the sequential mode by loop
peeling [2].

Quality of the composite service is described by the
attribute set Q(cs) = {Qrt , Qa, Qt, Qp, Qre}, which is

aggregated by the attribute values of individual services.
According to the characteristics of each attribute, the aggre-
gation operations include AVERAGE, MIN, SUM and
PRODUCT. The QoS aggregation function of each attribute
is shown in Table 1 [2].

The comprehensive evaluation value of the service can
be obtained based on Q(cs). In this paper, the Simple Addi-
tive Weighting (SAW) method is applied. Different weights
are given to each attribute based on the degree of impor-
tance and then the comprehensive evaluation value can be
calculated through the weighted sum. Since the measure-
ment methods and units for quality attributes are different,
the values should be normalized first.

In the normalization phase, the service attributes can be
classified as positive and negative by their semantic mean-
ings. The higher the value is, the better the quality of
positive attributes is, such as availability, throughput, repu-
tation, etc. For negative attributes, the lower the value is, the
better the quality is, such as responsetime, price, and so on.
They should be handled separately when being normalized.
Based on [2], the normalization method is as follows:

• Normalization of positive attributes:

UniQk =
{

Qk−min Qk

max Qk−min Qk
, if max Qk �= min Qk

1 , if max Qk = min Qk

(10)

• Normalization of negative attributes:

UniQk =
{

max Qk−Qk

max Qk−min Qk
, if max Qk �= min Qk

1 , if max Qk = min Qk

(11)

Where max Qk(min Qk) represents the maximum (mini-
mum) value of the kth dimension attribute for all compo-
sition paths. If they are equal, then the normalized value
is 1. After that, the final quality evaluation value can be
calculated by SAW.

Let ωk be the weight of the kth attribute,
∑r

k=1 ωk = 1.
ωk can be set by users according to their preferences, or

Table 1 QoS aggregation function

Operation Quality dimension Aggregation function

SUM Responsetime Qrt = ∑m
i=1 qrt (wsi,j)

PRODUCT Availability Qa = ∏m
i=1 qa(wsi,j)

MIN Throughput Qt = minm
i=1 qt (wsi,j)

SUM Price Qp = ∑m
i=1 qp(wsi,j)

AVERAGE Reputation Qre = 1
m

∑m
i=1 qre(wsi,j)

Ying Huo et al.

based on historical statistics. For users, the higher the weight
is, the more important the attribute is. In order to eval-
uate the important degree more objectively, the Analytic
Hierarchy Process (AHP) method [20] can be applied to
determine the value of ωk . The service composition model
is established as follows:

max csQoS =
∑r

k=1
UniQk ∗ ωk (12)

s.t.

1 ≤ i ≤ m, i ∈ Z

1 ≤ j ≤ ni, j ∈ Z

1 ≤ k ≤ r, k ∈ Z

The constraints are the type and range of the subscript.
Assume there are m abstract services, and each abstract
service relates to n concrete services. If the exhaustive algo-
rithm is applied to search the optimal composition path
after traversing all the paths, the complexity is O(nm),
which is clearly unrealistic. Some other studies formalize
service composition as a Mixed Integer Linear Program-
ming (MILP) problem, and solve it through CPLEX [2] or
IPSOLVE [6].

For the trusted service composition model proposed in
this paper, the authors also tried to solve the problem with
the Mixed Integer Linear Programming Solver. However,
the time attenuation function in the reputation attribute is
nonlinear and the MIN operator used when aggregating the
throughput attribute is also nonlinear, thus the service com-
position problem in this paper cannot be solved with a linear
optimization solver.

Most of the present researches focus on applying the
intelligent optimization algorithms to find the optimal solu-
tion of the nonlinear integer programming problem, but the
low speed of convergence and the tendency to fall into
the local optima are the bottlenecks of these intelligent
optimization algorithms.

4 DGABC algorithm

4.1 ABC algorithm

When bees look for food, some of them will be sent to
inspect the surroundings first, which are called employed
bees. After they find nectar, they will return to the hive
with the nectar information and guide others through a kind
of wonderful dance. When looking for food, bees divide
their work clearly and allocate the number of bees based on
the quality of nectar. This collective wisdom has attracted
researchers. By modeling this intelligent behavior of bees,
the Artificial Bee Colony (ABC) algorithm is proposed by

Karaboga. It has many advantages, such as fewer control
parameters, fast convergence, high convergence precision,
and difficult to fall into local optimum, thus it has attracted
great attention [12, 21, 22].

The basic ABC algorithm is essentially a heuristic ran-
dom search algorithm. In this algorithm, each food source
represents a feasible solution to the problem to be solved,
and the nectar quality of the food source represents the
fitness of this feasible solution, showing the quality of
this solution. The bees are classified into three groups: 1)
Employed bees. They are responsible for exploiting the
neighborhood of the food source and sharing their infor-
mation with bees waiting in the hive. 2) Onlookers. They
wait for information in the hive, choose a food source and
exploit it. When they find a better food source, they will
notify the appropriate employed bee to update its posi-
tion. 3) Scouts. When there is no information updated after
several iterations, which means the algorithm has fallen
into the local optimum, the employed bee will become
a scout and randomly find a new food source to start a
new search. The ABC algorithm tends to converge gradu-
ally through collaboration of these three kinds of bees, and
obtains the optimal or near-optimal solution in the feasible
space.

The original ABC algorithm is mainly used to solve the
continuous optimization problem. There have been some
studies which improve the algorithm to solve the integer
programming problems. In [22], the DABC algorithm was
proposed to solve the scheduling problem of stream-lined
shops. In [23] the DisABC algorithm was presented for
binary optimization. In order to improve quality of the solu-
tion, the GABC algorithm was proposed [24], which takes
advantage of the information of the global optimal solution
to guide the local search.

In this paper, the GABC algorithm is applied to solve the
global service composition problem, and the new Discrete
Gbest-guided Artificial Bee Colony (DGABC) algorithm is
proposed. The correspondence between bees foraging and
service composition is shown in Table 2.

Table 2 Correspondence between bees foraging and service
composition

Bees foraging Service composition

Food source position Service composition solution

Nectar quality Quality of the composite service

Speed of searching and Speed of algorithm optimization

foraging

The best food source The optimal service composition solution

Dimension of food source Dimension of service quality attributes

Discrete gbest-guided artificial bee colony algorithm

4.2 Encoding

In the original ABC algorithm, the food source position rep-
resents the feasible solution to the optimization problem,
which is denoted by m-dimension real vector. And the nec-
tar quality of the food source is the fitness of the associated
solution. However, in the service composition problem, each
candidate solution represents a feasible service composition
solution, and each dimension of the candidate solution must
be an integer satisfying the boundary conditions. Therefore,
the food source encoding and the strategy of generating
candidate solutions need to be improved.

The goal of service composition is to select and inte-
grate the appropriate candidate services from each concrete
services group {wsi,1, wsi,2, ..., wsi,ni }, and the composite
service can satisfy the constraints while its QoS is the best.
Therefore, each feasible solution of the service composi-
tion is a service composition solution. The Integer Array
Coding Scheme is proposed in this paper to encode the
solution.

Under the scheme of integer array coding (see Fig. 3),
the food source xd is denoted by m dimension array, xd =
{x1

d , x2
d, ..., xm

d }. In this array, each element xi
d denotes the

value of subscript j of the candidate service wsi,j , and the
value is an integer within [lb, ub]. The lower bound (lb) is 1,
and the upper bound (ub) is the size of the concrete services
group ni .

In this section, assume that the numbers of concrete ser-
vices corresponding to each abstract service are equal and
they are all n. Therefore when there are m abstract services,
the number of encodings is nm. For example, when m = 3
and n = 2, the encodings are [1, 1, 1], [1, 1, 2], [1, 2, 1], [1,
2, 2], [2, 1, 1], [2, 1, 2], [2, 2, 1], [2, 2, 2].

Table 3 Initial feasible solutions

No. Feasible solution csQoS

1 [1, 1, 3, 4, 3] 0.3004

2 [3, 2, 1, 2, 2] 0.2407

3 [1, 3, 2, 4, 1] 0.3982

4 [2, 4, 3, 3, 2] 0.3783

5 [4, 2, 4, 3, 3] 0.5438

6 [3, 2, 3, 1, 2] 0.2629

4.3 Initialization

The number of food source is SN . In the initialization
phase of the DGABC algorithm, SN feasible solutions
(food sources) {x1, x2, ..., xSN} are generated randomly. As
shown in (13), the initial integer solutions can be obtained
through the rounding-down operation, which is different
from the original ABC algorithm.

xi
d = lb + �rand(0, 1) ∗ (ub − lb)� (13)

Judge whether the initial solution xd is in the range of
[lb, ub]. If it is, then calculate the comprehensive evaluation
value csQoS according to (12) as the fitness value of xd ,
otherwise the solution will be regenerated. Repeat it until
the SN candidate solutions are obtained.

Among the SN feasible solutions, the maximum value of
fitness Gbest f it and the associated optimal composition
solution Gbest xd will be memorized.

An example is given here. Assume that m = 5, ni =
5(1 ≤ i ≤ 5), SN = 6. SN solutions are generated firstly,
and their comprehensive evaluation value csQoS can be
calculated. The results are shown in Table 3.

Fig. 3 Integer array coding
scheme

…

S1 S2 Sm

xd
1 xd

2 … xd
m

S1 S2 Sm…

, mm nws

,2mws

,1mws2,1ws

2,2ws

22,nws

1,1ws

1,2ws

11,nws

Ying Huo et al.

Where [1,1,3,4,3] means selecting ws1,1, ws2,1, ws3,3,
ws4,4, ws5,3. Among these csQoS, Gbest f it =0.5438
and the related Gbest xd = [4,2,4,3,3] will be memorized.

4.4 Iteration process

After initialization, all the feasible solutions (food sources)
will be exploited. Let the maximum cycle number be MCN

and each cycle contains the behaviors of employed bees,
onlookers and scouts.

4.4.1 Employed bees phase

Assign an employed bee to each food source, thus the num-
ber of the employed bees is SN too. At the beginning of the
cycle, the employed bee d exploits the neighborhood of the
food source xd , d ∈ {1, 2, ..., SN}. The local search method
in the discrete situation is (14).

vi
d = xi

d +
⌊
φi

d ∗ (xi
d − xi

e)
⌋

+
⌊
ψi

d ∗ (yi − xi
d)

⌋
(14)

In (14), i is a dimension selected from the mdimension
array randomly, i ∈ {1, 2, ..., m}. φi

d is a random number
within the range [−1, 1]. xi

d denotes the ith element of the
food source xd attached by the employed bee d . xi

e is the ith
element of xe, e ∈ {1, 2, ..., SN} and e �= d . ψi

d is a random
number in the range of [0, 2]. yi represents the ith ele-
ment of the current optimal composition solution Gbest xd .
Since each element vi

d denotes the subscript value of the
selected concrete service, which is an integer, the rounding-
down operation �� should be taken. If vi

d is out of the bound
[lb, ub], then the bound value will be used. vd is the loca-
tion of the new food source. i and e are randomly generated
as follows:

i = 1 + �rand(0, 1) ∗ m� (15)

e = 1 + �rand(0, 1) ∗ SN� , e �= d (16)

After the new food source vi
d is generated, the fitness

f it (vd) will be calculated according to (12). The new solu-
tion will be accepted if it is better than the previous one,
which is a greedy selection procedure, such as (17).

xd = vd, f it (xd) = f it (vd), if f it (vd) > f it (xd)

(17)

For the above example, there are also SN employed bees.
For the first employed bee, randomly select the ith dimen-
sion and here i = 4. And according to (14), v4

d =5, thus
the new solution vd is [1,1,3,5,3]. Calculate the new fit-
ness f it (vd) =0.3283, which is better than the previous
one 0.3004, so the new solution will be accepted. After all
the employed bees finish the search, the new population is

shown in Table 4, and the updated number in this iteration
is underlined.

4.4.2 Onlookers phase

Each onlooker selects a food source according to the
probability which is proportional to the nectar qual-
ity. The selecting probability pd is calculated by (18)
[25].

pd = 0.9 × f it (xd)

maxSN
d=1 f it (xd)

+ 0.1 (18)

Where f it (xd) is the fitness value of xd . Onlookers select
the food source through the wheel selection method. It gen-
erates a random number firstly. If the number is greater
than pd , then the onlooker will not move, otherwise the
onlooker will attach itself to xd and exploit its neighbor-
hood. The exploitation equation is also (14), and the greedy
selection strategy will be used to update the food source
position.

Obviously, according to the selection method, the food
source with higher fitness will attract more onlookers.

For the above example, the selecting probability p1 =
0.9∗0.3283

0.5438 + 0.1 = 0.6434 is calculated through (18),
other selecting probabilities are 0.4983, 0.759, 0.7262, 1,
and 0.5644. For the first onlooker, a random number is
generated firstly, which is smaller than p1, and then this
onlooker will exploit the solution. v3

d =4 is calculated
through (14), and the new solution vd is [1,1,4,5,3]. The
new fitnessf it (vd) =0. 0.3569>0.3283, thus the old solu-
tion will be updated. For the fourth onlooker, the random
number is greater than 0.7262, so it does not move. After all
the onlookers finish the search, the new population is shown
in Table 5, and the updated number is in this iteration is
underlined.

4.4.3 Scouts phase

If a solution is not updated after limit iterations, then this
food source will be abandoned. The associated employed

Table 4 Feasible solutions after employed bees searching

No. Feasible solution csQoS

1 [1,1,3,5,3] 0.3283

2 [3,2,1,2,2] 0.2407

3 [1,3,2,4,1] 0.3982

4 [2,4,3,3,2] 0.3783

5 [4,2,4,3,3] 0.5438

6 [3,2,5,1,2] 0.2806

Discrete gbest-guided artificial bee colony algorithm

Table 5 Feasible solutions after onlookers searching

No. Feasible solution csQoS

1 [1,1,4,5,3] 0.3569

2 [3,2,3,2,2] 0.2613

3 [1,3,2,3,1] 0.4616

4 [2,4,3,3,2] 0.3783

5 [4,2,4,3,3] 0.5438

6 [3,2,5,1,2] 0.2806

bee will become a scout, and randomly generate a new food
source through (13).

After all the food sources are explored, Gbest f it and
Gbest xd will be updated, and the next iteration will begin.
The whole evolutionary process will be repeated until it
satisfies the end condition. During the implementation pro-
cess, the array trial is used to record the iterations of
which the solution is not updated. For the above example,
after the employed bees and onlookers finish the search,
the trial is [0, 0, 0, 2, 2, 1], which hasn’t researched the
maximum value limit, thus the scout will not appear. Until
now, Gbest f it is 0.5438, and the related Gbest xd is
[4,2,4,3,3].

4.5 Algorithm procedure

Following is the pseudo-code of the DGABC algorithm.

Step 1. Initialization:
Set the parameters SN , limit, and MCN .
Generate the population of solutions by (13):

xd = {x1
d, x2

d, ..., xm
d }.

Calculate the fitness value of each
solution in the population and memorize
Gbest xd&Gbest f it .

Step 2. Employed bee phase:
For d = 1, 2, ..., SN , repeat the following sub-

steps:
Produce a new solution vd by (14) and calcu-

late the fitness.
Apply the greedy selection strategy to update

xd , as (17).
Step 3. Onlookers phase:

For d = 1, 2, ..., SN , repeat the following sub-
steps:

The onlooker bee d selects a food source in the
population through the wheel selection method.

Produce a new solution vd by (14) and calcu-
late the fitness.

Apply the greedy selection strategy to update
xd , as (17).

Step 4. Scouts phase:
If a solution in the population is not

updated after limit iterations, abandon it and
replace it with a new food source produced by
(13).

Step 5. Update Gbest f it and Gbest xd achieved so far.
Step 6. If the termination criterion is reached, return

Gbest f it and Gbest xd , otherwise go to
Step 2.

5 Experiments

5.1 Experimental setup and dataset

In this paper, two datasets are used to verify the proposed
model and algorithm.

QWS dataset: It is collected by Eyhab Al-Masri from
University of Guelph [4, 26, 27]. 2507 real Web services are
included and each one considers nine quality parameters,
including responsetime, availability, throughput, success-
ability, reliability, etc. Currently, it has been applied in many
researches [6, 28].

Random dataset: Because of the limit of data amount,
there are also many researches adopting random dataset
to validate the method [2, 6, 29]. In order to sim-
ulate the large-scale cloud services, 500,000 simu-
lated services are generated randomly in this paper.
Each service considers the five attributes discussed
in Section 3.2, and the values are randomly gener-
ated assuming a uniform distribution in the interval
[0, 1].

All experiments have been performed on a PC using an
Intel Core i3 550 (3.2 GHz), 4 GB RAM, Windows 7 (32
bit) system and MATLAB R2010b.

5.2 Algorithm verification

In order to verify the effectiveness of the algorithm,
DGABC algorithm is compared with some other intelli-
gent optimization algorithms, such as Genetic Algorithm
(GA), Particle Swarm Optimization (PSO) and Differential
Evolution (DE).

In the experiments, the same common control param-
eters are set. The colony size is 20. Each experiment is
repeated 30 times independently and the average results will
be memorized. The maximum cycle number MCN is 1000.
The special parameters of other algorithms are presented as
follows.

GA: With reference to [30], the crossover probability
is 0.5, and the mutation probability is 0.001. A random
selection mechanism is applied.

Ying Huo et al.

0 100 200 300 400 500

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

cs
Q

o
S

Number of Concrete Service

 DGABC

 DE

 PSO

 local

 GA

Fig. 4 Optimization comparison 1 on QWS dataset, where the number
of abstract services m = 5, and the number of the related concrete
services n varies from 50 to 500

PSO: The updated equation of the particle position and
velocity is (19) [31].

vk+1
id = wvk

id + c1rand(0, 1)(pk
id − xk

id) + c2rand(0, 1)(pk
gd − xk

id)

xk+1
id = xk

id + vk+1
id

(19)

According to [21], the inertia weight w varies from 0.9 to
0.7 linearly, and the learning factors c1 and c2 are both taken
as 2.

DE: The DE/rand/1 algorithm [32] is used. The scale
factor is 0.4, and the crossover probability is 0.7.

In the experiments, assume the number of concrete ser-
vices corresponding to each abstract service is n. The
number of abstract services m and the number of the related
concrete services n are the two important parameters for the

0 10 20 30 40 50

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

cs
Q

o
S

Number of Abstract Service

 DGABC

 DE

 PSO

 local

 GA

Fig. 5 Optimization comparison 2 on QWS dataset, where the number
of the concrete services n = 50, and the number of abstract services m

varies from 5 to 50

0 1000 2000 3000 4000 5000

0.25

0.30

0.35

0.40

0.45

0.50

0.55

cs
Q

o
S

Number of Concrete Service

DGABC

DE

PSO

local

GA

Fig. 6 Optimization comparison 1 on random dataset, where the num-
ber of abstract services m = 100, and the number of the related
concrete services n varies from 500 to 5000

service composition problem. For the above two datasets,
change m and n respectively and analyze the effects on the
quality of composite service and the computation time of
these algorithms. Similar experiments can be found in [6,
28, 29, 33].

5.2.1 Quality of composite service

The effectiveness of the DGABC algorithm is verified on
the service composition problem. Since it is an integer pro-
gramming problem, all the candidate solutions should be
rounded down after generated randomly. The lower and
upper bounds of the candidate solution are 1 and n respec-
tively. For the PSO algorithm, the lower and upper bounds of

0 200 400 600 800 1000

0.25

0.30

0.35

0.40

0.45

0.50

0.55

cs
Q

o
S

Number of Abstract Service

DGABC

DE

PSO

local

GA

Fig. 7 Optimization comparison 2 on random dataset, where the num-
ber of the concrete services n = 500, and the number of abstract
services m varies from 100 to 1000

Discrete gbest-guided artificial bee colony algorithm

0 100 200 300 400 500

1.5

2.0

2.5

3.0

3.5

4.0

4.5

C
o

m
p

u
ta

ti
o

n
 T

im
e

(s
)

Number of Concrete Service

DGABC

DE

PSO

GA

(a) 5, n varies from 50 to 500m

0 10 20 30 40 50

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

C
o

m
p

u
ta

ti
o

n
 T

im
e

(s
)

Number of Abstract Service

DGABC

DE

PSO

GA

(b) 50, m varies from 5 to 50n

Fig. 8 Computation time comparison on QWS dataset

the position and those of the velocity are the same and both
are (1, n). If the velocity or position exceeds the boundary
during the iteration, then take the boundary value. The value
of limit of DGABC is 100.

For the QWS dataset, two scenarios are considered. One
is the number of abstract services m = 5, and the number
of the related concrete services n varies from 50 to 500. The
other is n = 50, and m varies from 5 to 50. In the experi-
ments, set the weight of successability attribute to 0.2, and
that of all other attributes to 0.1. In addition to the intelligent
optimization algorithms, the simple local selection strategy
[6] is used to make a comparison, i.e. selecting the local
optimal service from the concrete services group.

As shown in Fig. 4, the quality of the composite ser-
vice (csQoS) fluctuates as the number of concrete services
increases. The average csQoS of DGABC and DE are close
to 0.8 followed by PSO. Besides, the csQoS of the local
selection strategy is close to the DGABC. The main reason
is that with the increase of concrete services, the proba-
bility of obtaining the optimal solution also increases. In
Fig. 5, csQoS decreases as the number of abstract services

increases. Among several algorithms, DGABC performs
better with its average value of 0.74, while that of DE
and PSO is nearly 0.66. And the csQoS of the local selec-
tion strategy is 0.71, which is a little lower than that of
DGABC.

Furthermore, it can be noticed that apart from the local
selecting method that can always obtain a unique solution,
the standard deviation value of DGABC is the smallest,
which means DGABC is very stable.

In order to simulate the large-scale services in cloud,
the amount of data is increased to 500,000 in the random
dataset. Two scenarios are considered too. In the first one,
m = 100, and n varies from 500 to 500; in the second one,
n = 500, and m varies from 100 to 1000. The weights of all
attributes are set to 0.2.

As shown in Fig. 6, in the random dataset, csQoS does
not change obviously as the number of concrete services
increases. With the average value of 0.5, the csQoS of
DGABC is much better than other algorithms, while that of
PSO and DE is nearly 0.36. In addition, csQoS of the local
selection strategy is 0.32, much lower than that of DGABC.

0 1000 2000 3000 4000 5000

1

2

3

4

5

6

7

8

9

C
o

m
p

u
ta

ti
o

n
 T

im
e

(s
)

Number of Concrete Service

 DGABC

 DE

 PSO

 GA

(a) 100, n varies from 500 to 5000 m

0 200 400 600 800 1000

5

10

15

20

25

30

35

40

45

50

55

60

C
o

m
p

u
ta

ti
o

n
 T

im
e

(s
)

Number of Abstract Service

 DGABC

 DE

 PSO

 GA

(b) 500, m varies from 100 to 1000 n

Fig. 9 Computation time comparison on random dataset

Ying Huo et al.

Table 6 QWS Comparison between DABC and DGABC (m = 5, n varies from 50 to 500)

n

DABC DGABC

csQoS Std. Dev. Time Std. Dev. csQoS Std. Dev. Time Std. Dev.

50 0.8002 0.0022 1.7341 0.0292 0.8008 0 1.7431 0.0418

100 0.8036 0.0031 1.7603 0.0282 0.8048 0.0023 1.7664 0.0405

150 0.7884 0.0030 1.7410 0.0310 0.7902 0.0034 1.7673 0.0359

200 0.8147 0.0041 1.7748 0.0264 0.8167 0.0032 1.7417 0.0381

250 0.7989 0.0023 1.7333 0.0369 0.7999 0.0025 1.7550 0.0396

300 0.8123 0.0053 1.7676 0.0359 0.8155 0.0063 1.7550 0.0363

350 0.8134 0.0060 1.8551 0.1847 0.8185 0.0049 1.7226 0.0267

400 0.8109 0.0049 1.7341 0.0380 0.8132 0.0068 1.7429 0.0407

450 0.8034 0.0037 1.7263 0.0229 0.8107 0.0079 1.7479 0.0343

500 0.8156 0.0066 1.7589 0.0358 0.8183 0.0087 1.7604 0.0313

For the Fig. 7, csQoS decreases as the number of abstract
services increases, but DGABC still has the best perfor-
mance with its average value of 0.41, while that of DE and
PSO is nearly 0.33, and that of the local selection strategy
and GA is nearly 0.3.

In addition, it can be noticed that the standard deviation
value of DGABC is still the smallest except for the local
selecting method, but the difference of the standard devia-
tion is not obvious compared with the QWS dataset. That is
because in the random dataset, the QoS values are all within
[0, 1].

The experiments on the random dataset show that for the
large-scale data, DGABC has obvious advantages compared
with other intelligent optimization algorithms. And csQoS
decreases as the number of abstract services increases, but
it does not change obviously as the number of concrete
services increases.

Following is the verification of the efficiency of DGABC.

5.2.2 Computation time

Under the same scenarios, the comparison of computation
time is shown in Fig. 8 and Fig. 9.

As shown in Fig. 8, for the QWS dataset, DE is a lit-
tle faster than DGABC, followed by GA, while PSO is the
slowest. However, in Fig. 9, DGABC is faster than DE,
which shows that the efficiency of DGABC is the high-
est under the large-scale data. Besides, with the increase
of n, the computation time does not change obviously
(see Fig. 8a and Fig. 9a), but it increases as m increases
(see Fig. 8b and 9b). That is because as m increases, cal-
culation of QoS aggregation function (see Section 3.3)
becomes more complex, which slows down the compu-
tation of the fitness values of solutions. On the con-
trary, the number of the concrete services n is just the
upper bound of the solution, thus it does not affect the
efficiency.

Table 7 QWS Comparison between DABC and DGABC (n = 50, m varies from 5 to 50)

m DABC DGABC

csQoS Std. Dev. Time Std. Dev. csQoS Std. Dev. Time Std. Dev.

5 0.8006 0.0007 1.7645 0.0333 0.8008 0 1.8098 0.0650

10 0.7757 0.0074 1.7705 0.0315 0.7835 0.0061 1.7628 0.0332

15 0.7501 0.0083 1.7842 0.0317 0.7480 0.0092 1.8088 0.0361

20 0.7369 0.0049 1.8454 0.0333 0.7425 0.0049 1.8272 0.0344

25 0.7253 0.0048 1.8601 0.0354 0.7322 0.0028 1.8668 0.0347

30 0.7177 0.0042 1.9047 0.0349 0.7281 0.0035 1.9135 0.0358

35 0.7117 0.0048 1.9591 0.0331 0.7228 0.0042 1.9488 0.0346

40 0.7045 0.0044 1.9891 0.0362 0.7147 0.0056 1.9917 0.0340

45 0.6977 0.0048 2.0260 0.0395 0.7078 0.0052 2.0381 0.0378

50 0.6885 0.0051 2.0429 0.0406 0.6960 0.0057 2.0607 0.0405

Discrete gbest-guided artificial bee colony algorithm

Table 8 Distribution of time weight

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8

T = 1 1

T = 2 0.417 0.583

T = 3 0.230 0.321 0.448

T = 4 0.142 0.198 0.276 0.385

T = 5 0.092 0.129 0.179 0.250 0.350

T = 6 0 0.092 0.129 0.179 0.250 0.350

T = 7 0 0 0.092 0.129 0.179 0.250 0.350

T = 8 0 0 0 0.092 0.129 0.179 0.250 0.350

. . . 0 0 0 0

5.2.3 Effect of gbest-guided strategy

DGABC without the gbest-guided strategy is regarded as
DABC. The difference between them is the local search
method. In DABC, the employed bees or the onlookers will
exploit according to (20).

vi
d = xi

d +
⌊
φi

d ∗ (xi
d − xi

e)
⌋

(20)

Where φi
d is a random number within the range [−1, 1].

In order to analyze the effect of the gbest-guided strategy,
DGABC is compared with DABC under the same scenarios
of the QWS dataset. Each experiment is repeated 30 times.
The results are as follows and the best solutions obtained are
boldfaced.

As shown in Table 6 and 7, the csQoS of DGABC is
slightly higher than that of DABC, and their computation
time is very close. The conclusion is that DGABC can
obtain better results than DBAC. The reason is that with the
help of the gbest-guided strategy, the feasible solution can

0 5 10 15 20

0.50

0.51

0.52

0.53

0.54

cs
Q

o
S

Time instance

 Average

 Attenuation

Fig. 10 Comparison of service composition model

move towards the global optimal solution in a planned way
during the local search, so it can accelerate the convergence
effectively.

The above experiments show that DGABC has an advan-
tage in terms of the quality of solution and efficiency com-
pared with other algorithms, especially for large-scale data,
which verifies the effectiveness of the algorithm. Results
will be further discussed in Section 5.6.

5.3 Model verification

For the verification of the model, we focus on the effective-
ness of the time attenuation function. Assume that there are
evaluation values of 20 time instances, namely T = 20. The
reputation value in the random dataset Rate0 increases by
0.02 with time t (If the value is over 1, then take 1). The
equation is as follows.

Ratet = Rate0 + 0.02 ∗ (t), t ∈ Z, 1 ≤ t ≤ T

if (Ratet > 1), then(Ratet = 1).
(21)

In the experiment, set the attenuation parameter λ = 3 and
the valid period p = 5. According to (7)—(9), the time
weight θt is shown in Table 8.

Put the different θt into (6), and the new reputation value
can be obtained. This model is compared with the average
function applied in the previous research [1, 2, 15]. In the
experiment, m is 100 and n is 500. The results are shown in
Fig. 10.

As shown in Fig. 10, with the increase of Ratet , the
csQoS calculated through the time attenuation function
increases much faster than that through the average func-
tion. The main reason is that with the help of the time
attenuation function, larger weights are assigned to the lat-
est ratings during the comprehensive reputation evaluation,
thus the new service composition model can reflect the latest
tendency of the service.

Ying Huo et al.

Table 9 Comparison results of different weights under random dataset

ω = {0.2, 0.2, 0.2, 0.2, 0.2} ω = {0.0815, 0.1491, 0.0815, 0.2499, 0.4379}

csQoS Std.Dev. Time Std.Dev. csQoS Std. Dev. Time Std. Dev.

DGABC 0.5022 0.0048 1.7833 0.0131 0.6475 0.0030 1.7730 0.0125

DE 0.3630 0.0037 1.8864 0.0121 0.4711 0.0050 1.8744 0.0090

PSO 0.3672 0.0107 9.0850 0.0485 0.4763 0.0144 9.1540 0.0651

GA 0.3040 0.0107 4.0123 0.0548 0.3902 0.0125 4.0413 0.1360

local 0.3267 0 0.0085 0.0009 0.4659 0 0.0088 0.0008

5.4 Sensitivity analysis

A series of additional experiments are conducted to analyze
the effect of parameters, including the weight of attribute,
the value of limit for scout, the number of food source SN,
and the maximum cycle number MCN .

5.4.1 Effect of weight of attribute

In the above experiments, the weights of the five attributes
are all set to 0.2. Now, the Analytic Hierarchy Process
(AHP) method [20] is applied to calculate the weight, and
the weights are {0.0815, 0.1491, 0.0815, 0.2499, 0.4379}.
The two sets of different weights are compared to ana-
lyze the effect of the weight. In the experiment, the random
dataset is used, and m is 100, n is 500. Each experi-
ment is repeated 30 times and the results are shown in
Table 9.

As shown in Table 9, the value of csQoS changes with
different weights. That is because csQoS is calculated
through the weighted sum of the aggregation values of
attributes. It can be noticed easily that csQoS of DGABC is
much better than that of others and the two sets of differ-
ent weights don’t affect time. Therefore, the conclusion is
that the weights of attributes will not affect the effectiveness
of the algorithm. Users can predefine the weights accord-
ing to their preferences to obtain the satisfactory service
composition solution.

Table 10 Effect of the limit value on the performance of DGABC

limit csQoS Std. Dev. Time Std. Dev.

20 0.4536a 0.0065 1.9359 0.1338

50 0.4919b 0.0080 1.8882 0.0414

100 0.5015c 0.0075 1.8647 0.0190

150 0.5015c 0.0052 1.8884 0.0463

200 0.5035c 0.0072 1.8895 0.0412

1000 0.5014c 0.0060 1.9149 0.0504

5.4.2 Effect of value of limit

In order to analyze the behavior of DGABC, we varie the
value of limit, including 20, 50, 100, 200 and 1000. In the
experiment, a random dataset is used, m is 100 and n is 500.
Each experiment is repeated 30 times. The results are shown
in Table 10.

In order to further examine the significance of differ-
ence, statistical comparisons between csQoS are carried out
using one-way ANOVA followed by Duncan’s-test, and the
statistical significance of difference is taken as P ≤0.05.
According to the analysis of statistical significance, it can
be concluded that there is no significant difference of csQoS
when limit is 100, 150, 200 and 1000 (Sig = 0.283). It
has been proved that for the original ABC algorithm, the
exploration of scouts can improve the search ability of the
multimodal functions, but it does not have any obvious
effect on the unimodal functions [13]. And the function in
this paper may be a unimodal one, thus different values of
limit will not apparently affect csQoS.

5.4.3 Effect of SN

The number of food source SN is changed to analyze
the performance of DGABC. In the experiment, a random
dataset is used, m is 100 and n is 500. Each experiment is
repeated 30 times and limit is 10. The results are shown in
Table 11.

Table 11 Effect of SN on the performance of DGABC

SN csQoS Std. Dev. Time Std. Dev.

20 0.5033 0.0075 1.8752 0.0611

50 0.5085 0.0069 4.4417 0.0431

100 0.5099 0.0052 8.8240 0.0118

200 0.5148 0.0053 17.0950 0.1142

500 0.5227 0.0056 44.4115 0.1502

1000 0.5230 0.0045 89.3627 0.2534

Discrete gbest-guided artificial bee colony algorithm

Fig. 11 Effect of MCN on the
performance of DGABC

200 400 600 800 1000 1200 1400 1600

0.42

0.44

0.46

0.48

0.50

0.52

0.54

cs
Q

o
S

MCN

 SN=20

 SN=50

 SN=100

(a) Optimization comparison

200 400 600 800 1000 1200 1400 1600

0

2

4

6

8

10

12

14

C
o

m
p

u
ta

ti
o

n
 T

im
e

(s
)

MCN

 SN=20

 SN=50

 SN=100

(b) Computation time comparison

As shown in Table 11, it can be concluded that a larger
SN can produce better results, but it takes more time.
Thus the number of food sources should be predefined
based on the actual application scenario, making a bal-
ance between the quality of solution and the computation
time.

5.4.4 Effect of MCN

The maximum cycle number MCN is changed from 200 to
1600 to analyze the behavior of DGABC. SN is set to 20, 50,
and 100 respectively. In the experiments, a random dataset
is used, m is 100, n is 500, and limit is 100. The results are
shown in Fig. 11.

As shown in Fig. 11, as the MCN increases, csQoS
also increases, while the computation time becomes
longer. And when MCN is over 1000, csQoS does
not change significantly. Thus it is better to use 1000
cycles.

5.5 Larger size verification

In order to simulate the large-scale cloud services, the
size of the random dataset is increased from 500,000 to
20,000,000, and experiments are conducted in the following
scenarios. Each experiment is repeated 30 times, MCN is
1000 and limit is 100. The results are shown as follows.

As shown in Table 12, the original findings are con-
firmed. The value of csQoS decreases as the number of
abstract services m increases, but the time increases. Among
these algorithms, DGABC can obtain the best csQoS within
less time. However, as m increases, the advantage weakens.
For example, when m = 4000 and n = 5000, csQoS is
0.3274, which is even lower than that of the local method.

The widespread application of cloud computing results
in the exuberant growth of services with the same func-
tionality, which is mainly the increase of n, but in general,
m, the number of abstract tasks with specific functions will
not increase all the time in general. Experiments show that

Table 12 Results on the large-scale dataset

m = 100, n = 200000 m = 400, n = 50000

csQoS Std.Dev. Time Std.Dev. csQoS Std.Dev. Time Std.Dev.

DGABC 0.5050 0.0044 1.8658 0.0877 0.0022 4.1459 0.0316

DE 0.3619 0.0050 2.1519 0.0207 0.0019 6.0105 0.0340

PSO 0.3548 0.0067 8.7332 0.1106 0.3266 0.0031 26.8896 0.6061

GA 0.3043 0.0083 4.0706 0.0166 0.3006 0.0053 11.0734 0.0364

local 0.3786 0.0000 2.3902 0.0182 0.3634 0.0000 1.9023 0.0596

m = 500, n = 40000 m = 4000, n = 5000

csQoS Std.Dev. Time Std.Dev. csQoS Std.Dev. Time Std.Dev.

DGABC 0.4118 0.0017 5.0712 0.0318 0.3274 0.0009 41.1713 0.0818

DE 0.3262 0.0017 7.3014 0.0467 0.3089 0.0005 53.4314 0.2068

PSO 0.3231 0.0023 32.9572 0.7841 0.3087 0.0013 280.4294 4.2006

GA 0.3016 0.0042 13.2292 0.0278 0.3006 0.0015 99.9786 0.6568

local 0.3638 0.0000 1.7445 0.0500 0.3290 0.0000 0.9208 0.0832

Ying Huo et al.

when m < 1000, DGABC always can obtain the best
csQoS, and the advantage is more obvious as n increases.
Thus the conclusion is that the algorithm proposed in this
paper is suitable for services selection and composition
in cloud computing environment, and has advantages in
effectiveness and performance.

5.6 Discussion

The DGABC algorithm contains two phases generally. The
first one is the ”exploration” phase of scouts, which is
a global search to increase the randomness to prevent
convergence into the local optimum. The second one is
the ”exploitation” phase of employed bees and onlookers,
which is a local search on the basis of the existing solution
to accelerate convergence.

DGABC is similar to other intelligent algorithms to some
extent. First, it applies a greedy selection scheme as in
DE by onlookers and employed bees to make a selection
between the solution in their memory and the new solution.
The onlookers choose a food source based on probabil-
ity, which is similar to the roulette mechanism of GA.
Moreover, the improvement of this paper, using the cur-
rent optimal solution to guide the local search is inspired by
PSO.

The experiments show that DGABC can obtain a bet-
ter solution within a short period of time, especially for
large-scale data. The main reason is that the DGABC
algorithm has some good properties compared with other
algorithms. Firstly, in the local search equation, (14), the
new candidate solution is generated by changing a ran-
dom bit of the food source, which is different from the
crossover or mutation of other algorithms. This can help
DGABC to remain the characteristics of the original solu-
tion to the maximum extent. For example, the initial solu-
tion is [1,1,3,4,3]. After the search of employed bees, it
becomes [1,1,3,5,3], and it changes another bit after the
search of onlookers, [1,1,4,5,3]. Thus a solution updates
two bits at most after each iteration. Secondly, the gbest-
guided strategy added into the algorithm can make the
feasible solution move towards the global optimal solu-
tion in a planned way during the local search, so it can
accelerate the convergence effectively. The experiments in
Section 5.2.3 show that the results of DGABC are slightly
better than those of DABC. Furthermore, in the onlookers
phase, the high-quality food source is more likely to gen-
erate candidate solutions, which means that the promising
area in the search space can be searched more carefully.
For each onlooker, a random number is generated firstly.
If it is smaller than pd , then this onlooker will exploit
the solution. Thus the solution with greater pd will be

searched more carefully, which is the solution with higher
quality.

For the verification of efficiency in Section 5.2.2, the
experimental results are analyzed from the algorithms them-
selves. During each iteration of PSO, both the position and
velocity of the particle need to be updated, thus its efficiency
is the lowest. For GA, although only the position needs to be
updated, the selection, crossover and mutation must be con-
ducted during each iteration, thus its efficiency is not high.
For DE and DGABC algorithms, the new candidate solution
is generated according to the neighbor solution generation
equation, which is a simple operation, thus their efficiency
is the highest. Besides, for DGABC, the onlooker selects a
food source and exploits it based on the selecting probability
which means not all onlookers will produce a new solution,
thus DGABC has the highest efficiency.

6 Conclusion

With the prevalence of cloud computing, a large number
of services with the same functionality but different QoS
are offered on the Internet. For the large-scale data, it has
become an important issue to obtain the optimal cloud ser-
vice composition solution within a short period of time.
This paper proposes a new method for cloud service com-
position. Time attenuation function is added into the service
composition model in order to increase the weights of the
recent scores, thus the comprehensive evaluation value of
services can describe the variation of the service quality in
time. Additionally, this paper attempts to apply the ABC
algorithm to the service composition problem and uses the
exploration of bees for food to simulate the search of the
optimal service composition solution. In addition, this paper
improves the food source encoding, the generating strat-
egy of candidate solutions and the local search strategy, and
proposes the DGABC algorithm to solve the nonlinear inte-
ger programming problem. The experiments show that the
service composition model with time attenuation function
can make the recent score have a larger weight, thus it can
make the quality of service more consistent with the cur-
rent characteristics. The DGABC has advantages in terms of
the quality of solution and efficiency compared with other
algorithms especially for large-scale data. Therefore, the
proposed model and algorithm can be applied to services
selection and composition in cloud computing environment.

In the future we will get some real cases in the experi-
ments. Some other studies have considered the automated
service composition [34] and the fake information in the
reputation value [35], which will also be taken into account
in our future work.

Discrete gbest-guided artificial bee colony algorithm

Acknowledgments This work is supported by the National Nat-
ural Science Foundation of China under Grant No. 61403206,
National Natural Science Foundation for Youth of China under Grant
No. 61202351, the National Postdoctoral Fund under Grant No.
2011M500124, Natural Science Foundation of Jiangsu Province under
Grant No. BK20141005, Funding of Jiangsu Innovation Program for
Graduate Education and the Fundamental Research Funds for the
Central Universities under Grant No. CXZZ13 0171.

References

1. Zeng L, Benatallah B, Ngu AHH, Dumas M, Kalagnanam J,
Chang H (2004) QoS-aware middleware for web services compo-
sition. IEEE Trans Software Eng 30(5):311–327

2. Ardagna D, Pernici B (2007) Adaptive service composition in
flexible processes. IEEE Trans Software Eng 33(6):369–384

3. Zheng Z, Zhang Y, Lyu MR (2010) Distributed qos evaluation
for real-world web services. In: Proceeding of the 2010 IEEE
International Conference on Web Services (ICWS),Miami, FL, pp
83-90

4. Al-Masri E, Mahmoud QH (2007) Qos-based discovery and rank-
ing of web services. In: Proceeding of the 16th International Con-
ference on Computer Communications and Networks, Honolulu,
HI, pp 529-534

5. Hu J, Guo C, Wang H, Zou P (2005) Quality driven web services
selection. In: Proceeding of the IEEE International Conference on
e-Business Engineering, Beijing,China, pp 681-688

6. Alrifai M, Risse T (2009) Combining global optimization with
local selection for efficient QoS-aware service composition, In:
Proceeding of the 18th International Conference on World Wide
Web Madrid, Spain, pp 881-890

7. Ma Y, Zhang C (2008) Quick convergence of genetic algorithm
for QoS-driven web service selection. Comput Netw 52(5):1093–
1104

8. Gao H, Yan J, Mu Y (2014) Trust oriented QoS aware composite
service selection based on genetic algorithms, Concurrency and
Computation. Pract Experience 26(2):500–515

9. Wang S, Zhu X, Yang F (2014) Efficient QoS management
for QoS–aware web service composition. Int J Web Grid Serv
10(1):1–23

10. Tao F, Zhao D, Hu Y, Zhou Z (2008) Resource service com-
position and its optimal-selection based on particle swarm opti-
mization in manufacturing grid system. IEEE Trans Ind Inform
4(4):315–327

11. Wu Q, Zhu Q (2013) Transactional and QoS-aware dynamic ser-
vice composition based on ant colony optimization. Futur Gener
Comput Syst 29(5):1112–1119

12. Karaboga D (2005) An idea based on honey bee swarm for
numerical optimization. Erciyes University, Engineering Fac-
ulty, Computer Engineering Department. Technical Report: TR06,
Kayseri

13. Karaboga D, Basturk B (2008) On the performance of artifi-
cial bee colony (ABC) algorithm. Appl Soft Comput 8(1):687–
697

14. Zhang P, Liu H, Ding Y (2013) Dynamic bee colony algo-
rithm based on multi-species co-evolution. Appl Intell 40(3):427–
440

15. Wang SG, Sun QB, Yang FC (2010) Towards Web Service selec-
tion based on QoS estimation. Int J Web Grid Serv 6(4):424–
443

16. Zhu R, Wang HM, Feng DW (2011) Trustworthy services selec-
tion based on preference recommendation. J software 22(5):852–
864

17. Wang SG, Sun QB, Yang FC (2012) Reputation evaluation
approach in Web service selection. J Software 23(6):1350–
1367

18. Kil H, Nam W (2013) Efficient anytime algorithm for large–
scale QoS–aware web service composition. Int J Web Grid Serv
9(1):82–106

19. Ludwig H, Keller A, Dan A, King RP, Franck R (2003) Web
service level agreement (WSLA) language specification. IBM
Corp:815–824

20. Saaty TL (1990) How to make a decision: the analytic hierarchy
process. Eur J Oper Res 48(1):9–26

21. Karaboga D, Basturk B (2007) A powerful and efficient algorithm
for numerical function optimization: artificial bee colony (ABC)
algorithm. J Glob Optim 39(3):459–471

22. Pan Q, Fatih Tasgetiren M, Suganthan PN, Chua TJ (2011) A
discrete artificial bee colony algorithm for the lot-streaming
flow shop scheduling problem. Info sci 181(12):2455–
2468

23. Kashan MH, Nahavandi N, Kashan AH (2012) DisABC: A new
artificial bee colony algorithm for binary optimization. Appl Soft
Comput 12(1):342–352

24. Zhu G, Kwong S (2010) Gbest-guided artificial bee colony algo-
rithm for numerical function optimization. App Math Comput
217(7):3166–3173

25. Karaboga D, Gorkemli B (2011) A combinatorial artificial bee
colony algorithm for traveling salesman problem. In: Proceed-
ing of the Innovations in Intelligent Systems and Applications
(INISTA), 2011, International Symposium on, IEEE, pp 50–
53

26. Al-Masri E, Mahmoud QH (2007a) Discovering the best web ser-
vice. In: Proceeding of the 16th International Conference on World
Wide Web, Banff, Alberta, Canada, pp 1257-1258

27. Al-Masri E Mahmoud QH (2008) Investigating web services on
the world wide web. Beijing, China, pp 795–804

28. Mardukhi F, NematBakhsh N, Zamanifar K, Barati A
(2013) QoS decomposition for service composition using
genetic algorithm. Appl Soft Comput 13(7):3409–3421.
doi:10.1016/j.asoc.2012.12.033

29. Zou G, Lu Q, Chen Y, Huang R, Xu Y, Xiang Y (2014) QoS-
aware dynamic composition of Web services using numerical
temporal planning. IEEE Trans Serv Comput 7(1):1–14

30. Holland JH (1992) Genetic algorithms. Sci Am 267(1):66–
72

31. Eberhart R, Kennedy J (1995) A new optimizer using particle
swarm theory. In: Proceeding of the 6th International Sympo-
sium on Micro Machine and Human Science, Nagoya, pp 39–
43

32. Storn R, Price K (1997) Differential evolution–a simple and effi-
cient heuristic for global optimization over continuous spaces. J
global optim 11(4):341–359

33. Wang SG, Sun QB, Zou H, Yang FC (2013) Particle Swarm
Optimization with Skyline Operator for Fast Cloud-based
Web Service Composition. Mobile Networks Appl 18(1):116–
121

34. Deng S, Huang L, Tan W, Wu Z (2014) Top- k automatic service
composition: a parallel method for large-scale service sets. IEEE
Trans Autom Sci Eng 11(3):891–905

35. Wu Y, Yan C, Ding Z, Liu G, Wang P, Jiang C, Zhou M (2013)
A Novel Method for Calculating Service Reputation. IEEE Trans
Autom Sci Eng 10(3):634–642

http://dx.doi.org/10.1016/j.asoc.2012.12.033

Ying Huo et al.

Ying Huo received her B.S.
degree in information secu-
rity from Nanjing University
of Aeronautics and Astronau-
tics in 2010. Now she is a
Ph. D. candidate of the Col-
lege of Computer Science and
Technology at Nanjing Uni-
versity of Aeronautics and
Astronautics in China. She is
a student menber of ACM
(No. 6961987) and CCF (No.
E200033321G). Her research
interests include information
security and trustworthy ser-
vice.

Yi Zhuang graduated from the
Department of Computer Sci-
ence, Nanjing University of
Aeronautics and Astronautics
in1981. Now she is a profes-
sor and Ph. D. supervisor of
the College of Computer Sci-
ence and Technology at Nan-
jing University of Aeronautics
and Astronautics. Her research
interests include network and
distributed computing, infor-
mation security, dependable
computing.

Jingjing Gu received Ph. D.
degree from College of Com-
puter Science and Technology,
Nanjing University of Aero-
nautics & Astronautics. Now
she is an Associate Profes-
sor of the College of Com-
puter Science and Technology
at Nanjing University of Aero-
nautics and Astronautics. Her
main research fields are data
mining and wireless sensor
network.

Siru Ni received her B.S.
degree in information secu-
rity from Nanjing University
of Aeronautics and Astro-
nautics in 2009. Now she
is a Ph.D. candidate of the
College of Computer Science
and Technology at Nanjing
University of Aeronautics and
Astronautics in China. She is
a student menber of ACM
(No. 3110484) and CCF (No.
E200030669G). Her research
interests include dependable
computing, software engineer-
ing and formal methods.

Yu Xue received Ph. D. degree
from College of Computer
Science and Technology, Nan-
jing University of Aeronau-
tics & Astronautics, China,
in 2013. Now he is a lec-
turer in the School of Com-
puter and Software, Nanjing
University of Information Sci-
ence and Technology. He is
also a post-doctor of Nan-
jing University of Informa-
tion Science and Technol-
ogy. He is a member of
IEEE (No. 92058890), ACM
(No. 2270255), and CCF (No.

E200029023M). His research interests include computational intelli-
gence, internet of things and electronic countermeasure.

	Discrete gbest-guided artificial bee colony algorithm
	Abstract
	Introduction
	Related work
	Trusted service evaluation
	Service composition

	Trusted service composition model
	Service composition
	Trusted service quality model
	Service composition model

	DGABC algorithm
	ABC algorithm
	Encoding
	Initialization
	Iteration process
	Employed bees phase
	Onlookers phase
	Scouts phase

	Algorithm procedure

	Experiments
	Experimental setup and dataset
	Algorithm verification
	Quality of composite service
	Computation time
	Effect of gbest-guided strategy

	Model verification
	Sensitivity analysis
	Effect of weight of attribute
	Effect of value of limit
	Effect of SN
	Effect of MCN

	Larger size verification
	Discussion

	Conclusion
	Acknowledgments
	References

