
The VLDB Journal (2008) 17:537–572
DOI 10.1007/s00778-006-0020-3

REGULAR PAPER

Deploying and managing Web services: issues, solutions,
and directions

Qi Yu · Xumin Liu · Athman Bouguettaya ·
Brahim Medjahed

Received: 12 August 2005 / Accepted: 19 April 2006 / Published online: 4 November 2006
© Springer-Verlag 2006

Abstract Web services are expected to be the key
technology in enabling the next installment of the Web in
the form of the Service Web. In this paradigm shift, Web
services would be treated as first-class objects that can be
manipulated much like data is now manipulated using
a database management system. Hitherto, Web services
have largely been driven by standards. However, there
is a strong impetus for defining a solid and integrated
foundation that would facilitate the kind of innovations
witnessed in other fields, such as databases. This survey
focuses on investigating the different research problems,
solutions, and directions to deploying Web services that
are managed by an integrated Web Service Management
System (WSMS). The survey identifies the key features
of a WSMS and conducts a comparative study on how
current research approaches and projects fit in.

Keywords Service-oriented computing ·
Interoperability · Web service management system

This research is supported by the National Institutes of Health’s
NLM grant 1-R03-LM008140-01.

Q. Yu (B) · X. Liu · A. Bouguettaya
Computer Science Department, Virginia Tech,
Blacksburg, VA 24060, USA
e-mail: qyu@vt.edu

X. Liu
e-mail: xuminl@vt.edu

A. Bouguettaya
e-mail: athman@vt.edu

B. Medjahed
Department of Computer and Information Science,
University of Michigan, Dearborn, MI 48128, USA
e-mail: brahim@umich.edu

1 Introduction

The Web is a distributed, dynamic, and large informa-
tion repository. It has now evolved to encompass various
information resources accessible worldwide. Organiza-
tions across all spectra have already moved their main
operations to the Web, which has brought about a fast
growth of various Web applications. This has dramati-
cally increased the need to build a fundamental infra-
structure for efficient deployment and access of the
exponentially growing plethora of Web applications. The
development of enabling technologies for such an infra-
structure is expected to change the business paradigm
on the Web. Web services have de facto become the most
significant technological by-product. Simply put, a Web
service is a piece of software application whose inter-
face and binding can be defined, described, and discov-
ered as XML artifacts [9]. It supports direct interactions
with other software agents using XML-based messages
exchanged via Internet-based protocols. Examples of
Web services include online reservation, ticket purchase,
stock trading, and auction. Standards are key enablers
of Web services [102]. Major industry players took a
lead to set up crucial standards. This has greatly facili-
tated the adoption and deployment of Web services [56].
Three key XML-based standards have been defined to
support Web service deployment: SOAP [109], WSDL
[113], and UDDI [110]. SOAP defines a communica-
tion protocol for Web services. WSDL enables service
providers to describe their applications. UDDI offers a
registry service that allows advertisement and discovery
of Web services.

The fast increasing number of Web services is trans-
forming the Web from a data-oriented repository to a
service-oriented repository [85,93]. In this anticipated

538 Q. Yu et al.

framework, existing business logic will be wrapped as
Web services that would be accessible on the Web via a
Web service middleware [104]. Web services will work
as self-contained entities to fulfill users’ requests. Coop-
eration among multiple Web services will additionally
improve the quality of answers by providing value-added
services [67]. Web services are anticipated to form the
underlying technology that will realize the envisioned
“sea of services” [85].

One key challenge for Web services is interoperabil-
ity. Seamless interoperation is the ultimate goal that Web
services aim to achieve. Interoperation moves Web ser-
vices beyond the elementary framework built upon the
three key standards (i.e., SOAP/WSDL/UDDI). It also
helps achieve robust service compositions. The Web ser-
vice composition refers to combining outsourced Web
services to offer value-added services [92]. Process mod-
eling languages are a major tool to compose Web ser-
vices [51]. Typical examples include Business Process
Execution Language for Web Services (BPEL4WS, the
convergence of XLANG [70] and WSFL [53]) [83], Web
Services Choreography Interface (WSCI) [111], and
Business Process Management Language (BPML) [16].
A common characteristic of all these modeling langua-
ges is that XML is used to depict Web services. The lack
of well-defined semantics affects their ability to achieve
seamless interoperability in the true sense. The concept
of ontology is the key to empowering Web services with
semantics [38].

Ontologies enrich Web services with expressive and
computer interpretable languages. They help capture
the semantics of Web services. Ontologies were first
proposed in the artificial intelligence community to facil-
itate knowledge sharing and reuse. They aim to con-
struct a shared and common understanding of relevant
domains across people, organizations, and application
systems [40]. Ontologies function like metadata schema
with rich descriptive capacity [31,50]. They facilitate the
information exchange of people and computers in terms
of both syntax and semantics [58]. A typical example of
ontologies is OWL-S, which is a OWL-based Web ser-
vices ontology [63]. It aims at establishing a framework
to describe semantic Web services. OWL-S would be
a semantic-based substitution of those syntactic-based
Web services languages for service description, service
registration, and service composition. Thus, integrating
ontologies into Web services could not only enhance the
quality and robustness of service discovery and invoca-
tion, but also pave the way for automated composition
and seamless interoperation.

Interoperability has been a central concern for
enabling the service-oriented Web [65]. However, the
full deployment of Web services requires dealing with

additional issues including Quality of Web Services
(QoWS), Web service management, and security/pri-
vacy. As multiple Web services are expected to deliver
similar fuctionalities, QoWS is considered as a key
concept in distinguishing between competing Web ser-
vices [25]. The international quality standard ISO 8402
describes quality as “the totality of features and charac-
teristics of a product or service that bear on its ability
to satisfy stated or implied needs” [88]. The quality and
usage of Web services is controlled and monitored via a
set of management mechanisms [107]. We identify two
types of management techniques. Control management
aims to improve the service quality through a set of
control mechanisms (e.g., transaction, change manage-
ment, and optimization). Monitoring management rates
the behavior of Web services in delivering their func-
tionalities in terms of the QoWS parameters. Security
and privacy mechanisms need to be developed to ful-
fill the requirements of the Web service environment
[39, 83]. Web service requests and replies are sent over
the Internet, and hence are subject to various security
threats. Additionally, users’ sensitive information may
be divulged to unauthorized third parties during the
Web service interactions.

The objective of this paper is to survey the funda-
mental issues and proposed solutions for successfully
deploying and managing Web services. Standards have
so far been the key enablers of Web services. The inten-
sive standardization support reflects the strong industry
backing of Web services as a key mechanism for deploy-
ing programmable functionalities on the Web. This is his-
torically similar to the progress of another key enabling
technology, the database management system (DBMS)
technology. The DBMS technology has had tremendous
progress with the advent of the relational model which
was instrumental in giving databases a solid theoretical
foundation. Web services still have to have such a strong
foundational underpinning. The foundational work is
still in its infancy.

Current surveys focus mostly on the technological
aspects in the development and deployment of Web
services, with little regard to their foundational under-
pinning [9,82]. These surveys mainly fall into two
categories: descriptive or application-oriented. For
example, Alonso et al. [9] give a comprehensive descrip-
tion of Web services. However, the focus is mostly on
technology-related definitions of the different standards
and products. Our survey takes a different approach
in two major ways. First, we investigate the different
technologies from a foundational point of view, relat-
ing each standard/technology to a set of parameters.
Second, we investigate the related standards/technol-
ogies from a research point of view, focusing on the

Deploying and managing Web services 539

functionalities that are provided and the fundamental
issues that are being addressed. Tsalgatidou et al. [100]
present the basic Web service model and sketch the
Web service lifecycle in their work. They present an
overview of the key Web service standards, including
SOAP, WSDL, UDDI, and ebXML. Medjahed et al. [65]
reviewed Web service technologies from a business-to-
business (B2B) application perspective. It outlines the
major features of Web services and examines how they
could fit into the B2B interaction environment. Service
composition is presented as a powerful tool to com-
bine inter-enterprise applications and enhance the B2B
interactions. Papazoglou et al. [82] provide a review of
the Web service technologies as an application of ser-
vice-oriented computing. They examine several major
features of Web services. They also discuss how the Web
service features benefit the service-oriented architec-
ture. In this paper, we conduct a state-of-the-art analy-
sis of the Web service technologies with a focus on the
research issues. Our aim is to lay a foundational frame-
work for Web services, called Web Service Management
System (WSMS). The WSMS is a comprehensive frame-
work for the Web service life cycle, including developing,
deploying, publishing, discovering, composing, monitor-
ing, and optimizing access to Web services. In such a
framework, Web services are treated as first-class ob-
jects that are manipulated as if they were pieces of data.
A set of parameters is proposed to analyze and assess
Web service technologies within the WSMS.

The remainder of this paper is organized as follows.
In Sect. 2, we provide a historical perspective on the
analogy between Web services management and data-
base management. In Sect. 3, we give an overview of
the proposed WSMS. The WSMS is further presented
in a step by step fashion. We first present the standard
Web service reference model. We then describe the Web
service technologies using a layered stack approach. A
set of dimensions of Web services is defined. This set
corresponds to the key issues for deploying and manag-
ing Web services. The WSMS architecture is then pro-
posed to address these issues. From Sect. 4 to 7, we
detail the WSMS architecture by providing a detailed
description of each of its components. In Sect. 8, we
review the current Web service deployment systems. In
Sect. 9, we evaluate these systems by mapping them to
the WSMS architecture. We then outline some future
research trends.

2 Towards a Web Service Management System
(WSMS): historical perspective

Providing a solid framework for the deployment of Web
services aims at providing a powerful foundation much

like the relational paradigm provided for the database
field. In the context of Web services, scientific commu-
nities are expected to benefit from the ability to share
resources on a large scale that will lead to further innova-
tion, collaboration, and discovery. Governments would
be able to better serve citizens and other constituen-
cies by streamlining and combining their Web accessi-
ble resources. Businesses would be able to dynamically
outsource their core functionalities and provide econo-
mies of scale. This would translate into better products
at cheaper prices.

Fully delivering on the potential of the next-gener-
ation Web services requires building a foundation that
would provide a sound design framework for efficiently
developing, deploying, publishing, discovering,
composing, monitoring, and optimizing access to Web
services. The proposed Web service foundation will en-
able the deployment of Web Service Management Sys-
tems (WSMSs) that would be to Web services what
DBMSs have been to data. We largely draw on the
experience and lessons learned from designing the data-
base foundation. The transition from the early file sys-
tems to databases is of particular interest. If one looks
carefully at the history of relational databases, one can
clearly observe a striking parallel with the current sit-
uation of Web services. Therefore, understanding the
related transition processes and resulting foundational
models will provide us with valuable insight and help
in designing a sound foundational framework for Web
services.

For the purpose of comparison, it is noteworthy to
mention that the early file systems were developed for
single users who had their own exclusive data space. In
addition, because of the state of data storage technol-
ogy back then, data sizes were very small. Computer
systems were more computation bound (CPU bound)
as opposed to being data bound (I/O bound). More
importantly, the growing deployment of computer sys-
tems was coupled with a tremendous growth in data
volume and number of users sharing files. The new com-
puting environment posed fundamental challenges in
providing uniform data representation, efficient con-
current access to and recoverability of data, and ensur-
ing correctness and consistency. As a result, the nascent
database research focused on laying the foundation for
the next-generation data management system to address
these issues. Early work on the network and hierarchi-
cal models set the foundational work in motion with the
early standardization-based models (e.g., DBTG model
[2,1]). The field of databases enjoyed widespread accep-
tance only after the relational model was proposed by
Codd [25]. What made the relational model a success
story is the sound mathematical foundation upon which

540 Q. Yu et al.

it is built. The relational model is based on set theory and
relational calculus (declarative). This simple, yet pow-
erful paradigm was met with instant success in industry
[10] and academia [97]. New concurrency control mod-
els were proposed. Optimization techniques based on
algebraic principles were also proposed. This activity
spurred and sustained the deployment of databases as
ubiquitous tools for efficiently managing large quantities
of data.

We observe that this historical perspective on man-
aging data is quite similar with the evolution of Web
services. Web services deliver complex functionalities
over the Web. The early function libraries (e.g., DLL on
Windows) were also designed to wrap certain function-
alities and make them reusable. The libraries provide
a set of APIs, upon which users can manually incorpo-
rate the functionalities into their programs. In addition,
the function libraries are only locally accessible. The
emergence of computer networks present new require-
ments for sharing and reusing of functionalities. There is
a need to integrate applications within or across organi-
zations. Middleware technologies (e.g., RPC, COM, and
CORBA) took a first step to support intra-organization
interoperability. Web services came as a result to ad-
dress the inter-organization interoperability. They aim
to provide users an integrated access to the function-
alities available on the Web. The development of Web
services has so far mostly been the result of standard-
ization bodies usually operating on a consensus basis
and driven by market considerations. In this context,
innovation and long-term market effects are not usu-
ally primary concerns. Because of the global nature of
the Web, the standardization process has so far been
very fragmented, leading to competing and potentially
incompatible Web service infrastructures. Many compa-
nies have invested very heavily in Web services tech-
nologies (Microsoft’s .NET, IBM’s Websphere, SUN’s
J2EE, to name a few). These efforts have resulted in a
fast-growing number of Web services being made avail-
able. The envisioned business model is expected to
include a whole community of Web service providers
that will compete to provide Web services. It is impor-
tant that this investment produce the expected results.
To maximize the benefits of this new technology, there
is a need to provide a sound and clean methodology for
specifying, selecting, optimizing, and composing Web
services. This needs to take place within a secure envi-
ronment. The underlying foundation will enable design-
ers and developers to reason about Web services
to produce efficient Web Service Management
Systems.

2.1 Web services versus data

Despite similarities in nature and history, managing Web
services is different from managing data in many signifi-
cant ways. First, data in traditional DBMSs are passive
objects with a set of known properties, e.g., structure,
value, functional dependencies, integrity constraints. On
the other hand, Web services are active and autono-
mous entities that have a set of functions rather than
values. Moreover, unlike the data in DBMSs, the run-
time behavior of Web services when they are invoked
may not be precisely known. Second, accessing a ser-
vice on the Web is similar to accessing data from a dis-
tributed DBMS. For example, to access a Web service,
the service requester must search in one or more ser-
vice registries. However, Web services carry more com-
plex information, which makes accessing services a more
complicated process. This involves understanding the
different services’ syntactic and semantic descriptions,
selecting the services providing the requested function-
ality, understanding their communication protocols, and
finally engaging in a sequence of message exchange
with the selected services. Of significant importance are
more complex scenarios where requests for services may
require the composition of several Web services; vari-
ous issues pertaining to individual Web services need to
be reconciled before they can be combined. Examples
include security protocols and policies, and Quality of
Web service for optimization purposes.

3 Overview of the WSMS framework

A variety of definitions about Web services are given
by different industry leaders, research groups, and Web
service consortia. For example, the W3C consortium
defines a Web service as “a software system designed
to support interoperable machine-to-machine interaction
over a network. It has an interface described in a machine-
processable format (specifically WSDL). Other systems
interact with the Web service in a manner prescribed by
its description using SOAP messages, typically conveyed
using HTTP with an XML serialization in conjunction
with other Web-related standards” [112]. IBM defines
Web services as “self-describing, self-contained, modu-
lar applications that can be mixed and matched with other
Web services to create innovative products, processes, and
value chains. Web services are Internet applications that
fulfill a specific task or a set of tasks that work with many
other web services in a manner to carry out their part of a
complex workflow or a business transaction”. According

Deploying and managing Web services 541

to Microsoft, “A Web Service is a unit of application logic
providing data and services to other applications. Appli-
cations access Web Services via ubiquitous Web protocols
and data formats, such as HTTP, XML, and SOAP, with
no need to worry about how each Web Service is imple-
mented”. HP defines Web services as “modular and reus-
able software components that are created by wrapping a
business application inside a Web service interface. Web
services communicate directly with other web services via
standards-based technologies”. SUN perceives a Web
service as an “application functionality made available
on the World Wide Web. A Web service consists of a net-
work-accessible service, plus a formal description of how
to connect to and use the service”.

The aforementioned definitions give a high-level
description of the major objective and supporting tech-
nologies of Web services. Interoperation among
machines is the major design goal of Web services. As
the supporting standards, WSDL enables XML service
description of Web services and SOAP defines a com-
munication protocol for Web services. These definitions
give an outside view of Web services. In this
section, we go a step further by setting up a compre-
hensive WSMS framework to support the entire Web
service life cycle, including developing, deploying, pub-
lishing, discovering, composing, monitoring, and opti-
mizing access to Web services. We first present the Web
service reference model. We elaborate on the three key
players in this model. We also identify different layers
that enable the interaction in the Web service model. We
define a collection of dimensions across these layers. The
major components of the proposed WSMS are devised
based on these dimensions. Each component provides
functionalities that address the issues specified by the
corresponding dimension.

3.1 Scenario

We consider a travel agency, named TravelAgency,
providing the travel arrangement (e.g., transportation,
itinerary, and accommodations) for its clients (Fig. 1).
Assume a university professor, Joan, wants to attend an
international conference in Sydney, Australia. Typical
services needed by Joan might include airlines, ground-
transportation (e.g., taxi and car rental), accommoda-
tion (e.g., hotels and inns), and other entertainment
services (e.g., restaurant and opera house). Joan needs
to first search for the services that provide travel pack-
ages. The search can be conducted in some well-known
service registry. We assume that the TravelAgency is
located by Joan. Joan would then send her request to it.
To offer a complete tour package, the TravelAgency
needs support from its business partners (e.g., Air-

Company, Hotel, Restaurant, CarRental, and
OperaHouse) to arrange flights, hotels, cars, and other
entertainment facilities. These companies all define the
service description for their Web services and publish
them on a well-known service registry, whereby the
TravelAgency can search and locate them. TheTrav-
elAgency needs to outsource services from these busi-
ness partners to provide the entire travel package. Since
Web services with similar functionalities might be pro-
vided by competing business partners, there is a need to
optimize access to those Web services or composition
thereof with respect to the expected quality. In addition,
the Web services need to be accessed in a reliable and
secure manner. This example articulates a typical Web
service usage scenario. It will serve as a running example
to illustrate the various Web service concepts.

3.2 Web service reference model

Three types of participants cooperate to set up a Web
service model (see Fig. 2), including: service provider,
service client, and service registry. Web services interact
in three primary modes: service publishing, finding, and
binding. Interactions depend on the Web service arti-
facts, which include the service implementation and the
service description.

– Participants in a Web services model are categorized
into three types:
– Service provider is the owner of the Web ser-

vices. It holds the implementation of the ser-
vice application and makes it accessible via the
Web.

– Service client represents a human or a software
agent that intends to make use of some services
to achieve a certain goal.

– Service registry is a searchable registry providing
service descriptions. It implements a set of mech-
anisms to facilitate service providers to pub-
lish their service descriptions. Meanwhile, it also
enables service clients to locate services and get
the binding information.

– Interactions with a Web service take place in three
modes:
– Service publication is to make the service

description available in the registry so that the
service client can find it.

– Service lookup is to query the registry for a cer-
tain type of service and then retrieve the service
description.

542 Q. Yu et al.

Fig. 1 A travel arrangement scenario

– Service binding is to locate, contact, and invoke
the service based on the binding information in
the service description.

– Artifacts encompass the service implementation and
description:
– Service implementation is a network accessible

software module realized by the service pro-
vider. It could be invoked by a service client
or act as a service client to interact with another
service provider.

– Service description could contain the syntactic
and semantic information of the Web services.
The syntactic information describes the input/
output of the operations, the binding informa-
tion, the data types, and so on. The semantic
information encompasses the domain of inter-
ests, business functionalities, QoWS issues, and
so on.

3.3 Web service stack

The Web service stack contains five key layers: commu-
nications, messaging, descriptions, discovery, and
processes, which are shown along the vertical direction
in Fig. 3. It is an extension of the W3C service stack
[112]. Similar to the W3C service stack, each stack layer
provides certain functionality to support interoperation
between Web services and service clients or among Web

services. However, we categorize interoperability into
two dimensions: syntactic and semantic (see Sect. 3.4
for details). Therefore, our service stack is distinguished
from the W3C stack by further identifying the syntactic
and semantic interoperability offered by all layers above
the messaging layer.

– Communications: The underpinning of the Web
services stack is the network, where the underlying
communications take place. A set of network pro-
tocols helps realize the network accessibility of Web
services. The wide adoption of HTTP makes it the
first choice of standard network protocol for Inter-
net available Web services. Other network protocols
could also be supported, such as SMTP.

– Messaging: The messaging layer provides a doc-
ument-based messaging model for interaction with
Web services. The messaging model works with a
wide variety of network protocols. For example, the
messaging model can be combined with HTTP to
traverse firewalls. In another case, combination with
SMTP enables the interaction with Web services that
support asynchronous message exchanges.

– Description: The description (or representation)
layer is for describing Web services. It wraps Web
services and specifies their functionalities,
operations, data types, and binding information
using a service interface. The WS discovery will rely

Deploying and managing Web services 543

Fig. 2 W3C Web services
reference model

on the WS representation to locate appropriate Web
services.

– Discovery: The discovery layer is for locating and
publishing Web services. It enables the usage of Web
services in a much wider scale. The service provid-
ers can store the service descriptions in a service
registry via the publication functionalities provided
by the WS discovery. Meanwhile, service requestors
can query the service registry and look for interested
services based on the stored service descriptions.

– Processes: The processes layer supports more
complex interactions between Web services, which
enables Web service interoperation. It relies on the
basic interaction functionalities provided by the
technologies at lower layers in the Web service stack.
For example, it needs Web service discovery and
representation for querying and locating Web ser-
vices based on their descriptions. The selected Web
services are used to construct the process, which
consists of a sequence of coordinated Web services.

3.4 Key dimensions for building a WSMS

The variety of the Web service technologies constitutes
a rich solution space of Web services. Each technology
has specific design requirements depending on the usage
scenarios. Therefore, it is important to determine the rel-
evant requirements for deploying and managing Web
services. In this section, we identify a set of dimensions
to evaluate the Web service technologies. These dimen-
sions are in line with the key requirements for deploy-
ing and managing Web services. We take the Web ser-
vice stack as a starting point and extend it to address
the developing trends of Web service technologies. The

dimensions are defined according to the vertical layers
of the Web service stack (see Fig. 3). They include inter-
operability, security & privacy, Quality of Web Services
(QoWS), and management.
Interoperability This dimension refers to the extent
to which participant Web services would cooperate to
accomplish a common objective. For example, in the
aforementioned scenario, the TravelAgency needs to
interoperate with the AirCompany and Hotel to serve
its clients. The common objective of the three parties is
to provide satisfactory services for travelers. Good inter-
operability is a must for them to achieve this goal. Web
services are designed to bring together applications from
geographically distributed and heterogeneous environ-
ments and provide interoperability among them [94].
Interoperability could be achieved via three main ap-
proaches: standards, ontology, and mediation. A stan-
dard is a specification or format that has been approved
by a recognized standardization organization or is ac-
cepted as a de facto standard by the industry. Several
standardization efforts in Web services have been initi-
ated by a focused group of companies, and have then
been adopted by different organizations such as OASIS
(Organization for the Advancement of Structured Stan-
dards) and W3C. These consortia aim at standardizing
the different aspects of Web service interactions (e.g.,
message format, interaction protocols) [9]. An ontology
is a formal and explicit specification of a shared conceptu-
alization [28]. “Conceptualization” refers to an abstrac-
tion of a domain that identifies the relevant concepts
in that domain. “Shared” means that an ontology cap-
tures consensual knowledge. The development of ontol-
ogies is often a cooperative process involving different
entities possibly at different locations (e.g., businesses,

544 Q. Yu et al.

Fig. 3 Web service stack and key dimensions

government agencies). All entities that agree on using a
given ontology commit themselves to the concepts and
definitions within that ontology. “Explicit” means that
the concepts used in an ontology and the constraints
on their use are explicitly defined. “Formal” intends
that the ontology should be machine understandable
and describe using a well-defined model or language
called ontology language. Mediators provide an inte-
grated view or mediated schema over multiple heter-
ogeneous and autonomous services [46]. This schema
represents generally a synthesized view over a specific
application domain. Users access the integrated view
through a uniform interface. Each service is connected
to a wrapper that enables its participation in the system.
It translates between the serviceć6s concepts and those
at the mediator level.

Interoperability is the core functionality that Web ser-
vices endeavors to achieve. Interoperation occurs at two
levels: syntactic and semantic.

– Syntactic interoperability is concerned with the
syntactic features of Web services. Examples of syn-
tactic features include the number of parameters
defining a message and the data types of those param-
eters. XML helps achieve syntactic interoperability
by encoding syntactic information into XML doc-
uments. Additionally, XML provides platform and
language independence, vendor neutrality, and exten-
sibility, which are all crucial to interoperability.

– Semantic interoperability is the most challenging
issue for achieving the truly seamless interoperation.
It deals with semantic properties of Web services.
Examples of semantic features include the domain
of interest of a Web service and the functionality
provided by an operation. The envisioned Seman-
tic Web is gaining momentum as the potential silver
bullet for empowering Web services with semantics.

Interoperability could be achieved at different layers
as depicted in Fig. 3 [65]. The communication layer pro-
vides protocols for exchanging messages among
remotely located partners (e.g., HTTP, SOAP). It is
possible that partners use different proprietary com-
munication protocols. In this case, gateways should be
used to translate messages between heterogeneous pro-
tocols. The objective of interoperability at this layer is
to achieve a seamless integration of the communica-
tion protocols. The content (description) layer provides
languages and models to describe and organize infor-
mation in such a way that it can be understood and
used. Content interoperability requires that the involved
systems understand the semantics of content and types
of business documents. For instance, if a Web service
receives a message that contains a document, it must
determine whether the document represents a purchase
order or a request for quotation. Information transla-
tion, transformation, data mediators, and integration
capabilities are needed to provide for reconciliation

Deploying and managing Web services 545

among disparate representations, vocabularies, and
semantics. The objective of interoperability at this layer
is to achieve a seamless integration of data formats, data
models, and languages. The process layer is concerned
with the conversational interactions (i.e, joint business
process) among services. Before engaging in a transac-
tion, the service providers need to agree on the proce-
dures of their joint business process. The semantics of
interactions among partners must be well defined, such
that there is no ambiguity as to what a message may
mean, what actions are allowed, what responses are ex-
pected, etc. The objective of interoperability at this layer
is to allow autonomous and heterogeneous partners to
come online, advertise their terms and capabilities, and
engage in peer-to-peer interactions with any other part-
ners. Examples of concepts for enabling process inter-
operability include process wrappers and application
adapters [19,13].
Security & privacy Security is an important issue for
deploying Web services. Web services enable interop-
eration at the risk of letting outside intruders attack
the internal applications and databases since they open
up the network to give access to outside users to these
resources [42]. Web service security needs to be con-
cerned with the following aspects: authentication, autho-
rization, confidentiality, and integrity. Authentication is
used to verify a claimed identity while authorization
is to check whether a user is authorized to perform a
requested action. Confidentiality is to ensure that infor-
mation is disclosed only to authorized recipients by,
for example, encrypting the message. Lastly, integrity
refers to the protection of the information from being
tampered with by, for example, putting digital signa-
tures on the messages. Privacy is another major concern
of Web service deployment [89]. During service inter-
actions, personal data or business secrets (e.g., billing
information, shipping address, or product preference)
might be unintentionally released [5]. Conventional pri-
vacy protection mainly relies on law enforcement and
restriction of social values. Emerging technologies for
preserving privacy in Web services include digital pri-
vacy credentials, data filters, and mobile privacy pre-
serving agents [91].
QoWS The proliferation of Web services is expected
to introduce competition among large numbers of Web
services that offer similar functionalities. The concept of
QoWS is considered as a key feature in distinguishing
between competing Web services [104]. QoWS encom-
passes different quality parameters that characterize
the behavior of a Web service in delivering its func-
tionalities. These parameters can be categorized into
two major quality classes: runtime quality and business
quality. Quality parameters in these two classes can be

further extended to include more quality aspects of Web
services to fulfill the requirements of different applica-
tion domains, such as Accessibility, Integrity, and
Regulatory.
Management Web service management refers to the
control and monitoring of Web service qualities and
usage. Web service management mechanisms are highly
coupled with the QoWS of a Web service. We iden-
tify two types of management: control and monitoring
management.

– Control management aims to improve the service
quality through a set of control mechanisms. Typi-
cal control mechanisms include Web service trans-
action, Web service change management, and Web
service optimization. Transactions help improve the
reliability and fault-tolerance of Web services.
Change management deals with the highly dynamic
environment of Web services. It takes a series of
actions to identify the changes, notifying the cou-
pled entities, and adopting appropriate operations to
response the change. Web service optimization helps
users identify Web services and/or their combina-
tions to best fulfill their requirements.

– Monitoring management rates the behavior of Web
services in delivering its functionalities in terms of
each QoWS parameter. Monitoring Web service
behavior would be crucial in either calculating the
QoWS parameter values or assessing a Web service
claim in terms of promised QoWS.

Control and monitoring management might some-
times work cooperatively. For instance, the Web service
optimization would need the monitoring process to get
the QoWS parameter values of different Web services
and/or their combinations. These values would guide the
optimization process to return the optimized solutions
that best fulfill users’ requirements.

3.5 The WSMS architecture

In this section, we present the WSMS architecture.
The design of the WSMS architecture leverages the
research result in DBMSs. Web services will be treated
and manipulated as first-class object in the proposed
WSMS. The key components in this architecture are
modeled after those in DBMSs. The functionality of
each component aims to address the issues raised by the
key dimensions. The interoperation framework
consists of six subcomponents: communication, WS mes-
saging, WS discovery, service registry, WS representa-
tion, and WS processes. The collaboration of these

546 Q. Yu et al.

Fig. 4 The WSMS architecture

subcomponents provides mechanisms to efficient access
and interoperation with Web services. The security/pri-
vacy component guarantees that the access and inter-
operation can be conducted in a secure and controlled
manner. The QoWS component lays out a set of quality
metrics that can be used to advertise and discover Web
services. Some of the metrics can also be used to specify
quality level agreement, such as payment, price, etc. The
management component offers monitoring, transaction,
change management, and optimization functionalities.
The proposed WSMS provides value added features
to enable reliable and optimized deployment of Web
services. The architecture also reflects the relationship
among different components. In what follows, we give a
detailed description of the major functionality of each
component (Fig. 4).
The WS Interoperation Framework The interopera-
tion framework is at the core of the WSMS architec-
ture. It addresses the interoperability issue of Web ser-
vices through the collaboration of its six subcomponents.
WS-messaging combines with an underlying communi-
cation protocol (e.g., HTTP and SMTP) to enable ba-
sic interaction with Web services. A Web service takes

the incoming message as the input to one of its meth-
ods and responds with the output of the method as a
returning message. WS-representation defines the Web
service interface containing a set of supported methods.
It specifies the signature of each method, which is similar
to IDL in the middleware systems. However, WS-rep-
resentation goes beyond the IDL-like syntactic service
description. It incorporates more expressive language
constructs (e.g., ontologies) for describing the proper-
ties and capabilities of Web services in an unambiguous
and computer-interpretable manner. Other information
could also be specified in WS-representation, such as
quality of service parameters, security and transaction
requirements, etc. The semantic service description
caters for the loosely coupled interoperation between
Web services. It helps Web services determine the func-
tionality, requirement, and quality of their interopera-
tion partners. Descriptions of Web services are stored
at service registries. WS discovery provides the query
and publication functionalities for locating and pub-
lishing Web services in a service registry. Interaction
with the registry is through WS messaging. WS pro-
cesses rely on the basic functionalities provided by the

Deploying and managing Web services 547

discovery, presentation, and messaging components to
support the complex interactions between Web services.
The processes involve the invocation of a sequence of
Web services. Service coordination defines the external
interaction protocols for a WS process, whereas service
composition defines the schemas for its internal imple-
mentation.
The WS security/privacy component The security/
privacy component ensures that interactions with Web
services are conducted in a secure fashion while sensitive
information can be preserved as required. The security
mechanisms need to be applied to all aspects of Web
services, including messaging, query, publication, coor-
dination, composition, control, and monitoring. Typical
security functionalities that can be implemented by the
security module are auditing, authentication, access con-
trol, and data encryption. Privacy is usually expressed by
policies which reflect that the habits, behaviors, actions
or other rights of the service users must be protected.
Instead of relying on laws and social values, the pri-
vacy module enforces the policies from a technological
perspective.
The QoWS component The QoWS component rec-
ords the quality aspects of a Web service. It reflects
the runtime and business requirements of Web services,
such as response time, availability, reliability, cost, and
reputation. Because it is anticipated that there will be
multiple competitors to provide similar functionalities,
the WS query process uses QoWS as a major criteria to
select the “best” Web services. The QoWS component
provides functionalities to define appropriate metrics to
characterize QoWS and devise techniques to use it in
optimizing service-based queries.
The WS management component The WS manage-
ment component is for monitoring and controlling the
interactions with Web services. The monitoring module
examines the behavior of the underlying communica-
tion, WS messaging, and WS processes, and reports the
runtime and business properties of Web services to the
QoWS component. The control module provides trans-
action, optimization, and change management mecha-
nisms to deliver the functionalities of Web services in a
reliable, adaptive, and optimal fashion.

Figure 5 describes the proposed WSMS architecture
using the W3C concept map model [112]. In this figure,
rectangles represent concepts and lines with arrows rep-
resent relationships. The key components in the WSMS
architecture are represented by the concepts. In addition
to these key components, the concept map also includes
the Web service (represented by WS) concept. The func-
tionalities of each component are reflected by its rela-
tionships with the WS concept or other components.

The proposed WSMS provides a foundational frame-
work for the Web services. It formalizes the steps in the
entire Web service life cycle. The design of each com-
ponent in the WSMS architecture follows key research
issues (called dimensions) in Web service environments.
Since the Web services are designed to achieve seamless
interoperability, the interoperation framework stays at
the core of the WSMS architecture. The framework is
composed of several horizontally separated layers; each
layer contains components that provide corresponding
interoperation functionalities. The security/privacy,
QoWS, and management components offer supplemen-
tary support (e.g., security, privacy, control, and
monitoring) for the interoperation framework. These
functionalities are orthogonal to the horizontal layers
in the interoperation framework; they can be applied
across these layers. This is different from the Extended
Service Oriented Architecture (ESOA) [82]. The ESOA
contains three horizontal layers: basic service, service
composition, and management layers. The separation of
different layers is based on the advancement of their
functionalities. The basic service layer provides sim-
ple functionalities such as messaging, description, and
discovery. The composition layer provides the function-
alities for the consolidation of multiple service into a sin-
gle composite service. The management layer provides
advanced administration capacities for managing crit-
ical Web service-based applications. Additionally, the
ESOA extends the Service Oriented Architecture (SOA)
by addressing the new requirements introduced by Web
services. The layers added in ESOA provide functional-
ities that overlap with existing SOA layers. However, the
WSMS architecture is not developed by adding layers
to an existing architecture. We take consideration of the
key research issues of Web service when designing the
WSMS architecture. Therefore, there is a clear function-
ality separation of different components in a WSMS.

In [80], Web service management approaches have
been investigated to support production-quality Web
service applications. The Web service management
framework relies on a manageability information model
and management infrastructure services to make Web
services measurable and manageable. Specifically, the
manageability information model describes the man-
ageability information of Web services. Management
infrastructure services define standard interfaces for the
management functionalities, such as metering, monitor-
ing, mediation, etc. We take an integrated approach
and a broader scope to present the WSMS architec-
ture. Management approaches investigated in [80] are
complementary to those covered in the management
component and fit into the the proposed WSMS

548 Q. Yu et al.

Fig. 5 A concept-map description of the WSMS architecture

architecture. There are some other research effort
underway to provide architectural support for Web ser-
vices such as Web Service Management Framework
(WSMF) [39], Web Service Architecture (WSA) [112],
Web Services Conceptual Architecture (WSCA) [52],
Semantic Web enabled Web Services architecture
(SWWS) [22], Service Bus [57], and Web Service Inter-
operability framework (WS-I) [118]. These architectures
have addressed several similar components covered in
our WSMS architecture. These components are designed
to address the key research issues in the entire Web
service life cycle. Unlike these architectures that pres-
ent the components in an isolated manner, we take an
integrated approach to investigate the functionalities
of each component in the proposed WSMS architec-
ture. We further examine the relationship between these
components and how they could collaborate to set up
the WSMS to enable the entire Web service life cycle
including developing, deploying, publishing, discover-
ing, composing, monitoring, and optimizing access to
Web services.

4 Web service interoperation framework

Web services are designed to bring together distrib-
uted and heterogeneous applications in a large scale and

provide interoperability between them [94]. Distribu-
tion, heterogeneity, and scalability are the three key is-
sues for application interoperation. Computer networks
bridged isolated machines to form a distributed system.
Different applications can thus build up communica-
tions via various network protocols. This enables the
primary form of interoperation between applications.
Interoperation at this stage requires complex low-level
programming, which is time consuming and error prone.
Remote Procedure Calls (RPCs) take a step further by
hiding the complexity of building distributed applica-
tions. They abstract away the heterogeneity of appli-
cations from different aspects, such as platforms and
languages. RPC enables simpler and more efficient in-
teroperation between applications. A middleware takes
RPC as its kernel technology and further evolves it
by incorporating security, faulty tolerance, and failure
recovery mechanisms. It provides a full-fledged interop-
eration solution in an intra-organization scale. Because
organizations are rushing to move their main operations
to the Web, there is a need for interoperation of applica-
tions from a much wider spectrum. Web services are the
result of the various standardization efforts to enable
application interoperation on the Web.

Web service interoperation occur at two levels: syn-
tactic and semantic levels. We evaluate the key technol-

Deploying and managing Web services 549

ogies that support syntactic and semantic interoperation
in this section. These technologies will be mapped onto
the corresponding layers in the Web service stack based
on their functionalities: WS messaging, WS representa-
tion, WS discovery, and WS processes. After presenting
the supporting technologies at each layer, we follow with
a discussion of how further development of these tech-
nologies can address the current open issues.

4.1 Messaging layer

Web services are heterogeneous and loosely coupled.
The Web service environment can no longer fulfill the
symmetrical requirement of conventional middleware,
where communication protocols link uniform object
models and libraries. In addition, Web services may be
deployed at different organizations across the Internet,
which requires the communication protocols to work
through firewalls. The use of document-based messag-
ing model caters for the loosely coupled interaction
relationships. To deal with heterogeneity, the messag-
ing model works with a wide variety of transport proto-
cols. For example, interaction with Web services that sit
behind firewalls requires the messaging model to be
combined with HTTP. In another case, combination with
SMTP enables the interaction with Web services that
support asynchronous message exchanges [9]. In addi-
tion to the document style interactions, the messaging
model also supports RPC style interactions. This adapts
Web services to the legacy applications developed on
the conventional middleware, which communicate with
RPCs. In this section, we present several technologies
that support WS messaging: SOAP, WS addressing, and
WS routing.
SOAP [109] SOAP is a WS messaging standard that
enables communication among Web services in a WSMS.
It provides a lightweight messaging framework for
exchanging XML-based messages. SOAP is indepen-
dent of languages and platforms. It supports two types
of communications: messaging and RPCs. It is designed
to work with a great variety of transport protocols. The
predominant protocol that is combined with SOAP is
HTTP, which helps achieve the synchronous commu-
nication. A SOAP message contains one XML element
(Envelope) and two child elements (Header and
Body). The Envelope defines the namespaces for the
remaining content of a SOAP message. The Header
is an optional element. It can carry auxiliary informa-
tion in a SOAP message for supporting authentication,
transaction, and payment. The Header enables a SOAP
message to be extended in an application-specific man-
ner. TheBody is the mandatory part of a SOAP message.
It specifies the information to be carried from the initial

message sender to the ultimate message receiver. For
message exchanging, the Body part encompasses the
exchanged information, while for RPCs, Body includes
the remote method name, its associated address, and the
arguments thereof.
WS-routing [106] SOAP does not specify the actual
message path along which a SOAP message is to travel.
The message path consists of several intermediaries that
a SOAP message will visit. SOAP needs to rely on the
underlying transport protocols and follow their message
path models. Therefore, it is impossible to specify which
intermediaries the SOAP message can visit when it trav-
els to its destination. WS-routing enables SOAP path
to be specified as a SOAP message header. It consists
of a sequence of references to the intermediary SOAP
nodes. The sequence specifies the visiting order of the
SOAP message. When a message arrives at an interme-
diary node, the node will remove the reference thereof
and send the message to the next node based on the
specified order. An intermediary node can also incorpo-
rate new nodes or remove existing nodes to change the
message path.
WS-Addressing [69] WS-Addressing defines a proto-
col-neutral mechanism to address WS messages. It helps
identify WS endpoints through predefined XML ele-
ments. It specifies an endpoint reference as the combi-
nation of an address and several reference properties.
Thus, the target WS instances can be uniquely located.
WS-Addressing defines how WS instances endpoints are
described. It also specifies how address description can
be encoded in SOAP messages. The SOAP messages will
carry standardized header blocks, which can identify a
unique WS instance.
WS-Reliability [98] WS-Reliability is a SOAP-based
protocol for addressing reliable messaging requirement.
The reliability features include guaranteed delivery,
duplicate elimination, and message ordering. WS-reli-
ability specifies how to reply to a message to guarantee
reliable messaging. An acknowledge message or a fail-
ure message is sent as a reply. The reply is correlated with
a message by references to the message ID. A message
ID is globally unique. It is also used in duplication elim-
ination. Messages with the same message ID are treated
as duplicates. WS-reliability uses a sequence number
mechanism to track and enforce the message order. WS-
reliability is defined as the SOAP head extensions.

SOAP and its complementary specifications
provide a simple and lightweight messaging framework
for exchanging XML-based messages between Web
services. However, the downside of XML-based messag-
ing is that it represents information in a rather expen-
sive way, which demands intensive document parsing.
When a large number of Web services participate in the

550 Q. Yu et al.

interaction, the message exchange would become very
frequent. This could greatly reduce the performance,
which brings along the scalability problem. Two
alternatives to the XML-based types are attaching
binary data to the SOAP messages or using URLs that
point to the actual data. Another trend that extends
SOAP would be along with the asynchronous message
exchange. The RPC style interaction requires tightly
coupled relationships, where applications are strongly
dependent on each other. When interactions occurs
across multiple organizations, the coordination would
become significantly challenging. Asynchronous inter-
actions avoid direct invocations by batching and rout-
ing requests via queues. Therefore, asynchronous SOAP
would be a technological choice to achieve cost effective
interactions.

4.2 Representation layer

The representation layer is used to describe Web
services. It wraps Web services and specifies their func-
tionalities, operations, data types, and binding informa-
tion using a service interface. The discovery layer relies
on the representation layer to locate appropriate Web
services. Since XML and ontologies are the two pre-
dominant languages for defining the service interfaces,
we identify two types of Web service representations:
XML-based and ontology-based.

4.2.1 XML-based representation

In this section, we describe a general framework for
the XML-based representation that is symbolized by
WSDL. We will then describe more application-specific
frameworks that facilitate interoperabilty at the repre-
sentation layer.
WSDL [113] WSDL is the current industry standard
for WS description. It goes beyond IDLs in the con-
ventional middleware in two major ways. First, WSDL
specifies the mechanisms to access a Web service in addi-
tion to the service name and signatures. Second, WSDL
defines the location to invoke a Web service, whereby
the service requestor can locate the service and interact
with it using SOAP. WSDL mainly focuses on the syn-
tactic description of Web services using XML. It does
not allow the specification of Web service semantic fea-
tures. For example, no constructs are defined to describe
document types (e.g., whether an operation is a request
for quotation or a purchase order).

A WSDL document describes programming inter-
faces and accessing formats of a Web service. It de-
fines a Web service at two levels: the application level
and the concrete level. WSDL helps service requestors

access a Web service through a clear separation of the
abstract and concrete descriptions of a Web service. At
the abstract level, the WSDL description includes three
basic elements: Type, Message, and PortType.
Types define the type of the data that are relevant for
the information exchange. Although WSDL can sup-
port any type system, it adopts XML Schema Definition
(XSD) as the canonical type system to achieve max-
imum interoperability and platform neutrality. Mes-
sage represents an abstract definition of the transferred
data. A message consists of one or more logical parts.
Each part associates with a type of XSD or other type
systems. These logic parts provide a flexible way to
describe the abstract content of messages. PortType
is a set of abstract operations provided by an endpoint
of a Web service. An endpoint of a service can support
four transmission primitives: one-way, request–response,
solicit–response, and notification. At the concrete level,
the WSDL description provides information of binding
a concrete service endpoint. It specifies three aspects
of binding information: communication protocols, data
format specifications, and network addresses. Binding
describes the first two aspects. It specifies the commu-
nication protocol, such as SOAP and HTTP. It also
specifies the data format of the operations and mes-
sages. Port and Service elements describe the net-
work addresses. A Port specifies a single address for
binding a service endpoint. A Service, on the other
hand, aggregates a set of related ports.

The WSDL documents describe primary information
for accessing Web services. WS-Policy [96] and
WS-Agreement [44] are two specifications that comple-
ment WSDL. WS-Policy provides a framework to enable
Web services to specify policy information. The policy
is used to convey conditions on an interaction between
two Web service endpoints. WS-Policy enables the Web
service provider to specify a condition under which it
provides the service. The Web service requester uses the
policy to convey the information that which kind of ser-
vice it wants. WS-Agreement provides the mechanisms
for service providers to specify agreement terms for the
usage of their services. These specifications would be
used for customizable description of web services.
Other XML-based frameworks There is a large num-
ber of XML-based frameworks for enabling interopera-
bility at the representation layer. Interactions
between different partners require that the involved sys-
tems understand the semantics of content and types of
the exchanged documents. In what follows, we
describe a representative set of XML-based interoper-
ability frameworks. An exhaustive list of frameworks
can be found in [20]. Web services may adopt these
frameworks to capture the semantics of documents

Deploying and managing Web services 551

processes. For example, Web services may use cXML
to carry out interactions among businesses according to
these frameworks [20].

eCO introduces xCBL (XML Common Business
Library) to define business documents [20]. xCBL con-
sists of a set of XML core documents that are used to
represent common interactions in business transactions.
The main motivation for establishing core documents
is that some concepts are common to all business do-
mains and thus can be expressed in a common format.
Examples of such core documents are: purchase orders,
invoices, date, time, and currencies. Business partners
may use and extend these documents (e.g., adding new
elements) to develop their own business documents.
Businesses are not limited to a specific set of pre-defined
documents. However, this may hamper interoperability
since companies would need to be aware of newly cre-
ated documents.

cXML (Commerce XML) consists of an XML-based
schema language and a protocol for online
purchasing transactions [20]. It targets business trans-
actions that involve non-production Maintenance, Re-
pair, and Operating (MRO) goods and services. cXML
defines a set of XML DTDs to describe procurement
documents in the same spirit as xCBL (e.g., order re-
quest, order response). It provides the following ele-
ments for describing product catalogs: Supplier, Index,
and Contract. The supplier element describes general
information about a supplier (e.g., address, ordering
methods). The index element describes the supplier’s
inventory (e.g., product description, part numbers, clas-
sification codes). The contract element describes the
negotiation agreements between a buyer and a supplier
on product attributes (e.g., price, quantity).

Universal Business Language (UBL) defines a
generic XML interchange format for business docu-
ments [73]. It aims to resolve the discrepancy in XML
documents used in different application domains. UBL
consists of three key components: a library of reusable
data components, a set of common business documents,
and customization of UBL for specifying trading rela-
tionships. The data library and the common business
documents are both defined as XML schemas. The stan-
dardization of the XML business schemas provides a
commercial syntax for business documents that can be
universally understood and recognized.

RosettaNet [3] aims at standardizing product descrip-
tions and business processes in information technology
supply chain applications. RosettaNet’s supply chain
include information technology products (e.g., boards,
systems, peripherals, finished systems) and electronic
components (e.g., chips, connectors). The RosettaNet
Business Dictionary contains vocabulary that can be

used to describe business properties (e.g., business name,
address, tax identifier). The RosettaNet Technical Dic-
tionary contains properties that can be used to describe
characteristics of products (e.g., computer parts) and
services (e.g., purchase order). The RosettaNet Imple-
mentation Framework specifies content of messages,
transport protocols (HTTP, CGI, email, SSL) for com-
munication and common security mechanism (digital
certificates, digital signatures).

ebXML (Electronic Business XML) [34] defines an
architecture and a set of specifications for Web ser-
vice interactions. It is sponsored by UN/CEFACT and
OASIS. At the content layer, companies interact through
business documents. A business document is a set of
information components that are interchanged as part
of a business process. Business documents are com-
posed of three types of components: core components,
domain components, and business information objects.
Core components, stored in the core library, are infor-
mation components that are re-usable across industries.
Domain components and business information objects
are larger components stored in the domain library and
business library respectively. Core components are pro-
vided by the ebXML library while domain component
and business information objects are provided by
specific industries or businesses.

4.2.2 Ontology-based representation

As a non-trivial extension to WSDL, ontologies enable
the semantic description of Web services. Ontologies
originate from the AI field. They are mainly used to
model knowledge-based systems. A major distinction
between Web services and knowledge systems is that
Web services are dynamic. Therefore, using ontologies
to model the dynamic service processes and behaviors
would be an important future trends in both Web service
and ontology areas [30,29]. The ontology-based WS rep-
resentation enriches the Web service description with
machine interpretable semantics. It uses the ontology
language constructs to describe the functionalities of
services. WS-discovery can locate appropriate Web ser-
vices based on the functionality information of Web ser-
vices. The ontology-based model can also specify the
behavior of service operations, including the precondi-
tions and effects of performing an operation of a Web
service. WS-processes can rely on the behavior informa-
tion to decide the order of different Web services that
participate in the process.
OWL-S [27] OWL-S is an OWL-based ontology for
describing Web services. OWL (Ontology Web Lan-
guage) is a revision of the DAML+OIL web ontology

552 Q. Yu et al.

language incorporating lessons learned from the
design and application of DAML+OIL. OWL-S
(an extension of DAML-S, a DAML+OIL upper ontol-
ogy for Web service) aims at setting up a framework
for semantic Web services. OWL-S depends on ontol-
ogies to realize the automatic service discovery, invo-
cation, composition and interoperation, and execution
monitoring. The Service class sits on top of the hier-
archical structure. It consists of three components: a
ServiceProfile, a ServiceModel, and a Service
Grounding.

The service profile represents the capacities of the
service. It helps a searching agent discover services that
fulfill certain requests. Specifically, an OWL-S profile
contains three types of information: information about
the service provider, functional description, and a host
of service characteristics. The provider information con-
tains the contact information of the service providing
entity. The functional description specifies the transfor-
mation introduced by the service. It provides the re-
quired inputs and the generated outputs. It also specifies
the preconditions needed to execute the service and the
expected execution effects.

The service model describes the execution process of
the service. OWL-S defines the ProcessModel, as a
subclass of ServiceModel to give a detailed perspec-
tive on how a service operates. A process can gener-
ate two kinds of effects: data transformation and state
transition. For data transformation, the process receives
some inputs and produces some outputs, whereas for
state transition, the process starts based on some precon-
ditions and produces some effects. The process model
consists of three types of processes: atomic, simple, and
composite. An atomic process is directly invocable by
receiving an input message and returning an output
message. The atomic process needs to be grounded to
a WSDL operation to enable the execution. Similarly,
the input and output of the process also needs to be
grounded to the corresponding WSDL messages. A sim-
ple process mainly serves as a tool for abstractions. It
may provide a view of some of the specialized uses of
atomic processes. It may also simplify the presentation
of some composite services for planning and reasoning.
Simple processes are not grounded to any WSDL oper-
ations, so they are not invocable. A composite service
combines several other processes (either composite or
non-composite) with a set of control constructs. OWL-
S defines a minimal set of control constructs, which
consist of Sequence, Split, Split + Join, Choice, Unor-
dered, Condition, If-Then-Else, Iterate, Repeat-While,
and Repeat-Until. A composite service is not associ-
ated with a grounding. Therefore, it is not invocable
either.

A grounding enables access to the service. It specifies
the description elements needed to interact with the ser-
vice. The grounding specifies the concrete level of the
service description. In contrast, the service profile and
service model specify the abstract part of the service
description. The core function of a grounding is to real-
ize the abstract inputs and outputs of an atomic process
as concrete messages. The messages serve as a vehicle to
carry the inputs and output in some transmittable for-
mat. OWL-S depends on WSDL to ground its atomic
processes due to the similarity between the grounding
and WSDL’s binding.
WSMF and WSMO [39,48] Web Service Modeling
Ontology (WSMO) is an ontology for describing several
aspects of semantic Web services. It takes Web Service
Modeling Framework (WSMF) [39] as a starting point.
WSMF consists of four main parts, including goals, on-
tologies, mediators, and Web services. The goal defines
the problems that a Web service is expected to address.
The ontology defines the formal semantics for the terms
used in other elements of WSMF. The mediator is used
to address interoperability problems, such as data mis-
matches and process sequence mismatches. The Web
service part defines several elements to describe a Web
service, including the precondition, post-condition, data
flow, control flow.

The WSMO refines WSMF and defines these ele-
ments in a formal fashion. The WSMO definition of a
Web service consists of four parts, including nonFunc-
tionalProperties, usedMediators, capability, and inter-
face. The nonFunctionalProperties describe the
properties that are not directly related to a Web ser-
vice’s functionality, such as service providers, cost, per-
formance, reliability, security, etc. These properties are
mainly used to help software agents discover and select
Web services. They can also be used for negotiation.
The usedMediators define the mediators used by a
Web service. For example, a Web service can use the
concepts and relationships elsewhere by importing on-
tologies through ontology mediators (ooMediators).
It can also use wgMediator to address interoperability
problems between a Web service and goals. The capa-
bility defines the functionalities of a Web service. It
helps software agents locate a desirable Web service. A
capability can be modeled by using preconditions, post-
conditions, and effects. The interface describes how
Web service functionalities can be fulfilled. It can be
used to help software agents invoke and combine Web
services. The WSMO definition describes the interface
of a Web service from a twofold view, including cho-
reography (from user’s prospective) and orchestration
(form other service provider’s perspective). The chore-
ography describes the information about how to interact

Deploying and managing Web services 553

with a service to make use of its functionalities, such as
Message Exchange Pattern (MEP). The orchestration
describes the information about how a Web service is
outsourced to provide a value-added service. It has a
tight relationship with the Problem Solving Pattern
(PSP), which specifies a sequence of activities to achieve
a given requirement. The Web Service Modeling
Language (WSML) [47] provides a formal syntax and
semantic for WSMO. It is based on well-known logical
formalisms, including first-order logic, description logic,
and logic programming.

In a nutshell, the XML-based service representation
describes the syntactical information of Web services.
Similarly to IDLs, it specifies the input and output for-
mat of a set of operations offered by a Web service.
However, the XML-based service representation does
not usually provide rich semantics of services, which
are paramount for discovery and composition of loosely
coupled Web services. The ontology-based service rep-
resentation enriches the Web service description with
machine interpretable semantics. It uses the ontology
language constructs to describe the functionalities of
services. In addition, it can also specify the behavior
of service operations, including the preconditions and
effects of performing an operation of a Web service.
Since different ontologies might be used for service
description, a major issue of ontology-base a service
representation is mapping between disparate service
ontologies.

4.3 Discovery layer

The discovery layer provides a query and publication
framework for publishing and locating Web services. It
enables the usage of Web services in a much wider scale.
Service providers can store the service descriptions in a
service registry via the publication functionalities pro-
vided by WS discovery. Meanwhile, service requestors
can query the service registry and look for their inter-
ested services based on the stored service descriptions.
The standardization effort that aims to provide a WS
discovery framework is UDDI.
UDDI [110] UDDI defines a standard to publish and
query Web services in a WSMS. It integrates Web ser-
vice description and discovery to help service requestors
locate their desirable services. The core component of
UDDI is a service registry. The registry stores the gen-
eral information of Web services. The information can
facilitate service requestors in querying different Web
services. UDDI provides a service query API to locate
appropriate Web services. It also defines a service pub-
lication API for service providers, who can use it to
advertise their services.

UDDI encodes three types of information about
services: white pages, yellow pages, and green pages. The
white pages contain the contact information of business
entities and the Web services they provide. UDDI uses
two elements to express white pages information, includ-
ing businessEntity and businessService. The
businessEntity describes a business organization
that provides Web services. It specifies the information
of service providers, including names, brief
description, and contact details. Each businessEnti-
ty may include one or more businessService ele-
ments. The businessService describes a collection
of related Web services offered by an organization spec-
ified by a businessEntity. The yellow pages contain
the classification information of businesses and services.
Different business or services are classified based on
their functionalities. Examples of such categories in-
clude restaurants, hotel, etc. The yellow pages specify
the category to which the businesses or services belong.
The green pages contain the information about tech-
nical details of Web services, including bindingTem-
plate andtModel. ThebindingTemplatedescribes
the information about concretely binding an endpoint of
a service. The tModel describes the technical specifica-
tion of a Web service, such as a Web service type, a
protocol used by Web services, or a category system.

UDDI provides well-defined programming interfaces
for users to inquire and update the service registry data.
The inquiry API and publication API are both based
on SOAP messages. The inquiry API enables service
requesters to find and get details about Web services.
The publication API enables service providers to pub-
lish services, update services information, and update
the security mechanism.

The major usage mode of current Web service dis-
covery technologies is design time discovery [9]. Users
query the service registry, retrieve the service descrip-
tion, and write the client code to invoke the service. To
accessing Web services at large, it requires WS discovery
to support dynamic binding. However, a significant chal-
lenge for dynamic binding is to unambiguously describe
Web service using machine interpretable languages. In
addition, issues such as fault-tolerance and load-balanc-
ing also need to be addressed [9].
Semantic UDDI [78] An approach for empowering
the UDDI registries with semantic capabilities is pre-
sented in [78]. It shows how DAML-S Service Profiles
can be mapped into the UDDI records providing a way
to record semantic information within a UDDI registry.
It also shows how the UDDI registries can be modified
to use the semantic information provided by DAML-S.
The proposed approach identifies two types of attributes
in a DAML-S Service profile: UDDI-like and DAML-S

554 Q. Yu et al.

specific attributes. The UDDI-like attributes are mapped
directly from the DAML-S Service Profile to UDDI
records as they already exist in UDDI. This is the case
with provenance information such as the name and ad-
dress of the service provider. The DAML-S specific attri-
butes, such as geographicRadius, qualityRating, precon-
dition, and effect, are represented using the tModel
mechanism defined in UDDI. The mapping of DAML-
S specific attributes requires the specification of a set
of fifteen (15) UDDI tModels, one for each attribute.
BusinessService records use these tModels to index the
values they store from the DAML-S Service profile they
intend to represent. One of the tModels, the DAML-S
tModel, has a special meaning; it states that the ser-
vice advertised has a DAML-S service representation,
and its value is the URI of the DAML-S service that is
represented by the current profile. A DAML-S match-
ing engine uses ontology-based information for search
requests to obtain the UDDI keys which are in turn
used to retrieve the service descriptions from the UDDI
registries.
ebXML Registry [34] Another example for a Web ser-
vice registry standard is the ebXML (electronic business
XML) registry. The ebXML registry acts as a database
for data regarding business to business communication.
It follows a similar concept like the UDDI registries,
but is broader in scope. An ebXML registry is capa-
ble of storing arbitrary data including XML documents,
text documents, images, sound and video [33]. Instances
of such content are referred to as a RepositorytItems.
RepositorytItems are stored in a content repository
provided by the ebXML Registry. In addition to the
RepositoryItems, an ebXML Registry is also capable of
storing standardized metadata that may be used to fur-
ther describe RepositoryItems. Instances of such
metadata are referred to as a RegistryObjects.

The ebXML registry includes two major specifica-
tions. The ebXML Registry Information Model specifi-
cation defines the types of metadata and content that
can be stored in an ebXML Registry. The compan-
ion document ebXML Registry Services and Protocols
defines the services provided by an ebXML Registry and
the protocols used by clients of the registry to interact
with these services. The ebXML registry offers two sep-
arate interfaces, the LifeCycleManager Interface and the
QueryManager Interface. The LifecycleManager han-
dles the submission of objects, the classification schemes
of object and the removal of obsolete objects from the
registry. The QueryManager interface enables the dis-
covery of Web services. It consists of two parts allow-
ing search with SQL expressions and Filter expressions,
respectively.

WS-MetadataExchange [4] Web services use metada-
ta (i.e., service description information) to describe what
other Web services need to know to interact with them
(e.g., WSDL description). The Web services metada-
ta exchange (WS-MetadataExchange) enables the re-
trieval of metadata associated with a Web service. While
service registries, such as UDDI and ebXML registries,
are used to store metadata about Web services, WS-
MetadataExchange is intended for the retrieval of
such metadata. However, it is not intended to provide a
general purpose query or retrieval mechanism for other
types of data associated with a service, such as state
data, properties and attribute values. The WS-Metada-
taExchange defines two request–response interactions
for getting service’s metadata: Get and Get Metadata.
When the type of metadata sought is clearly known,
(e.g., WSDL), a requester may indicate that only that
type should be returned by using the Get request. When
additional types of metadata are being used, or are ex-
pected, or when a requester needs to retrieve all of the
metadata relevant to subsequent interactions with an
endpoint, a requester may indicate that all available
metadata, regardless of their types (e.g., WSDL, WS-
Policy, etc.), are expected. This is done by sending a Get
Metadata message. The WS-MetadataExchange speci-
fication is an initial public draft release and is up for
review for later submission to a standards body, likely
OASIS.

4.4 Process layer

The messaging, representation, and discovery layers
achieve simple interactions with Web services, where
service requestors invoke a single operation. The pro-
cess layer supports more complex interactions between
Web services. It relies on the basic interaction function-
alities provided by the technologies at lower layers in
the Web service stack. For example, it needs the discov-
ery and representation layers for querying and locating
Web services based on their descriptions. The selected
Web services are used to construct the process, which
consists of a sequence of coordinated Web services. The
benefits offered by the process layer lie in four major
aspects. First, Web service processes enable organiza-
tions to outsource existing Web services, which avoids
developing new applications from scratch and ensures
a rapid time-to-market deployment. Second, it reduces
complexity, because complicated services can be incre-
mentally constructed out of relatively simple designs.
Third, application development based on Web services
reduces business risks as reusing existing services avoids

Deploying and managing Web services 555

Coordination Choreography

OrchestrationCoordination

Contains

Describes Coordination Protocols

Provides Orchestration Models

Conversation Conversation Conversation

Fig. 6 Key concepts in the process layer

the introduction of new errors. Finally, the possibility
of outsourcing the “best-in-their-class” services allows
companies to increase their revenue.

Figure 6 illustrates the relationships between the key
concepts in the process layer. Web service coordina-
tion and composition offer technological support to con-
struct complex Web service processes. Coordination and
composition are highly related but focus on different
aspects of a process. Coordination provides external
protocols for enabling collaboration among multiple
Web services, whereas composition refers to the pro-
cess of developing a composite Web service. A com-
posite Web service is defined as a conglomeration of
outsourced services [67]. Three concepts that are re-
lated to coordination and composition are conversation,
choreography, and orchestration. A conversation is a
sequence of message exchanges between a service and
its requester [17]. A coordination protocol contains a set
of justified conversations. Coordination protocols are
described by a choreography, which tracks the messages
exchanged by multiple Web services. Although a cho-
reography involves multiple parties, no single party has
a full control of the conversations. Orchestration refers
to an executable Web service process. It is controlled by
a single party. An orchestration model (e.g., statecharts,
Petri Nets, pi-calculus) specifies the order and condi-
tions to invoke the component services in a composite
service achieved through the composition process.

4.4.1 Web service coordination and choreography

Coordination protocols specify the procedures that par-
ticipant Web services need to follow to achieve their
interoperation. They are analogous to service interfaces,
which describe how to interact with Web services. The
implementation details are hidden from service reques-
tors. Coordination protocols are public documents which
can be published in some service registries. This enables
design-time discovery and runtime binding. Coordina-

tion protocols are described by a choreography. Current
proposals that support Web service coordination and
choreography including WS-Coordination, WS-CDL,
and BPSS.
WS-coordination [74] WS-Coordination aims to
setup a framework for supporting coordination proto-
cols. The framework includes two major components:
coordinator and participants. The participant relies on
the coordinator to interact with other participants. WS-
Coordination defines a coordination protocol, a
coordination type, and a coordination context to spec-
ify the interactions between the participants and their
corresponding coordinators. Specifically, a coordination
protocol defines a set of rules to guide the interaction be-
tween a coordinator and its participants. A coordination
type is a collection of related coordination protocols. A
coordination context specifies a data structure, which
marks the messages that belong to the same coordina-
tion. There are three modes of interactions between the
participants and their corresponding coordinators: acti-
vation, registration, and protocol-specific interactions.
In the activation mode, a participant sends a request
to its corresponding coordinator for setting up a new
coordination context. Once the participant initiates an
instance of coordination type, the new context is cre-
ated. In the registration mode, a participant registers
with a coordinator to join the execution of a coordina-
tion protocol. The coordinator will notify the participant
when the coordination protocol is being performed. In
protocol-specific interactions mode, the participants and
their coordinators exchange protocol-specific messages.
The three modes of interactions are supported by ei-
ther of the two architectures: central and distributed
coordinations. In the former, all participants commu-
nicate with a single coordinator, whereas in the latter,
each participants communicate with its own coordina-
tor. WS-Coordination identifies the key component for
building a coordination framework. However, it does
not specify a language to define the coordination pro-
tocols. Such a language is specified by WS-CDL, which
will be introduced next.
WS-CDL [115] Web Services Choreography Descrip-
tion Language (WS-CDL) is an XML-based language
that describes the cross-enterprise collaborations of Web
services from a common viewpoint. It describes the rules
and agreement to which the participant services need to
conform. The main feature of WS-CDL is that neither
it is an executable process language (which is different
from WSFL or XLANG), nor it depends on any spe-
cific process implementation language. The advantage
of this feature is that WS-CDL can support interoper-
able collaborations between Web services regardless of
their supporting platforms or programming models.

556 Q. Yu et al.

The WS-CDL describes a Web service participant in
two aspects: static coupling and dynamic coupling. The
static coupling specifies the static collaboration con-
tact-points of the service participant. It contains the
information about roles and relationships. Each Web
service participant needs to show the observable behav-
ior so as to join collaborations. Such behavior is specified
by a role. Based on the role, a relationship describes the
mutual commitment between two participants. Partici-
pants are obliged to conform to their roles and relation-
ships with others to join collaborations. The
dynamic coupling contains the information about the
communication and synchronization between Web ser-
vice participants in a collaboration.

The core of WS-CDL is the definition of choreog-
raphy. A choreography constructs a collaboration of
Web service participants based on their roles. A cho-
reography contains several react elements. The react
element identifies the actions that react to the availabil-
ity of variable information and constraint conditions. A
choreography also contains a recovery mechanism to
support transactional interaction between Web service
participants. A choreography defines a recovery block
using a recover element. Once an exception occurs
in a recovery block, a compensation activity would be
performed to recover from exceptional conditions. In
addition, a choreography can be reused to create a new
choreography.
BPSS [34] The Business Process Specification Schema
(BPSS) of ebXML is available in UML and XML
versions. The UML version only defines a UML class
diagram. It is not intended for the direct creation of a
business process specification but provides a represen-
tation of all the elements and relationships required for
its creation. The XML version allows the creation of
XML documents representing ebXML-compliant busi-
ness process specifications. ebXML provides a set of
common business process specifications that are shared
by multiple industries. These specifications, stored in the
business library, can be used by companies to build cus-
tomized business processes. Interactions between busi-
ness processes are represented through choreographies.
To model collaboration in which companies can en-
gage, ebXML defines Collaboration Protocol Agree-
ments (CPAs). A CPA is an agreement by two trading
partners which specifies in advance the conditions under
which the trading partners will collaborate (e.g., terms
of shipment and payment).

4.4.2 Web service composition

Web service composition is a process that combines out-
sourced Web services to offer value-added services [92].

Web service composition is different from traditional
application integration, where applications are tightly
coupled and physically combined. Web services adopt a
document-based messaging model, which supports the
integration of loosely coupled applications that are
across multiple organizations. WS composition can be
conducted in three different fashions: process/program-
ming, interaction, and planning.
Process-based composition Most existing Web service
composition techniques require programming to some
extent for constructing the orchestration model
[23,14,24]. Composers first need to study the compo-
nent services that are described using WSDL or some
ontology languages and understand the functionalities
of the services and the supported operations. A further
step analysis requires to identify the way operations
are interconnected, services are invoked, and messages
are mapped to one another. The process-based com-
position scheme makes the process of composing ser-
vice demanding for composers. Composers need to be
domain experts who are familiar with the service descrip-
tion language, the service orchestration algebra, and the
corresponding programming skills. Since common users
cannot act as a service composer, the programming-
based scheme hinders common users from composing
Web services at large.

BPEL4WS is a process-based composition approach.
It combines the key features of XLANG and WSFL [84].
BEPL4WS models the behavior of a business
process based on the interactions with the involved busi-
ness partners. It establishes grammar guidelines to
describe the business process based on XML, including
its control logic and message format. It uses WSDL to
model the services in the process flow. It also depends on
WSDL to describe the external services that are needed
by the process. A major design goal of BPEL4WS is to
separate the public aspects of business process behavior
from the internal ones. The separation helps businesses
conceal their internal decisions from their business part-
ners. Moreover, internal changes of the process imple-
mentation no longer affects the public business proto-
col. Therefore, BPEL4WS has both abstract and execut-
able business processes to support the separation. An
abstract process also refers to the business protocol. It
specifies the public aspects in the business interactions.
Specially, an abstract process only deals with the ex-
changes of public messages between business partners.
It is isolated from the execution of a process flow. There-
fore, an abstract process will not release any internal de-
tails of the process to its partners. An execution process
contains the logic and state of a process. It specifies the
sequence of the Web Service interactions conducted in
the business process of each business partner. A busi-

Deploying and managing Web services 557

ness process consists of several steps called activities.
BPEL4WS supports two types of activities, including
basic activities and structured activities. Basic activities
manage the interactions of the process with its external
resources. Its major task is to receive, reply, and invoke
Web services. Structured activities control the overall
process flow. They specify the sequence of Web services
in the flow. BPEL4WS also defines a set of control con-
structs to enable the sequencing mechanism, which is
similar to XLANG. BPEL4WS provides a set of mecha-
nisms to support transactions and handle exceptions. It
uses a scope element to aggregate several activities in a
transaction. When an error occurs, a compensation pro-
cedure will be invoked, which is also similar to XLANG.
Interactive composition The interactive composition
scheme blurs the distinction between composers and
common users. Composers are required to have a clear
goal and know the tasks that need to be performed
to accomplish the composition. Common users can be
guided through a set of steps to finish a composer’s task.
The composition scheme will work interactively with
the common users to help them achieve the orchestra-
tion model. The orchestration process can start from
users’ goals and work backward by chaining all related
services. It can also start from some initial states and
achieve the users’ goals by adding services in the for-
ward direction. At each step, the scheme will choose
a new service based on the task specified by the users.
The interactive scheme can also capture the constraints
and preferences during the interaction process. The con-
straints and preferences can serve as additional criteria
to select services for the composition.

An interactive composition approach is proposed in
[95]. It adopts the OWL ontologies to model the com-
ponent services. The service model specifies the input,
output, precondition, and effects (IOPE) of services.
The proposed approach also implements a tool for auto-
matic translation from WSDL to OWL-S, which enables
the support of WSDL-based component services. The
data types are defined by XML-schema and message
exchange between component services relies on the data
flow approach. The composed service are specified using
OWL-S. The interactive composition can be performed
by chaining component services in either the forward or
the backward directions. At each step, the composition
scheme adds a new service based on the users’ selection.
Existing component service in the orchestration model
can serve as a criterion to filter candidate services. Only
the services that match the IOPE properties of existing
services can be selected by the system and presented to
the users.

Planning-based composition The planning-based com-
position scheme aims to relieve users from the com-
position processes as much as possible. It relies on AI
planning techniques for automatic service composition.
In this context, users are allowed to submit a declarative
query specifying the goal he/she wants the composite
service to achieve together with some of the constraints
and preferences that need to be satisfied. Based on
the user’s query, the composition scheme can derive a
corresponding orchestration model with all constraints
and preferences satisfied. The planning scheme regards
services as actions that are applicable in states. State
transitions are specified using the preconditions of some
actions. A transition will lead to some new states, in
which the effects of some actions are valid. Based on
this, the composition scheme recursively adds new ser-
vices until users’ goals have been achieved. The states of
existing service in the orchestration will determine the
selection of the new services. For example, the precon-
ditions of the new services should be satisfied via the
effect of some existing services.

A representative planning-based composition appro-
ach is presented in [64]. It is based on situation cal-
culus to compose Web services. More specifically, it
adopts Golog, which is a logic programming language,
and makes some extensions to adapt it to Web ser-
vices. The situation calculus enables software agents to
reason about Web services. Web services are modeled
as actions, which is similar to the classical AI planning
problem. Web services are associated with some pre-
conditions and generate some effect under these pre-
conditions. Simple Web services are categorized into
two groups. The Web services in the first group perform
information collection actions. The Web services in the
second group perform world-altering actions. Compos-
ite Web services perform complex actions by composing
simple Web services from both groups. Users can specify
their requests and constraints, which can be transformed
using situation calculus. Users’ constraints can be used
to customize the predefined generic composition tem-
plates. This helps generate the specific composition plans
that fulfill users’ requirements.

Web service processes involve complex interactions
among different Web services across organization bound-
aries. Automating complex Web service processes help
achieve the seamless interoperation between applica-
tions on the Internet. Several major issues need to be
addressed pertaining to the WS processes. For example,
WS interactions need to take place in such an envi-
ronment that security is ensured and privacy is pre-
served. Web services are usuallyautonomous and their

558 Q. Yu et al.

availability fluctuating. Failures and changes are expected
to occur frequently. New services are continuously emerg-
ing on the market. The security, privacy, transaction
support, change management, monitoring, and QoWS
components in the proposed WSMS are required func-
tionalities to address the above issues. The following
sections give a detailed introduction of each of these
components.

5 Web service security and privacy

Web services use the Internet to perform their function-
alities and interact with service users. This calls for secur-
ing Web services against various attacks and protecting
service users’ private information. Traditional mecha-
nisms ensure data security by fulfilling three
requirements: (1) data confidentiality, which refers to
protecting data against unauthorized disclosure, (2) data
integrity, which refers to protecting data against unau-
thorized or improper modification, and (3) data avail-
ability, which refers to protecting and recovering from
data access denials [15]. Solutions include k-anonymity,
data encryption, digital signature, and various
access control policies. Web service security and privacy
extend these mechanisms and tailor them to the complex
features of Web services.

5.1 Security

Web services are accessed by receiving SOAP messages
as inputs, performing requested actions, and sending
SOAP messages as outputs. Therefore, the main objec-
tive of securing Web services is to provide mechanisms
for ensuring that services act only on the authorized re-
quests and for ensuring SOAP message
confidentiality and integrity. Web service security
focuses on authenticating service requests and com-
munication infrastructure. Securing XML data in Web-
based environment introduces more requirements than
in a traditional data security scenario. First, it is required
to build up confidential systems between Web service
that are autonomous and unknown to each other. As a
result, Web service security heavily relies on Public Key
Infrastructure (PKI). Second, it is required to provide
flexible, declarative specification on user credentials and
profiles. Besides user login information, other attributes
(such as age, location, etc.) might be included in access
control policies [59].

Traditional security techniques can be used to build
up a secure transport channel for exchanging messages.
Typical examples include Secure Sockets Layer (SSL)
and Transport Layer Security (TLS). SSL has been widely

used in securing Web documents [71]. It works between
HTTP and TCP network layers. SSL relies on pub-
lic- and private-key encryption mechanism. It is also
combined with digital certificates, which depend on third-
party authority to authenticate users. TLS provides con-
nection security based on encryption. The SSL and TLS
enable point-to-point (server-to-server) secure sessions.
However, they cannot deal with the scenario where a
SOAP message is routed via more than one server. In
this case, the credential of the sender needs to be deliv-
ered in the SOAP message, which would cause scalabil-
ity problems.

A few industry standards are already emerging for
securing Web services, including Security Assertion
Markup Language (SAML) and Web Services Secu-
rity protocol (WSS) [42]. SAML includes security infor-
mation, such as user identity and access right, into its
defined schema for document structure. It enables
interactions between systems with different security
architectures. SAML works with SOAP to exchange
authentication, attribute, and authorization assertions
for securing Web services. WSS is a newly ratified stan-
dard by Oasis [75]. It enables Web services to carry secu-
rity data in the headers of SOAP messages. The WSS
relies on two security technologies – XML Digital Sig-
nature and XML Encryption – to include both encrypted
data and digital signatures in XML documents [107,108].
In addition, it uses security tokens, such as SAML asser-
tion and Kerberos authentication tickets, to validate dig-
ital signatures [42].

5.2 Privacy

Web services offer a more convenient and efficient envi-
ronment for Web users. Users can perform tasks, con-
duct business, and access high-quality information with
great ease. However, to interact with Web services, Web
users generally need to divulge sensitive information,
such as Social Security Number (SSN), income, occu-
pation, and home address. The user–service interaction
may cause violation of Web users’ privacy due to the
releasing of their personal information. Privacy, in gen-
eral, refers to “the control an individual has over infor-
mation about himself or herself” [116]. Web service
privacy concentrate on privacy enforcement when Web
user’s privacy is to be released to third parties. In this
case, the user’s privacy is no longer under the control of
the Web service. More specifically, Web privacy refers to
“the right of Web users to conceal their personal infor-
mation and have some degree of control over the use of
any personal information disclosed to others” [89].

Standardization efforts have tried to address the Web
privacy protection issue. A typical example is the W3C’s

Deploying and managing Web services 559

Platform for Privacy Preference (P3P) [114]. P3P stan-
dardizes the way to encode privacy policies in XML
for Web sites. It also specifies the mechanisms to lo-
cate and transport privacy policies. However, the ma-
jor focus of P3P is to enable Web sites to convey their
privacy policies [65]. It is not directly applicable to Web
services. Two promising trends towards developing
effective techniques for privacy preservation are based
on ontologies and reputation, respectively. Ontologies
can add semantics to the specification of privacy models
and privacy policies [101]. Semantics in privacy models
can achieve a common understanding of the sensitive
degrees and the context. For example, ontology-based
privacy model can answer two questions: how sensi-
tive the information is; and under what conditions the
information has that sensitive degree [101]. Defining a
privacy ontology may allow Web services to properly
perform users’ tasks while preserving their privacy [89].
Kagal et al. [55] proposes to incorporate privacy poli-
cies into OWL-S descriptions and requester profiles. It
defines algorithms to check policy compliance and inte-
grates them in the service selection process of the OWL-
S matchmaker. Privacy policies are specified in Rei, a
logic-based language that allows rules and constraints
to be defined over domain specific ontologies [54]. The
reputation-based approach enables interacting Web ser-
vices to have a better understanding of their mutual
behavior. This information can guide Web services to
preserve users’ privacy when interacting with other Web
services [90].

6 Quality of web services

The concept of quality of service (QoS) has been widely
used in middleware and networking communities [11,
60]. Research efforts in these communities mainly
focus on the performance of network and devices. There
has been a surge in adapting the QoS concept to Web ser-
vices in line with their fast growth. Quality of
Service or Quality of Web Service (QoWS) could encom-
pass a number of quantitative and qualitative parame-
ters (non-functional properties) that measure the Web
service performance in delivering its functionalities. We
present a taxonomy of QoWS parameters to clearly
identify the different quality aspects of Web services.
The definition of this taxonomy is based on a summa-
rization of different QoWS parameters from existing
literatures [26,121,62]. Figure 7 shows the QoWS tax-
onomy including the different QoWS types and their
relationships. The root type QoWS has two subtypes,
including runtime quality and business quality. These

quality parameters can be evaluated using quantitative
or qualitative measurements.
Runtime quality represents the measurement of
properties that are related to the execution of an oper-
ation. We identify five runtime quality classes: response
time, reliability, availability, accessibility, and integrity.

– Response time Response time measures the ex-
pected delay between the moment when a service
operation is initiated and the time the operation
sends the results. This parameter can be quantita-
tively measured.

– Reliability Reliability measures the ability of a ser-
vice operation to be executed within the maximum
expected time frame. This parameter can be quanti-
tatively measured.

– Availability Availability measures the probability
that the service operation is operating at any given
moment and is available to perform its function on
behalf of its users. In another word, a high avail-
able service operation is one that will most likely be
working at a given instant time. This parameter can
be quantitatively measured.

– Accessibility Accessibility measures the degree
that a service operation is capable of serving a Web
service request. It may be expressed as a probability
measure denoting the success rate or chance of a suc-
cessful service instantiation at a point in time. There
could be situations when a Web service is available
but not accessible. High accessibility of Web services
can be achieved by building highly scalable systems.
Scalability refers to the ability to consistently serve
the requests despite variations in the volume of re-
quests. This parameter can be quantitatively mea-
sured.

– Integrity Integrity measures how a service oper-
ation maintains the correctness of the interaction
in respect to the source. Proper execution of Web
service transactions will provide the correctness of
interaction. A transaction refers to a sequence of
activities to be treated as a single unit of work.
All the activities have to be completed to make the
transaction successful. When a transaction does not
complete, all the changes made are rolled back. This
parameter can be qualitatively measured.

Business quality allows the assessment of a service
operation from a business perspective. We identify three
business attributes: cost, reputation, and regulatory.

– Cost Cost measures the units of money that a ser-
vice requestor needs to pay to invoke service

560 Q. Yu et al.

QoWS

Business

subTypeOf subTypeOf

Runtime

Cost

Reputation

Regulatory

Response
Time

Reliability

Availability

Accessibility

Quantitative
Measurement

Qualitative
Measurement

Integrity

subTypeOf subTypeOf

subTypeOf

su
bT

yp
eO

f

subTypeOf

QoWS
Measurement

su
bT

yp
eO

f

Fig. 7 A taxonomy of QoWS parameters

operation. This parameter can be quantitatively
measured.

– Reputation Reputation measures the trustworthi-
ness of a service operation based on user feedbacks.
Users are prompted to rate service operations on a
scale after using them. The reputation corresponds
to the average of collected ratings. This parameter
can be quantitatively measured.

– Regulatory Regulatory measures whether a Web
service in conformance with the rules, the law, com-
pliance with standards, and the established service
level agreement. Web services use a lot of standards
such as SOAP, UDDI, and WSDL. Strict adherence
to correct versions of standards (for example, SOAP
version 1.2) by service providers is necessary for
proper invocation of Web services by service reques-
tors. This parameter can be qualitatively measured.

The QoWS taxonomy is not meant to be exhaustive
by addressing all aspects of QoWS. Other quality param-
eters can be included to fulfill the requirements of differ-
ent application domains. The taxonomy generalizes a set
of important QoWS parameters, which have been emer-
gent in current literatures. The definitions convey the
meanings of the each quality parameter in the context of
Web services. They also give a hint of how these quality
parameters can be quantitatively or qualitatively mea-

sured. A typical WS deployment system would address
only some quality aspects defined in this QoWS tax-
onomy. The business requirements and usage scenarios
decide which quality aspects a system needs to address.

7 Web service management

The WS management offers a set of management capa-
bilities to monitor and control service qualities and ser-
vice usage. Web service management mechanisms are
highly coupled with QoWS of a Web service. Moni-
toring management aims to rate the behavior of Web
services in delivering their functionalities in terms of
each QoWS parameter. Monitoring Web service behav-
ior would be crucial in either assessing QoWS param-
eter values or ensuring a Web service to maintain its
promised QoWS. Control management aims to improve
the service quality through a set of control mechanisms.
Typical control mechanisms include Web service trans-
action and coordination, Web service change manage-
ment, and Web service optimization. Transactions help
improve the reliability and fault-tolerance of Web ser-
vices. Change management deals with highly dynamic
environment of Web services. It takes a series of actions
to identify the changes, notify the coupled entities, and
adopt appropriate operations to respond to the changes.

Deploying and managing Web services 561

Web service optimization helps users identify Web ser-
vices and/or their combinations to best fulfill their
requirements.

Control management and monitoring management
might sometimes work cooperatively. For instance, the
Web service optimization would need the monitoring
process to get the QoWS parameter values of differ-
ent Web services and/or their combinations. These val-
ues will guide the optimization process to return the
optimized solutions that best fulfill users’ requirements.
Similarly, change management also needs the monitor-
ing process to report changes so that it can make the
corresponding reactions.

7.1 Monitoring web services

Web services are dynamic and autonomous entities.
They rely on communication protocols (e.g., HTTP,
SMTP) and a messaging model to offer miscellaneous
functionalities on the Web. However, the underlying
communication protocols could be unreliable and inca-
pable of meeting the function delivery requirement. For
example, HTTP is a stateless protocol that does not
guarantee the order of the arriving packets and the suc-
cessful delivery of these packets to the destination. In
addition, the messaging model requires parsing inten-
sive XML data with a lot of type information, which
is rather time consuming. These could both introduce
failures for Web services in the delivery of their func-
tionalities. Complex WS processes involve multiple Web
services and require more complex interactions, where
failures could occur frequently. Monitoring offers a
“fault detection” mechanism that checks the health of a
service in real time and tries to reduce application down-
times by detecting signs of failure. It ensures that the
service is available, accessible, and capable of meeting
the throughput and latency requirements. In addition, as
more Web services are expected to emerge on the Web,
several Web services may compete in their offerings for
a given functionality. The key difference would be on
how these functionalities are to be delivered in terms
of QoWS. However, getting the right value for a given
QoWS parameter is neither an easy nor a trivial task. In
that context, monitoring Web services behavior would
be crucial in either calculating QoWS parameters values
or assessing a Web service’s claim in term of promised
QoWS.

Monitoring may take different forms, depending on
the QoWS parameter. These include message intercep-
tion, probing, value collection, and user feedback. To
allow probing, Web services need to support some “free”
operations that can be invoked without any effect for the
invoker. Ideally, Web services should support a “ping”

operation. To avoid a high overhead on the system, mon-
itoring could be conducted periodically. Some QoWS
parameters are not measurable through the Web service
computational behavior and need the feedback from
users. For example, reputation may be obtained from
third party based on the Web service business behavior.
Table 1 summarizes how monitoring is conducted for
each QoWS parameter.

A frequent monitoring strategy helps precisely reflect
the execution performance and behavior of a Web ser-
vice. However, this may put a significant burden on the
resources. A fair approach would be to have a config-
urable monitoring approach. In this case, the different
parameters are adjusted depending on the requirements,
in terms of rating precision, of the application being
used.

7.2 Transactional support

Cross-enterprise business processes involve autono-
mous Web services from different business entities.
Transaction support is required to provide reliable and
dependable execution of WS processes. Transaction sup-
port is highly coupled with the process level. However, a
major difference between transaction support and other
process-level technologies (e.g., coordination and com-
position) is that it is not used to construct a WS pro-
cess. Instead, it improves the quality of a WS process in
terms of reliability and fault-tolerance, etc. In traditional
transactions, the transaction monitors are in charge of
all the resources that are involved in the transactions.
They adopt a 2PC (i.e., two phase commit) transaction
model to maintain Atomicity, Consistency, Durability,
and Isolation (ACID) of transactions. Since the 2PC
requires locking resources for the duration of the en-
tire transaction, typical ACID transactions are tightly
coupled and span over short periods of time. In con-
trast, interactions between Web services take place in a
loosely coupled manner. No participating Web service
is in full control of others. Business transactions over
Web services may be long-lived, which include multiple
complex tasks, such as negotiation, commitment, bill-
ing, shipping, and tracking. Resource locking strategies
(e.g., 2PC) could hinder Web services and users from
joining other business processes, hence contradicting the
business requirements.

The atomicity of Web services and the long-lived busi-
ness processes require transactional support for Web
services that is less strict than the traditional ACID prop-
erties. A current proposal that provides such support is
WS-Transaction. WS-Transaction extends WS-Coordi-
nation by defining a set of protocols for transaction pro-
cessing. It relies on the WS-Coordination framework to

562 Q. Yu et al.

Table 1 WS monitoring

Quality type Parameter Monitoring type Monitored information

Runtime Response time Messages interception Average of actual response time
Reliability Probing through pinging Ratio of successful pings over a period of time
Availability Probing through pinging Ratio of successful pings over total number of pings
Accessibility Messages interception Ratio of successful invocations over total number of invocations

Business Cost Values collection Difference between advertised and requested fees
Reputation User feedback Average rating from a group of users
Regulatory Not applicable Not applicable

manage the transactions across multiple Web services
based on the transaction protocols. Specifically, a cen-
tralized coordinator or a set of distributed coordinators
coordinates Web services that participate in a transac-
tion. WS-Transaction defines two coordination types:
atomic transaction and business activity. The former sup-
ports short-lived transactions involving participants that
reside in a trust domain. It adopts the 2PC protocol to
coordinate participating Web services, which is similar
to traditional transactions. The latter supports long-lived
transactions involving loosely coupled participants. It
adopts compensations to deal with transaction failures.
If one of the transaction steps fails, the completed steps
are compensated to ensure consistency. In contrast to
the immediate consistency achieved by 2PC, compen-
sations allow intermediate inconsistency of transactions
before all compensation steps are finished [81].

The challenge for automating WS transactions is that
they have no precisely defined transaction concepts such
as commit, abort, resource, and lock [9]. In traditional
transactions, these concepts are defined upon a fixed
set of operations, which consist of creation, inserting,
update, and deletion. However, WS representation (e.g.,
WSDL) could encode various operations. For different
operations, the transaction concepts can be interpreted
in different ways. Therefore, it is difficult to define a
uniform set of transaction concepts that can be applied
to all WS operations. For example, when a WS transac-
tion is aborted, the completed WS operations need to
be compensated. However, the compensation strategies
would vary based on the functionalities of the opera-
tions, the business requirements of the service providers,
and other context (e.g., users’ profile). This would result
in different abort results. In our travel scenario, assume
that Joan’s travel plan has to be canceled after the air
ticket has been purchased. Based on the functionality of
ticket purchase, the corresponding compensation is to
return the ticket and get the money back to Joan’s credit
card. However, AirCompany requires that customers
should notify them 3 days prior to the departure date to
get a full refund. Otherwise, a late fee will be charged
based on the notification date. In addition, for frequent

fliers of AirCompany, they only need to send their can-
cellation notification 2 days prior to the departure date
to get the full refund. As we can see, compensation of a
simple business operation could be associated with com-
plex conditions. The abort result will be different under
different conditions. Therefore, it is important to extend
the description of services by unambiguously describ-
ing transactional semantics of Web service operations.
This would be the prime step for automating transaction
processing of Web services.

7.3 Change management

The Web service life cycle is characterized by its highly
dynamic features: (1) New services may come into play
without notification of existing services. For instance,
A new hotel service might begin its business and pub-
lish the service description on the UDDI repository
without releasing any information to TravelAgency
in advance; (2) operating services might stop function-
ing without any indication. For instance, Hotel might
only operate in summers but close in winters because of
the little volume of clients; (3) functionalities of services
might change overtime. For instance, AirCompany
could suspend the scheduled flights to a health resort
due to the propagation of an infectious disease in its
area.

One of the fundamental challenges in enabling WS
processes is to manage changes in their lifecycle. We ex-
pect that WS processes would only thrive if they are able
to quickly and automatically adapt to changes. Changes
could happen in any stage of the WS lifecycle, including
development, deployment, and maintenance. We dis-
cuss change management as part of the maintenance
stage of the WS lifecycle. Current methods of change
management are usually ad hoc and require significant
human involvement (e.g., business process re-engineer-
ing, continuous process improvement). Workflows have
traditionally been used to model and enact organiza-
tional business logic. In this approach, tasks are mapped
to business units for enactment. These units are usually
part of one single enterprise. The enterprise’s internal

Deploying and managing Web services 563

structure is fairly static and the rate of organizational
change is usually very slow. Therefore, changes in work-
flows have usually been modeled as exceptions. In con-
trast, the WS processes consider changes as the rule, and
any solution to change management would need to treat
them as such.

A prerequisite for change management is to derive
a uniform specification of changes that may occur in
a WS process. There are two approaches to specify-
ing changes: top-down and bottom-up. A top-down ap-
proach focuses on changes that are usually voluntary and
business mandated [7]. For example, the WS processes
may add a new service to its composition to take advan-
tage of a business opportunity. Hence, top-down changes
are motivated by the WS process’s business goal. Unlike
top-down changes, bottom-up changes are initiated by
the member services [8]. For instance, a member ser-
vice operation may become unavailable during execu-
tion and as a result, would trigger the WS process to
replace the service. Hence, bottom-up changes are man-
dated by the member services, and are usually more
disruptive than top-down changes.

Changes have been modeled using various tools and
technologies [35]. For example, the Z language has been
used to reflect changes in database schema [36]. How-
ever, changes to Web services are fundamentally differ-
ent from changes in databases. Web services consist of
behavioral aspects that are not relevant to data. In [79],
the author defines a strategy for extending the service
oriented architecture to enable change management.
This work proposes the management of functional and
non-functional changes to Web services. However, the
research is at an early stage, and it does not yet provide
a core set of specification for modeling and managing
changes. In [76], Web service attributes are defined in a
taxonomy of non-functional properties and represented
by a series of Object-Role Models (ORM). An example
is the attribute of service availability. The authors have
defined service availability and its temporal characteris-
tic from two perspectives: service provisioning and ser-
vice request. Finally, workflows provide the ability to
execute business processes that span multiple organiza-
tions [99]. Traditional workflows provide little support
for dynamic change management. Workflows are geared
towards static integration of components. Furthermore,
workflows do not cater for the behavioral aspects of Web
services. For example, they do not distinguish between
the internal and external processes of a Web service [21].

The use of visual modeling techniques, such as Petri
nets in the design of complex service oriented enter-
prises, seems justified because of several reasons [49].
Petri nets provide attractive properties for modeling,
including formal semantics, graphical representation,

powerful expressiveness, and abundant analysis
methods [45]. In that respect, the Petri nets are based on
well-grounded mathematical foundation. They can rep-
resent system models graphically as net diagrams. There-
fore, they provide an easy communication between
different parties. Petri nets have the ability to also deal
with asynchronous concurrent systems. Finally, they pro-
vide multiple analysis methods, such as coverability tree,
incidence matrix, and state equation. These methods
help identify system properties readily. Because of the
complexity of changes in WS processes, formal modeling
is a useful method to improve the understanding of the
problem and the solution. An essential step in change
modeling is to validate the model. Petri net theory pro-
vides algorithms and methods, which can be applied
directly to the model and its analysis to validate the
model. Other modeling and specification techniques
have been proposed, but lack easy formalization fea-
tures required by change management in WS processes
[35,36].

In [6], a taxonomy of changes in service oriented
enterprises has been identified using a bottom-up
approach. It first describes triggering changes that may
occur in Web services. These changes are then mapped
to reactive changes in Web service processes. The speci-
fication of changes is a prerequisite to successfully man-
aging changes in a Web service process. It uses Petri
nets as a change specification tool because they provide
a visual representation of changes. Furthermore, a Petri
net model is used readily for verifying changes in Web
service processes.

7.4 Optimization

The proliferation of Web services will introduce com-
petition between large numbers of Web services that
offer similar functionalities. Selecting the best service
from a large space of options would be a big challenge
to service consumers. Some services might offer certain
benefit in several aspects, less attractive in other aspects.
For example, in our travel scenario, the client can choose
a hotel that provides the most convenience. The hotel
could be close to many local attractions. However, the
rate of this hotel could be very expensive, which exceeds
the client’s budget. In this case, the client may have to
look for other hotels, which might be far away from the
local attractions but with a lower rate. In this case, the
client might need to rent a car or take taxis. In this case,
she would have to choose among competing taxi or car
rental services. Typically, the available options for each
of these services would be many more than what we
mentioned earlier.

564 Q. Yu et al.

Web service optimization offers strategies for find-
ing the “best” Web services or their composition with
respect to the expected user-supplied quality. Due to
the large space of competing Web services, a service
request could be potentially resolved by multiple ser-
vices. Thus, it is necessary for WS optimization to set
appropriate criteria to select the “best” among possible
choices. Recent research literature shows that QoWS
of individual Web services is crucial for their compet-
itiveness [26]. The challenge for WS optimization is to
define appropriate metrics to characterize QoWS and
devise techniques to use it in optimizing service-based
queries. However, only selecting individual services is
still not enough since some services may be related to
each other. Services need to be composed and consid-
ered collectively. Therefore, how properties of multiple
services can be combined will be an important issue.
This usually depends on how the composed process uses
these constituent services (e.g., sequential, parallel, etc).
In [121], a quality model is presented to integrate prop-
erties from multiple Web services. The quality model
can then be used to evaluate the quality of the com-
posed Web service processes.

Optimization techniques have been widely adopted
in different types of DBMS (e.g., central, distributed,
and multidatabases) for optimizing data queries. The
ultimate goal of any database system is to allow effi-
cient querying. A fundamental difference between data-
base query optimization and WS optimization lies in
the manipulated objects. The first class objects in WS
optimization are services or their compositions while
data is the first class object in databases. In WS optimi-
zation, optimization focuses on QoWS parameters re-
lated to the behavior of the Web services while in most
existing techniques, optimization concerns only the re-
sponse time of the query execution plan. QoWS optimi-
zation can be achieved through a three-phase process:
candidate service selection, negotiation, and enactment
monitoring in [18].

8 Evaluation of Web service deployment systems

We present a representative set of WS deployment sys-
tems in this section. These systems adopt different tech-
nologies to provide the functionalities identified by the
WSMS framework. These include interoperation, secu-
rity/privacy, QoWS, and management. The evaluation
only covers the most representative systems for the sake
of space.

There are some other standardization efforts under-
way to fully support for semantic Web services. For
example, the Semantic Web Services Initiative Architec-

ture (SWSA) committee focuses on providing architec-
ture support for deploying semantic Web services [18]. It
has identified a set of requirements for building a seman-
tic Web service architecture. The architecture supports
a three-phase interaction with semantic Web services:
discovery, engagement, and enactment. Architectural
requirements are identified for each interaction phase.
Instead of building concrete software components,
SWSA aims to generalize the protocols and functional
descriptions of capacities across a variety of semantic
Web service architectures. This enables specific com-
ponents that are consistent with the proposed general
model to interoperate with one another.

8.1 Research prototypes

In this section, we present a set of WS deployment
systems: CMI, Meteor, SELF-SERV, WebDG, AgFlow,
WSXM, and IRS.

8.1.1 Collaboration Management Infrastructure

Collaboration Management Infrastructure (CMI) [12,
43] provides architectural support to manage collabo-
ration processes. The kernel component of CMM is a
Core Model (CORE). The CORE provides a common
set of primitives shared by all of its extensions. These
primitives fall into two categories – activity states and
resources. Activity states can be either generic or appli-
cation-specific. Generic activity states follow the conven-
tion of the Workflow Management Coalition
[117]. They capture activity behaviors that are indepen-
dent of applications. Application-specific activity states
enable the precise modeling of the peculiar applications.
The CORE identifies several primary resource types for
the activity execution. For example, data resources refer
to the workflow internal data. Helper resources refer
to auxiliary programs that help implement the basic
activities.

The CORE extensions include the Coordination
Model (CM), the Service Model (SM), and the Aware-
ness Model (AM). The CM coordinates participants and
automates process enactment. The CM provides two
types of advanced primitives: activity placeholders and
repeated optional dependencies. Activity placeholders
enable the run-time service selection. They represent
services in a process as activity types at specification
time. At run time, a concrete activity replaces the activ-
ity placeholder to construct an executable process. A
resolution policy helps ensure the syntactic and seman-
tic compatibility when replacing the placeholder by an
actual activity. Repeated optional dependencies specify
the invocation place of an activity in a control flow path

Deploying and managing Web services 565

of a process. They also specify the number of invoca-
tions of the given activity to accomplish the application’s
objective. The SM provides rich semantics to describe
services. It introduces the notion of service ontologies
to capture the semantics of services. In addition, the SM
uses Quality of Service (QoS) as an important non-func-
tional parameter to characterize services and their pro-
viders. The resolution policy can choose the service with
the best QoS to optimize the execution of a process. The
Awareness Model monitors the process-related events.
It allows authorized composition and delivery of such
events only to closely related process participants.

8.1.2 METEOR

METEOR [23] is a workflow management platform that
supports QoS management and service composition. It
sets up a QoS model to describe the non-functional
issues of the workflow. The QoS model consists of four
parameters, including time, cost, reliability, and fidelity.
For each parameter, the description of the operational
runtime behavior of a task is composed of two clas-
ses of information: basic and distributional. The basic
class specifies the minimum value, average value, and
maximum value the parameter can take in a given task.
The distributional class specifies a constant or of a dis-
tribution function (such as Exponential, Normal, and
Uniform) which statistically describes a task’s behavior
at runtime. The values in the basic class are used by
mathematical methods to calculate workflow QoS met-
rics. The distributional class information is used by sim-
ulation systems to compute workflow QoS. METEOR
forms a mathematical model that collectively uses all
QoS parameters. The mathematical model computes the
overall QoS of workflow. It can serve as a guide to pre-
dict, estimate, and analyze the QoS of production of
workflow.

METEOR extends DAML-S to describe Web
services. The enriched service description includes three
parts of information: syntactic description, semantic
description, and operational metrics, such as QoS
parameters. All of this information help match the ser-
vice object with a corresponding service template. ME-
TEOR also provides registry services to enable the adver-
tisement and discovery of Web services. The workflow
management system executes the composite services
and also handles runtime exceptions using a
case-based reasoning mechanism.

8.1.3 SELF-SERV

SELF-SERV is a platform for Web services composi-
tion [14]. It aims to provide a declarative mechanism to

compose Web services. It defines a peer-to-peer mode
to support scalable execution of composite Web ser-
vices. SELF-SERV uses a state chart to model the flow of
component service operations. It integrates service con-
tainers into its service composition platform. A service
container consists of a set of Web services with common
functionalities. The container determines which service
is selected to execute. It carries out the selection dynam-
ically and puts off the selection until the invocation time.
The service selection is based on a set of QoWS metrics
and their relative weights. The service container also
handles change management. It provides operations to
monitor services, notify the changes, and make reactions
to the changes. SELF-SERF relies on a set of state coor-
dinators to enable the scalable execution of composite
services. It generates a state coordinator for each state in
the state chart. The state coordinator determines when
to enter its associated state depending on the notification
of other coordinators. Once a state has been entered,
the coordinator invokes the services and retrieves the
results. The coordinator then notifies other coordinators
when it completes the execution of the service. Routing
tables maintain the information required by a coordi-
nator. The information may include preconditions for
entering a state and postactions that notify successive
coordinators.

8.1.4 WebDG

Digital government has turned to be a major applica-
tion area of Web services. WebDG is proposed based on
the available Web service technologies [68]. It aims to
provide high quality e-government services by improv-
ing the interacting mechanism between government and
citizens. Two major contributions make WebDG distin-
guish itself from other e-government service suppliers.
The first one is that it introduces the privacy-preserv-
ing scheme into Web services. This is among the leading
efforts to combine privacy protection with Web services.
While the second contribution is that it realizes the auto-
matic service composition based on the semantic feature
of Web services.

WebDG enforces privacy from the technology point
of view but not merely depends on the trust of involved
entities. It constructs a three-layered privacy model,
including user privacy, service privacy, and
data privacy. Each layer defines its own privacy pol-
icy respectively. Obeying these privacy policies, Web-
DG implements two privacy preserving schemes, includ-
ing DFilter and PPM. These two schemes guarantee
that necessary credentials are the keys to access the
requested operation. Service composition is a necessity
for most Web service systems because a single service

566 Q. Yu et al.

could hardly fulfill all requirements from a user. WebDG
achieves its automatic service composition
resorting to the ontology notion. According to the
semantic features of the services, WebDG defines two
ontologies for service operations, namely, the Category
and Type. The semantic composability rule is
derived based on these ontologies. It states that two
operations can be composed with each other seman-
tically if their Categories and Types are compatible,
respectively. WebDG also implements a composition
template to evaluate the soundness of the service com-
position.

8.1.5 AgFlow

AgFlow is a QoS-aware middleware for Web service
composition [121]. It uses ontologies to model the com-
ponent services. The data types follow the XML specifi-
cation and the message exchange relies on the data flow
approach. The orchestration model is specified using
statecharts and generated by the programming-based
composition scheme. AgFlow defines a QoS model to
evaluate Web services from five quality aspects: price,
duration, reputation, success execution rate, and avail-
ability. Users can specify their preferences by assigning
weights to each of these quality parameters. AgFlow
proposes two planning strategies, local and global, to
select the proper component services. The candidate
composition plans are evaluated against an objective
function, whereby the optimal plan with the highest
objective value can be selected. Users’ constraints are
also considered during the planning. The global strat-
egy can adapt to the dynamic changes in the service
environment. When some component service becomes
unavailable or significant changes occurs to its QoS, a
re-planning process will be triggered. The re-planning
is to enable the composite service to remain optimal in
a dynamic environment. The performance of AgFlow
is efficient when there is a small number of tasks to
be accomplished by the composition. However, as the
number of tasks increases, the response time of AgFlow
exhibits an exponential growth. This situation becomes
even more severe when re-planning is required by the
composition.

8.1.6 WSMX and IRS-III

Web Service Modeling eXecution environment (WSMX)
[105] is the reference implementation of WSMO. It pro-
vides an event-based service oriented framework for
dynamic service discovery, selection, mediation, and
invocation. The core of WSMX architecture is the
WSMX manager. It has several major components,

including resource manager, discovery, selector, and
mediator. The resource manager is used to manage the
repositories that store WSMO entities and other sys-
tem-specific information. WSMO entities include Web
services, goals, ontologies, and mediators. WSMX dis-
covery provides a three-step solution for service loca-
tion. First, goal discovery is to map a user request to a
predefined, formalized goal in the goal repository. Sec-
ond, Web service discovery is to map the formalized
goal to the formalized service description in the service
repository. During this process, a Web service with the
capability that matches the goal would be returned. Fi-
nally, service discovery is to map the formalized service
description to the concrete service. The WSMX selector
helps choose the “best” Web service returned from a
set of matching Web services. Various selection criteria
as well as users’ preference can be applied to select the
optimal Web service. The WSMX mediator is used to
mediate heterogeneous entities. WSMX provides two
kinds of mediators: data mediators and Process media-
tor. Data mediators are used to address semantic dis-
similarity between data from different sources. Process
mediators provide a runtime analysis and adjustment
of mismatching between communication patterns from
service requesters and providers. The WSMX manager
controls operational flow to react to incoming requests.
WSMX provides an interface to accept user requests.
Once a service request is submitted, the WSMX discov-
ery and WSMX selector locate the services that match
the request and return the optimal one on demand. In-
ternet Reasoning Service (IRS-III) is another reference
implementation of WSMO [32]. It is a framework for
description, location, composition of Web services. IRS-
III provides two methods for creating semantic Web
services, including browser-based and Java API. The
IRS-III ontology adopts and extends WSMO. The addi-
tional attributes include a new type of mediator, gw-
mediator. The gw-mediator is used for service discov-
ery. An applicability function is used for selecting Web
services.

8.2 Discussion of Web service deployment platforms

In this section, we evaluate and compare different Web
service deployment systems using the proposed WSMS.
We first conduct the evaluation by mapping these sys-
tems onto the WS interoperation framework. This helps
reflect how each system achieves the WS interoperabil-
ity. We examine the different layers in the interopera-
tion framework, including communication, messaging,
representation, discovery, and processes. We then eval-
uate the deployment systems based on other key com-
ponents in the WSMS: security/privacy, management,

Deploying and managing Web services 567

and QoWS. This helps reflect the functionalities of each
system for dealing with other issues of WS deployment
in addition to WS interoperability.

Table 2 compares the representative Web service
deployment systems using layers in the WS interopera-
tion framework. For instance, WebDG uses HTTP at the
communication layer. It depends on the three key Web
service standards – SOAP, WSDL, and UDDI – for mes-
saging, representation, and discovery. In addition, the
WebDG also uses ontologies to describe the semantic
features of Web services. At the WS processes layer, the
WebDG provides a set of mechanisms to compose Web
services automatically. It uses the composition rules to
check the semantic and syntactic composability of Web
services. The composition plan is optimized based on
the QoC (Quality of Composition) model. A composi-
tion template is used to evaluate the soundness of the
composition.

Table 3 compares the same set of systems using the
other key components in the proposed WSMS. For in-
stance, RosettaNet adopts digital certification and dig-
ital signatures to ensure security to interact with Web
services. The PIP of RosettaNet contains a transaction
layer to provide transaction support for the business
processes. Privacy, change management, optimization,
monitoring, and QoWS are not specified in RosettaNet.

9 Discussion and open issues

Current technologies help establish a solid foundation
to enable the functionalities of Web services. Commu-
nication protocols, XML-based standards, and manage-
ment facilities provide a good support for interoperation
among Web services. The expected large number of Web
service to be deployed on the Web would trigger a sig-
nificant paradigm shift from the data-centric Web to
the service-centric Web. We identify several research
trends for the future evolution of Web service tech-
nologies. These include efficient access of Web service,
automatic service composition, ontology management for
Web services, failure recovery, Web service mining and
M-services.
Efficient access to Web services As the Web is moving
from a data Web to a service Web, it is expected that
tomorrow’s Web will be the repository of a large num-
ber of Web services provided by third-party providers. In
that context, the ability to efficiently access Web services
is poised to become of prime importance [77]. In the
simplest scenarios, accessing Web services would con-
sist of invoking their operations by sending and receiv-
ing messages. However, for complex applications (e.g., a
travel package), there would be a need for an integrated

and efficient approach to select and deliver several Web
services’ functionalities. As Web services with similar
functionality are expected to be provided by compet-
ing providers, a major challenge is devising optimization
strategies for finding the “best” Web services or their
composition with respect to the expected user-supplied
quality. A query infrastructure that offers complex query
optimization facilities over Web services can address
the above issues. Querying Web services could lever-
age the research result from database queries. A first
step in enabling such a service query infrastructure is
defining the service scheme. The schema can be used to
abstract the common features of all the Web services
across an application domain and will provide a fixed
vocabulary for the service query languages. In addition,
the schema should also depict the relationship between
different service operations. This relationship will be re-
ferred when a service query needs to retrieve multiple
service operations. For example, the output of some ser-
vice operations might serve as the input of another ser-
vice operation. Therefore, the latter service operation
would depend on the execution of the former service
operation. Thus, when the latter service operation is re-
trieved by a service query, the first one should also be
retrieved because of this dependency relationship. Ser-
vice query languages (e.g., calculus and algebra) can be
further defined based on the service schema.
Automatic service composition Web services are
dynamic and autonomous, which pose great challenges
to service composition technologies. Since Web services
are unknown a priori, interactions between component
services cannot be established at service definition time.
Current composition technologies requires low-level
programming and domain knowledge of the required
services. Users needs to submit their requirements to
service composers. Service composers are in charge of
statically defining the schemas for the composite ser-
vices, which end users can use to invoke the composite
services. This process hinders common users from com-
posing Web services at large. Automatic service compo-
sition blurs the distinction between composers and com-
mon users. Users can submit a declarative query specify-
ing the business goal together with some the constraints
and preferences. The composition process can automati-
cally identify related services and derive a corresponding
orchestration model with all constraints and preferences
satisfied. Seamless automatic composition is rather chal-
lenging. It requires to clearly identify user’s require-
ments (e.g., business goals, constraints, and preferences),
unambiguously describe the services, precisely and for-
mally specify the orchestration model, and adopt intel-
ligent composition schemes. In addition, there are still
some other important issues, such as security, privacy,

568 Q. Yu et al.

Table 2 WS deployment systems versus layers in the interoperation framework

Systems CommunicationMessaging Representation Discovery Processes

METEOR Java RMI Not specifiedDAML-S, QoS model registry service Workflow engine
CMI HTTP, CORBANot specifiedService model, ontologiesService broker, advertisement State machine-based model
SELF-SERVHTTP SOAP WSDL UDDI State charts
WebDG HTTP SOAP WSDL, ontologies UDDI Composition rules, QoC

Model, and composition
template

AgFlow HTTP SOAP WSDL, ontologies UDDI Statecharts
WSMX Not specified SOAP WSMO, WSML Ontology repository, WSMX repositoryEvent manager
IRS-III HTTP SOAP WSMO, IRS-III ontologyPSM Task specification

Table 3 Deployment systems versus key components in the WSMS

Systems Security/privacy Management QoWS

Security Privacy Transaction Change Optimization Monitoring
management

METEOR Not specified Not specified Not specified Not specified Mathematical Not specified Time, cost,
model to compute reliability,
the overall QoS and fidelity
of workflow

CMI Role-based Not specified Coordination Scoped roles Resolution policy Awareness Services attached
access model for QoS based Model with a set of
control service selection QoS attributes

SELF-SERV Not specified Not specified Not specified Service Not specified Service containers Weighted QoWS
containers for for notifying parameters
monitoring changes and
changes make reactions.

WebDG Not specified Three-layered Not specified Not specified Quality of Not specified Not specified
privacy model Composition

model
AgFlow Not specified Not specified Not specified Re-planning Integer Not specified Price, duration,

programming reputation, success
execution rate,
and availability

WSMX Not specified Not specified Not specified Not specified WSMX selector Not specified Accuracy, cost,
network-related
time, reliability,
robustness, scalability,
security, trust

IRS-III Not specified Not specified Not specified Not specified Applicability Not specified Accuracy, cost,
function network-related

time, reliability,
robustness, scalability,
security, trust

and legal issues, to name a few. Efforts from the AI plan-
ning community could help improve the automaticity of
service composition. However, how to map Web services
to the classical representation of AI planning involving
initial states and goals remains to be a challenging issue.
Explicit goals are usually not available from an industry
perspective.
Ontology management for Web services Ontologies
empower Web services with rich semantics. They help
enrich the service description and ease the service adver-

tisement and discovery process. Ontologies offer an
effective organization mechanism to deal with the large
number, dynamics, and heterogeneity of Web services
[66]. Service ontologies are organized in a distributed
manner to adapt to the large scale of the Web. Service
ontologies are formed based on Web services’ domains
of interest. Typically, a service ontology contains a set of
standard terms to describe service classes. It also con-
tains some inference rules to express complex relations
between service classes. One important challenge of

Deploying and managing Web services 569

using distributed service ontologies is ontology
mappings. Cross-ontology interactions between Web
services may bring terms and rules from one ontology to
another. Interpreting and reasoning information from
other ontologies precisely and efficiently is crucial for
cross-ontology service integrations. Existing efforts in
data integration mainly rely on a centralized mediation
mechanism [41]. However, the centralized approach can
hardly fit into the large scale of service ontologies on the
Web. Since ontologies have become a key component for
Web service description and organization, an effective
mechanism to realize mappings of different ontologies
would become increasingly important.
Failure recovery A viable and robust Web service solu-
tion needs to have the capacity to deal with failures. Fail-
ure recovery is a crucial issue for proper and effective
delivery of Web service functionalities. In traditional
database and distributed computing systems, failures
are treated as exceptions. Since failures rarely happen
in such fixed and well-controlled environment, some
expensive mechanisms are often adopted for recovery
from failures. For instance, transactions with ACID
properties are the major tools to deal with failures in tra-
ditional database systems. Mobile computing is
another major application area for failure recovery tech-
niques [61,72,87]. In a mobile environment, failures are
more prone to happen due to multiple reasons, such
as physical damage, lost of mobile hosts, power limita-
tion, and connectivity problems. The mobile computing
community would treat failures as rules rather than
exceptions due to their high occurrence probability.
Checkpoint-based recovery is a representative
technique used in mobile environment. Web services are
autonomous and loosely coupled. They interact
dynamically without a-priori knowledge of each other.
Therefore, failures in Web service environment are
expected to happen frequently. Design of an effective
failure recovery mechanism for Web services can be
based on the ideas from both database systems and mo-
bile computing. A key step towards such a mechanism
is to define what failures are in Web service interaction
environment and provide a clear taxonomy for all these
failures.
Web service mining The envisioned service Web
hosts a large population of Web services. Many of these
coexisting Web services may be complimentary with
each other in terms of functionalities. Discovering the
hidden complimentary relationships and combining
these Web services may be an effective means to pro-
vide value-added services for users. Web service min-
ing aims to detect interesting and useful patterns from
Web service compositions. It provides a more intelli-
gent and transparent way to deliver high-quality Web

services. Web service mining offers two advantages over
service composition. First, since it is not restricted by
composition conditions, service mining has more flex-
ibility than service composition. Second, the discov-
ery process is capable of finding unexpected service
combinations. These combinations are not achievable
through traditional composition techniques because the
combined Web services may not semantically compati-
ble with each other in terms of functionalities. In addi-
tion, the combinations would be very useful because
they are summarized from various previous experiences
through a training process. Traditional data mining tech-
nology is an automated process of extracting structured
knowledge from large volume of data [37]. It has
achieved great success in various application areas,
including medical diagnosis, financial analysis, and stock
price prediction. However, extending data mining tech-
niques towards Web service mining needs to deal with
several important issues. Web services are more complex
objects than data. A service mining technology needs to
be equipped with an effective service processing mech-
anism. In contrast to data, Web services are dynamic
and may change over time. Therefore, adaptability to
dynamics would greatly affect the service mining per-
formance.
M-services The significant advances in wireless
technologies open a promising application area for Web
services. As a key extension of Web services, mobile ser-
vices (m-services) cater for the increasing population
of mobile users. Specifically, m-services are a special
set of Web services that can be accessible by mobile
hosts over wireless networks [86,120,119]. They work
together with mobile devices to offer anytime/anywhere
accessible services. In contrast to Web services with
wired infrastructures, m-services are more suitable for
time and location critical tasks [103]. For instance, a
stock quote service can help users make quick response
by providing timely quote prices. However, users may
prefer desktops to cell phones or personal digital assis-
tants (PDAs) when carefully preparing a travel package
for vacations. The mobile environment poses great chal-
lenges for providing and consuming m-services. Mobile
devices have low CPU and memory capacities, limited
power supply, small screen size, and restricted input
mechanisms. Wireless networks are limited by their
small bandwidth. They also suffer from link outages,
which result in temporary unavailability. These limi-
tations hinder existing Web service technologies from
directly working with m-services. For instance, the lim-
ited bandwidth may not be enough to convey SOAP
messages [86]. In addition, SOAP is expensive for
mobile hosts in terms of both power consumption and
waiting time. In mobile environment, users’ context,

570 Q. Yu et al.

such as location and activity, may change rapidly.
M-services need to track these changes and provide con-
text-aware functionalities. However, service description
techniques, such as WSDL, have not provided support to
model context. UDDI enables service discovery in the
Web service framework. However, the multiple costly
round trips required by UDDI lookup are troublesome
for m-service discovery [86]. The frequent unavailability
of wireless network may cause failures in service discov-
ery processes.

Acknowledgements The authors would like to thank the anon-
ymous reviewers for their valuable comments on earlier drafts of
this paper.

References

1. American National Standards Institute: Study Group on
Data Base Management Systems. Interim report, FDT, 7:2,
ACM (1975)

2. Report of the CODASYL Data Base Task Group: ACM
(1971)

3. RosettaNet. http://www.rosettanet.org (2003)
4. Web Services Metadata Exchange (WS-MetadataEx-

change): http://xml.coverpages.org/WS-MetadataExchange
200409.pdf (2004)

5. Ackerman, M.S.: Privacy in E-commerce: examining user
scenarios and privacy preferences. In: Proceedings of the
ACM Conference on Electronic Commerce (1999)

6. Akram, M.S.: Managing changes to service oriented enter-
prises. Master’s Thesis, Virginia Tech (2005)

7. Akram, M.S., Bouguettaya, A.: Managing changes to vir-
tual enterprises on the semantic Web. In: 5th International
Conference on Web Information Systems Engineering,
pp. 472–478. Brisbane, Australia (2004)

8. Akram, M.S., Medjahed, B., Bouguettaya, A.: Supporting
dynamic changes in Web service environments. In: First
International Conference on Service Oriented Computing,
pp. 319–334. Trento, Italy (2003)

9. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services:
Concepts, Architecture, and Applications. Springer, Berlin
Heidelberg New York (ISBN: 3540440089) (2003)

10. Astrahan, M., Blasgen, M., Chamberlin, D., Eswaran, K.,
J. Gray, Griffiths, P., King, W., Lorie, R., McJones, P., Mehl,
J., Putzolu, G., Traiger, I., Wade, B., Watson, V.: System R:
relational approach to database management. ACM Trans.
Database Syst. 1(2), 97–137 (1976)

11. Aurrecoechea, C., Campbell, A., Hauw, L.: A Survey of
QoS Architectures. ACM/Springer Verlag Multimedia Syst.
J. 6(3), 138–151 (1998)

12. Baker, D., Georgakopoulos, D., Schuster, H., Cassandra,
A.R., Cichocki, A.: Providing customized process and
situation awareness in the collaboration management infra-
structure. In: Proceedings of the 4th IFCIS International
Conference on Cooperative Information Systems, Edin-
burgh, Scotland, 2-4, September 1999, pp. 79–91. IEEE Com-
puter Society (1999)

13. Benatallah, B., Casati, F., Grigori, D., Nezhad, H.R.M.,
Toumani, F.: Developing adapters for Web services integra-
tion. In: CAiSE Conference, pp. 415–429. Porto, Portugal
(2005)

14. Benatallah, B., Sheng, Q.Z., Dumas, M.: The self-serv envi-
ronment for Web services composition. IEEE Internet Com-
put. 7(1), 40–48 (2003)

15. Bertino, E., Sandhu, R.: Database security-concepts, ap-
proaches, and challenges. IEEE Trans. Depend. Secure Com-
put. 2(1), 2–9 (2005)

16. BPMI: Business Process Modeling Language (BPML):
http://www.bpmi.org/bpml.esp (2003)

17. Bultan, T., Su, J., Fu, X.: Analyzing conversations of Web
services. IEEE Internet Comput. 10(1), 18–25 (2006)

18. Burstein, M., Bussler, C., Finin, T., Huhns, M., Paolucci, M.,
Sheth, A., Williams, S.: A semantic Web services architec-
ture. IEEE Internet Comput. 9, 52–61 (2005)

19. Bussler, C.: B2B Protocal Standards and their Role in
Semantic B2B Integration Engines. IEEE Data Eng. Bull.
24(1), 3–11 (2001)

20. Bussler, C.: B2B Integration: Concepts and Architecture.
Sringer, Berlin Heidelberg New York (2003)

21. Bussler, C.: The role of semantic web technology in enter-
prise applicatin integration. Data Eng. Bull. 26(4), 62–68
(2003)

22. Bussler, C., Fensel, D., Maedche, A.: A conceptual architec-
ture for semantic Web enabled Web services. SIGMOD Rec.
31(4), 24–29 (2002)

23. Cardoso, J.: Quality of service and semantic composition of
workflows. Ph.D. Thesis, University of Georgia (2002)

24. Casati, F., Ilnicki, S., Jin, L., Krishnamoorthy, V., Shan., M.C.:
Adaptive and dynamic service composition in eFlow. Tech-
nical report HPL-2000-39, Hewlett Packard, HP Laboratoris
Palo Alto (2000)

25. Codd, E.: A relational model for large shared data banks.
Commun. ACM 13(6), 377–387 (1970)

26. Conti, M., Kumar, M., Das, S.K., Shirazi, B.A.: Quality of
Service Issues in Internet Web Services. IEEE Trans. Com-
put. 51(6), 593–594 (2002)

27. DAML: DAML-S (and OWL-S) 0.9 Draft Release.
http://www.daml.org/services/daml-s/0.9/ (2004)

28. Ding, Y., Fensel, D., M. Klein, a.B.O.: The semantic
Web: yet another hip? Data Knowl. Eng. 41(3), 205–227
(2002)

29. Dogac, A., Kabak, Y., Laleci, G.: Enriching ebXML Regis-
tries with OWL ontologies for efficient service discovery. In:
RIDE. Boston, USA (2004)

30. Dogac, A., Kabak, Y., Laleci, G.B., Mattocks, C.,
Najmi, F., Pollock, J.: Enhancing ebxml registries to make
them owl aware. Distrib. and Parallel Databases J. 18(1),
(2005)

31. Dogac, A., Laleci, G.B., Kabak, Y., Cingil, I.: Exploiting web
service semantics: Taxonomies vs. ontologies. IEEE Data
Eng. Bull. 25(4), 10–16 (2002)

32. Domingue, J., Galizia, S., Cabral, L.: Choreography in IRS-
III - Coping with Heterogeneous Interaction Patterns in Web
Services. In: ISWC, pp. 415–429. Galway, Ireland (2005)

33. Dustdar, S., Treiber, M.: A View Based Analysis on Web
Service Registries. Distributed and Parallel Databases, pp.
147–171 (2005)

34. ebXML: http://www.ebxml.org (2003)
35. van Eck, P., Engelfriet, J., Fensel, D., van Harmelen, F.,

Venema, Y., Willems, M.: A survey of languages for speci-
fying dynamics: a knowledge engineering perspective. IEEE
Trans. Knowl. Data Eng. 13(3), 462–496 (2001)

36. Edmond, D., Bouguettaya, A., Benatallah, B.: Formal cor-
rectness procedures for object-oriented databases. In: Pro-
ceedings of the 9th Australasian Database Conference.
Perth, Australia (1998)

Deploying and managing Web services 571

37. Fayyad, U.: Data mining and knowledge discovery in
databases: implications for scientific databases. In: Pro-
ceedings of the Ninth International Conference on Sci-
entific and Statistical Database Management, pp. 2–11
(1997)

38. Fensel, D.: Ontologies: Silver Bullet for Knowledge
Management and Electronic Commerce. Springer, Berlin
Heidelberg New York (2001)

39. Fensel, D., Bussler, C.: The Web Service Modeling Frame-
work WSMF. Electron Commerce Res Appl pp. 113–137
(2002)

40. Fensel, D., Harmelen, F., Horrocks, I., McGuinness, D.L.,
Patel-Schneider, P.F.: OIL: An ontology infrastructure for
the semantic Web. IEEE Intell. Syst. 16(2), 38–45 (2001)

41. Garcia-Molina, H.: The TSIMMIS Project: Integration of
Heterogeneous Information Sources. J. Intell. Inf. Syst. 8(2),
117–132 (1997)

42. Geer, D.: Taking steps to secure web services. IEEE Comput.
36(10), 14–16 (2003)

43. Georgakopoulos, D., Schuster, H., Chichocki, A., Baker, D.:
Managing process and service fusion in virtual enterprises.
Inf. Syst. 24(6), 429–456 (1999). http://dx.doi.org/10.1016/
S0306-4379(99)00026-5

44. (GGF), G.G.F.: Web Services Agreement Specification:
http://www.omg.org/mda/ (2005)

45. Gou, H., Huang, B., Liu, W., Ren, S., Li, Y.: Petri net based
business process modeling for virtual enterprises. In: IEEE
International Conference on Systems, Man, and Cybernetics,
pp. 3183–3188. Nashville, United States (2000)

46. Gravano, L., Papakonstantinou, Y.: Mediating and meta-
searching on the Internet. IEEE Data Eng. Bull. 21(2), 28–36
(1998)

47. Group, W.W.: Web Service Modeling Language (WSML).
http://www.wsmo.org/wsml (2004)

48. Group, W.W.: Web Service Modeling Ontology (WSMO).
http://www.wsmo.org/ (2004)

49. Hamadi, R., Benatallah, B.: A petri net-based model for web
service composition. In: Proceedings of the 14th Australasian
database conference on Database technologies, pp. 191–200.
Australian Computer Society, Inc. (2003)

50. Heflin, J.: Towards the semantic Web: knowledge represen-
tation in a dynamic distributed environment. Ph.D. Thesis,
University of Maryland (2001)

51. Hull, R., Su, J.: Tools for composite Web services: a short
overview. SIGMOD Rec. 34, 86–95 (2005)

52. IBM: Web Services Conceptual Architecture: http://www-
306.ibm.com/software/solutions/webservices/pdf/WSCA.
pdf

53. IBM: Web Services Flow Language (WSFL): http://xml.
coverpages.org/ws.html (2003)

54. Kagal, L., Finin, T., Joshi, A.: A policy based approach to
security on the semantic Web. In: International Semantic
Web Conference. Florida, USA (2003)

55. Kagal, L., Paolucci, M., Srinivasan, N., Denker, G., Finin,
T.W., Sycara, K.P.: Authorization and privacy for semantic
Web services. IEEE Intell. Syst. 19(4), 50–56 (2004)

56. Langdon, C.S.: The state of Web services. IEEE Comput.
36(7), 93–94 (2003)

57. Laymann, F.: Jump onto the bus: a guided tour to the WS-*
landscape. In: ICSOC (2003)

58. Maedche, A., Staab, S.: Ontology learning for the semantic
Web. IEEE Intell. Syst. 16(2), 72–79 (2001)

59. Malik, Z., Bouguettaya, A.: Preserving trade secrets between
competitors in b2b interactions. Int. J. Cooperative Inf. Syst.
14(2-3), 265–297 (2005)

60. Marchetti, C., Pernici, B., Plebani, P.: A quality model for
multichannel adaptive information. In: WWW04. New York,
USA (2004)

61. Martin, C.P., Ramamritham, K.: Recovery guarantees in
mobile systems. In: Proceedings of the 1st ACM inter-
national Workshop on Data Engineering for Wireless
and Mobile Access, pp. 22–28. ACM Press (1999). DOI
http://doi.acm.org/10.1145/313300.313325

62. Maximilien, E.M., Singh, M.P.: A framework and ontology
for dynamic web services selection. IEEE Internet Comput.
8(5), 84–93 (2004)

63. Mcllraith, S.A., Martin, D.L.: Bringing semantics to Web ser-
vices. IEEE Intell. Syst. 18(1), 90–93 (2003)

64. Mcllraith, S.A., Son, T., Zeng, H.: Semantic Web services.
IEEE Intell. Syst. 16(2), 46–53 (2001)

65. Medjahed, B., Benatallah, B., Bouguettaya, A., Ngu, A.H.H.,
Elmagarmid, A.K.: Business-to-business interactions: issues
and enabling technologies. VLDB J. 12(1), 59–85 (2003).
DOI http://dx.doi.org/10.1007/s00778-003-0087-z

66. Medjahed, B., Bouguettaya, A.: A multilevel composability
model for semantic Web services. IEEE Trans. Knowl. Data
Eng. (TKDE) 17(7), 954–968 (2005)

67. Medjahed, B., Bouguettaya, A., Elmagarmid, A.K.: Com-
posing Web services on the semantic Web. VLDB J. 12(4),
333–351 (2003)

68. Medjahed, B., Rezgui, A., Bouguettaya, A., Ouzzani, M.:
Infrastructure for E-government Web services. IEEE Inter-
net Comput. 7(1), 58–65 (2003)

69. Microsoft: Web Services Routing (WS-Routing): http://
msdn.microsoft.com/

70. Microsoft: Web Services for Business Process Design
(XLANG). http://xml.coverpages.org/xlang.html (2003)

71. Netscape: Secure Socket Layer (SSL) 3.0 Specification:
http://wp.netscape.com/eng/ssl3/

72. Neves, N., Fuchs, W.K.: Adaptive recovery for mobile
environments. Commun. ACM 40(1), 68–74 (1997). DOI
http://doi.acm.org/10.1145/242857.242878

73. OASIS: Universal Business Language (UBL): http://www.
oasis-open.org/committees/ubl

74. OASIS: SAML: http://www.oasis-open.org/ (2004)
75. OASIS: WSS: http://www.oasis-open.org/ (2004)
76. O’Sullivan, J., Edmond, D., ter Hofstede, A.H.M.: For-

mal description of non-functional service properties.
Technical report, Queensland University of Technology.
http://www.servicedescription.com/ (2005)

77. Ouzzani, M., Bouguettaya, A.: Efficient access to web ser-
vices. IEEE Internet Comput. 8(2), 34–44 (2004)

78. Paolucci, M., Sycara, K.: Autonomous Semantic Web ser-
vices. IEEE Internet Comput. 7(5), 34–41 (2003)

79. Papazoglou, M.: Extending the service oriented architecture.
Bus. Integr. J. 65, 18–21 (2005)

80. Papazoglou, M., van den Heuvel, W.J.: Web services manage-
ment: a survey. IEEE Internet Comput. 9(6), 58–64 (2005)

81. Papazoglou, M.P.: Web services and business transactions.
World Wide Web 6(1), 49–91 (2003)

82. Papazoglou, M.P., Dubray, J.: A Survey of Web service tech-
nologies. Technical report DIT-04-058, University of Trento
(2004)

83. Patel-Schneider, P.F., Siméon, J.: The Yin/Yang Web: A uni-
fied model for XML syntax and RDF semantics. IEEE Trans.
Knowl. Data Eng. 15(4), 797–812 (2003)

84. Peltz, C.: Web services orchestration and choreography.
IEEE Comput. 36(10), 46–52 (2003)

85. Petrie, C., Bussler, C.: Service agents and virtual enterprises:
a survey. IEEE Internet Comput. 7(4), 68–78 (2003)

572 Q. Yu et al.

86. Pilioura, T., Tsalgatidou, A., Hadjiefthymiades,
S.: Scenarios of using web services in m-com-
merce. SIGecom Exch. 3(4), 28–36 (2003). DOI
http://doi.acm.org/10.1145/844351.844356

87. Prakash, R., Singhal, M.: Low-cost checkpointing and
failure recovery in mobile computing systems. IEEE
Trans. Parallel Distrib. Syst. 7(10), 1035–1048 (1996). DOI
http://dx.doi.org/10.1109/71.539735

88. Ran, S.: A model for Web services discovery with QoS. ACM
SIGecom Exchanges 4(1), 1–10 (2003)

89. Rezgui, A., Bouguettaya, A., Eltoweissy, M.Y.: Privacy on
the Web: facts, challenges, and solutions. IEEE Sec. Privacy
1(6), 40–49 (2003)

90. Rezgui, A., Bouguettaya, A., Malik, Z.: A Reputation-based
approach to preserving privacy in Web services. In: VLDB
Workshop on Technologies for E-Services (TES). Berlin,
Germany (2003)

91. Rezgui, A., Ouzzani, M., Bouguettaya, A., Medjahed, B.:
Preserving privacy in Web services. In: Proceedings of the
4th ACM Workshop on Information and Data Management
(WIDM’02). McLean, VA (2003)

92. Singh, M.P.: Physics of service composition. IEEE Internet
Comput. 5(3), 6 (2001)

93. Singh, M.P., Huhns, M.N.: Service-Oriented Computing
Semantics, Processes, Agents. Wiley, New York (2005)

94. Sirin, E., Hendler, J., Parsia, B.: Semi-automatic composi-
tion of web services using semantic descriptions. In: Web
Services: Modeling, Architecture and Infrastructure Work-
shop in Conjunction with ICEIS2003 (2003)

95. Sirin, E., Parsia, B., Hendler, J.: Filtering and select-
ing semantic web services with interactive composition
techniques. IEEE Intell. Syst. 19(4), 42–49 (2004). URL
http://www.mindswap.org/papers/IEEE-IS-04.html

96. Skonnard, A.: Understanding WS-Policy. Technical report,
Skonnard Consulting: http://www.microsoft.com/webservic-
es/ (2003)

97. Stonebraker, M., Wong, E., Kreps, P., Held, G.: The design
and implementation of ingres. TODS 1(3), 189–222 (1976)

98. SUN: Web Services Reliability (WS-Reliability). http://
developers.sun.com/sw/platform/technologies/ws-reliability.
html

99. Tagg, R.: Workflow in different styles of virtual enterprise.
In: Workshop on Information technology for Virtual Enter-
prises, pp. 21–28. Queensland, Australia (2001)

100. Tsalgatidou, A., Pilioura, T.: An overview of standards and
related technology in Web services. Distrib. Parallel Data-
bases 12(2), 135–162 (2002)

101. Tumer, A., Dosac, A., Toroslu, H.: A semantic based pri-
vacy framework for web services. In: WWW’03 Workshop
on E-Services and the Semantic Web (ESSW ’03). Budapest,
Hungary (2003)

102. Vaughan-Nichols, S.J.: Web services: beyond the hype. IEEE
Comput. 35(2), 18–21 (2002)

103. Venkatesh, V., Ramesh, V., Massey, A.P.: Understanding
usability in mobile commerce. Commun. ACM 46(12), 53–56
(2003). DOI http://doi.acm.org/10.1145/953460.953488

104. Vinoski, S.: Web services interaction models, part 1: current
practice. IEEE Internet Comput. 6(3), 89–91 (2002)

105. W3C: Web Service Execution Environment (WSMX):
http://www.w3.org/Submission/WSMX/

106. W3C: Web Services Addressing (WS-Addressing):
http://www.w3.org/Submission/ws-addressing/

107. W3C: XML Encryption. http://www.w3.org/Encryption/
(2001)

108. W3C: XML Signature. http://www.w3.org/Signature/ (2001)
109. W3C: Simple Object Access Protocol (SOAP).

http://www.w3.org/TR/SOAP/ (2003)
110. W3C: Universal Description, Discovery, and Integration

(UDDI). http://www.uddi.org (2003)
111. W3C: Web Service Choreography Interface (WSCI).

http://www.w3.org/TR/wsci/ (2003)
112. W3C: Web Services Architecture. http://www.w3.org/TR/ws-

arch/ (2003)
113. W3C: Web Services Description Language (WSDL).

http://www.w3.org/TR/wsdl (2003)
114. W3C: The Platform for Privacy Preference Specification

(P3P). http://www.w3.org/TR/P3P11/ (2004)
115. W3C: Web Services Choreography Description Language

(WS-CDL). http://www.w3.org/TR/ws-cdl-10/ (2004)
116. Westin, F.D.: Philosophical Dimensions of Privacy: An

Anthology. Cambridge University Press, Cambridge (1984)
117. Workflow Management Coalition: workflow management

application programming interface (interface 2&3) specifi-
cation. Document number WFMC-TC-1009 (1998), Version
2.0

118. WS-I: Web Services Interoperability Organization. http://
www.ws-i.org/

119. Yang, X., Bouguettaya, A.: Adaptive data access in broad-
cast-based wireless environments. IEEE Trans. Knowl. Data
Eng. 17(3), 326–338 (2005)

120. Yang, X., Bouguettaya, A., Medjahed, B., Long, H., He., W.:
Organizing and accessing web services on air. IEEE Trans.
Syst. Man Cybern. Part A Syst. Hum. 33(6), 742–757 (2003)

121. Zeng, L., Benatallah, B., Ngu, A., Dumas, M.,
Kalagnanam, J., Chang, H.: Qos-aware middleware for
web services composition. IEEE Trans. Softw. Eng. 30(5),
311–327 (2004)

	Deploying and managing Web services: issues, solutions,and directions
	Abstract
	Introduction
	Towards a Web Service Management System (WSMS): historical perspective
	Web services versus data
	Overview of the WSMS framework
	Scenario
	Web service reference model
	Web service stack
	Key dimensions for building a WSMS
	The WSMS architecture
	Web service interoperation framework
	Messaging layer
	Representation layer
	XML-based representation
	Ontology-based representation
	Discovery layer
	Process layer
	Web service coordination and choreography
	Web service composition
	Web service security and privacy
	Security
	Privacy
	Quality of web services
	Web service management
	Monitoring web services
	Transactional support
	Change management
	Optimization
	Evaluation of Web service deployment systems
	Research prototypes
	Collaboration Management Infrastructure
	METEOR
	SELF-SERV
	WebDG
	AgFlow
	WSMX and IRS-III
	Discussion of Web service deployment platforms
	Discussion and open issues
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

