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Abstract

The Internet of Things has been applied in 
many fields, especially in smart cities. The failure 
of nodes brings a significant challenge to the 
robustness of topologies. The IoT of smart cities 
is increasingly producing a vast amount different 
types of data, which includes the node’s geo-
graphic information, neighbor list, sensing data, 
and so on. Thus, how to improve the robustness 
of topology against malicious attacks based on 
big data of smart cities becomes a critical issue. 
To tackle this problem, this article proposes an 
approach to improve the robustness of network 
topology based on a multi-population genetic 
algorithm (MPGA). First, the geographic infor-
mation and neighbor list of nodes are extracted 
from a big data server. Then a novel MPGA with 
a crossover operator and a mutation operator is 
proposed to optimize the robustness of topology. 
Our algorithm keeps the initial degree of each 
node unchanged such that the optimized topol-
ogy will not increase the energy cost of adding 
edges. The extensive experiment results show 
that our algorithm can significantly improve the 
robustness of topologies against malicious attacks.

Introduction
The Internet of Things (IoT) [1] is an integration 
of multiple disciplines, including fifth generation 
(5G) ultra-dense cellular networks [2], heteroge-
neous ad hoc networks [3], hybrid mobile net-
works [4], wireless sensor networks [5], and so 
on. The IoT has a broad range of applications in 
smart cities. Typically, it deploys a large number 
of networking nodes within a certain area, and 
these nodes communicate with each other to col-
lect data and provide reference for smart cities as 
shown in Fig. 1, such as industry, agriculture, secu-
rity, transportation, smart home, and healthcare. 
Meanwhile, these are producing a vast amount 
and different types of data. Therefore, how to 
improve the robustness of IoT against node fail-
ure based on big data servers of smart cities has 
become an essential issue in recent years [6].

The scale-free model is one of the classic mod-
els in complex network theory. It is mainly used 
for modeling homogeneous network topologies, 
in which the node degree follows power-law dis-
tribution [7]. Scale-free topology has better perfor-
mance in withstanding random attacks than small 
world topology, but it is fragile under malicious 

attacks [8]. Therefore, researchers and developers 
focus on how to construct a scale-free topology 
with high robustness against malicious attacks.

In recent years, some researchers have 
employed evolutionary algorithms to enhance the 
robustness of topologies [9]. In this article, we are 
interested in achieving this by genetic algorithms 
(GAs) particularly, which is one class of evolu-
tionary algorithms. The population of candidate 
solutions is used to evolve toward the optimal 
solution in GA. For the conventional GA, there is 
a typical limitation called premature convergence. 
However, one type of GA, the multi-population 
genetic algorithm (MPGA), can effectively over-
come this limitation by using multiple populations 
to co-evolve.

In this article, the main contributions are as 
follows:
•	 Based on the topology characteristics extract-

ed from the big data servers of smart cities, 
we propose an MPGA with novel crossover 
and mutation operators to enhance the 
robustness of topologies.

•	 Our algorithm keeps the nodes’ degrees 
unchanged during exchanging edges of 
topology. It will not increase the energy cost 
of adding edges.

Initial Topology Construction
Due to the limitations of energy and communi-
cation range, the scale-free IoT topology in smart 
cities has the following two constraints:
1. The communication range of its nodes can-

not be arbitrarily long.
2. Its node degrees cannot be arbitrarily large.
Because of these two constraints, the tradition-
al method of constructing scale-free topologies, 
such as the Barabási-Albert (BA) model [10], can-
not be directly applied. In order to simulate the 
scale-free topology information extracted from the 
big data server in smart cities [11], we employ the 
following method, which adapts the BA model, to 
construct the initial scale-free topologies for IoT in 
smart cities. We add edges between nodes asyn-
chronously during the process of constructing IoT 
topology after judging whether they are in the 
communication range. This means that a pair of 
nodes cannot generate a new edge at the same 
time. The local world of the newly joined node is 
composed of all the nodes within its communica-
tion range. If a node has been connected with the 
newly joined node or has reached the maximum 
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degree [12], it will be removed from the local 
area of the newly joined node. Furthermore, the 
newly joined node chooses its neighbors to estab-
lish connection by a roulette method according to 
the node’s degree. The newly joined node prefers 
to connect with higher degree nodes in its local 
area.

Preliminary
After the initial topologies for IoT nodes in smart 
cities are constructed, we try to optimize the 
robustness of topology based on MPGA. First, 
we convert an adjacency matrix of topology to 
a binary-coded chromosome. To further illus-
trate this operator, a topology with four nodes 
is converted to a chromosome, as shown in Fig. 
2. The topology consists of node i, node j, node 
k, and node l, and the adjacency matrix is a bina-
ry matrix. It is feasible to convert the adjacency 
matrix into a chromosome directly. However, 
the storage space is wasted and the operating 
complexity in GA is increased. The adjacency 
matrix is a symmetric matrix, and its upper trian-
gular matrix is able to represent the connection 
relation between nodes in networks. We convert 
the upper triangular matrix to a chromosome as 
shown in Fig. 2. It can shorten the length of the 
chromosome and improve the efficiency of the 
proposed algorithm.

•The probability of selecting an individual 
depends on its fitness value. When the fitness 
value of an individual is much higher than other 
individuals’ in the current population, this individ-
ual will be selected several times in the operation 
of constructing the next generation. Finally, the 
population will be controlled by this individual 
and become uncompetitive, which causes stag-
nant evolution in population.

•The frequency of the crossover operator and 
mutation operator is influenced by crossover 
probability Pc and mutation probability Pm. The 
values of Pc and Pm directly affect the balance 
between global search and local search in GA. 
The result of evolution is quite sensitive to the 
values of Pc and Pm.

•The size of population has a great influence 

on the optimization performance. If the size of 
the population is small, the diversity of population 
will be decreased and the competition among 
individuals will be weakened. The population will 
become a single group soon, and the effect of the 
crossover operator will gradually disappear. The 
update of population only relies on the mutation 
operator. If the size of the population is large, the 
calculation cost will be increased and the efficien-
cy will be affected.

In order to solve these problems that exist in a 
conventional GA, the following improvements are 
applied in an MPGA.

The framework of a GA, which only uses a 
single population to search for the optimal solu-
tion, is broken by using several populations at 
the same time. For different populations, different 
crossover probability Pc and mutation probability 
Pm are selected. Although the ranges of crossover 
probability and mutation probability are suggest-
ed as Pc(0.7–0.9) and Pm(0.001–0.05), respective-
ly, their ranges are wide enough to allow plenty of 
values to be selected. The optimization results will 
greatly differ with different Pc and Pm. Given the 
global search and local search at the same time, 
we conduct experiments with various Pc and Pm 

Figure 1. The data-driven robustness topology of IoT in smart cities.
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Figure 2. The adjacency matrix is converted to a chromosome.
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to pick the best values to prevent the populations 
from falling into the local optimum.

Each population is independent and com-
municates with other populations through the 
immigration operator. The immigration operator 
periodically moves the optimal individual that 
appeared on each population during evolution 
to other populations (every certain number of 
generations), which achieves the gene exchange 
among populations.

The best individual that appears in each gen-
eration is selected to compose the immigration 
population. The operations of crossover and 
mutation are not executed in immigration popu-
lation, which ensures that the best individual of 
each population will not be destroyed. The immi-
gration population is the foundation of the immi-
gration operator, which increases the diversity of 
genetics and guarantees the fitness function to 
search for the optimal solution in a wide range.

To evaluate the network robustness, Schneider 
et al. [13] proposed a new metric, R. It considers 
the maximal connected subgraphs after removing 
the highest degree node repeatedly to measure 
the robustness of network topology, which means 
that the important nodes in IoT of smart cities are 
attacked. The value of R lies in the range (0, 0.5). 
We employ metric R to measure the robustness 
of the IoT topologies as the fitness function of 
MPGA. Furthermore, Herrmann et al. [14] have 
found that an onion-like structure is more stable 
and robust against malicious attacks. Thus, we 
make the evolution of individual topology toward 
the onion-like structure in the mutation operator 
to improve the robustness of topologies against 
malicious attacks. Basically, the connections 
among nodes in an onion-like structure exhibit the 
following characteristics:
•	 Nodes with similar degrees connect to each 

other.

•	 Node degrees gradually decrease from inner 
nodes to outer nodes.

•	 The majorities of the nodes have small 
degrees and are located in the outer layers 
of the onion-like structure.

Crossover Operator in MPGA
The crossover operator has no fixed evolution 
direction in a GA. Parent topologies generate new 
children topologies by the crossover operator, 
which obtains a larger solution space. Thus, the 
fitness function will search for the best solution in 
a larger space. Generally, the crossover operator 
retains a part of the father and mother genes, and 
eventually generates new children topologies. The 
crossover operator in this article keeps the initial 
degree of each node unchanged, which means 
that we cannot change the degree distribution of 
parent topologies. The degree distribution of new 
children topologies is the same as in the parent 
topologies.

Taking into account the limitation of communi-
cation range in smart cities, the crossover opera-
tor is designed as follows.

First, the parents are chosen by crossover 
probability Pc. We assume that the son topolo-
gy inherits its father topology, and the daughter 
topology inherits its mother topology. Second, 
we get the sets of the father’s exclusive edges 
and the mother’s exclusive edges through the 
set of the father’s edges and the set of the moth-
er’s edges. Here “exclusive” means that an edge 
only exists in one parent’s set but not the other. 
Finally, the son topology disconnects the existing 
edges to build every mother’s exclusive edges, 
during which the initial degree of each node is 
kept unchanged. The construction process of the 
daughter topology is similar to the above opera-
tion. Figure 3 illustrates the process of the cross-
over operator.

Figure 3. The process of the crossover operator: a) father; b) search in neighbors; c) swap edges; d) son; e) mother; f) search in neigh-
bors; g) swap edges; h) daughter.
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Figures 3a and 3e represent the connection 
between nodes in the father topology and mother 
topology. It can be seen that the father has an 
exclusive edge e12 between node 1 and node 2 in 
Fig. 3a, and the mother has an exclusive edge e34 
between node 3 and node 4 in Fig. 3e. According 
to the criteria in the crossover operator, we build 
the mother’s exclusive edge e34 in the son topolo-
gy (Fig. 3d), and the father’s exclusive edge e12 in 
the daughter topology (Fig. 3h).

Here is the detailed description about how 
father topology (Fig. 3a) generates its son topol-
ogy (Fig. 3d). In order to generate a new edge 
e34 in Fig. 3a, we select the candidate nodes that 
have no edge with node 3 from the neighbors 
of node 4. Then we calculate the distance of the 
candidate nodes to node 3. Finally, we sort the 
distances to generate a candidate list in ascend-
ing order. As shown in Fig. 3b, node 7, which is 
a neighbor of node 4 and has no edge with node 
3, is the nearest node to node 3. Node 3 searches 
each of its neighbor nodes in Fig. 3c until finds 
a node that is in the communication range of 
node 7 and has no edge with node 7. As shown 
in Fig. 3c, node 3 chooses its neighbor node 9, 
and we disconnect the edges e47 and e39 in Fig. 
3d. After that we generate the edges e34 and 
e79. Finally, we successfully generate a new edge, 
e34, in the son topology (Fig. 3d). The degrees 
of node 3 and node 4 both equal 3 before the 
crossover operator, and after the operator they 
remain unchanged. Therefore, it is consistent with 
the criterion that keeps the initial degree of each 
node unchanged. The process that the mother 
generates its daughter topology is similar to the 
above operations, as shown in Figs. 3e–3g. Final-
ly, we can see the father’s exclusive edge e12 in 
the daughter topology in Fig. 3h.

Besides, when the father topology generates 
its son topology, if node 3 cannot find an eligi-
ble node to match node 7, which is the candi-
date neighbor of node 4, node 4 will sequentially 
choose another candidate node in the candidate 
list. And node 3 will search all of its neighbors 
for each candidate node until it finds an eligible 
node to match the candidate node. If node 3 still 
cannot find an eligible node after traversing the 
candidate list of node 4, we give up generating 
this edge.

Mutation Operator in MPGA
The mutation operator is an important way to 
generate new individuals in GA. We choose the 
individual by the mutation probability Pm. The 
goal of the mutation operator is to increase the 
robustness of the selected individual through 
exchange edges, during which the initial degree 
of each node is unchanged. Metric R is used to 
measure the robustness of topology. We search 
for the optimal solution within the local area by 
the mutation operator.

Nodes with similar degrees connect to each 
other in an onion-like structure. If a node with 
a large degree fails, another node with a large 
degree will replace its function. Therefore, we can 
minimize the adverse effects of failure nodes as 
much as possible, and the network topology will 
remain robust. In order to make the evolution of 
individual topology like the onion-like structure, 
we generate a new edge between two nodes 

that have similar degrees, during which the initial 
degree of each node is unchanged. We propose 
a criterion to sort degree and exchange edges as 
follows.

We select two edges in the individual topol-
ogy, and judge the four end nodes of these two 
edges as to whether they are in the communi-
cation range of each other to guarantee that we 
can generate a new edge in these four nodes. 
As shown in Fig. 4a, we select eij and ekl. First, 
we sort the degrees of node i, node j, node k, 
and node l in descending order, and name them 
d1, d2, d3, and d4. Second, we add the absolute 
value of the difference between d1 and d2 to the 
absolute value of the difference between d3 and 
d4 as s1. Then we add the absolute value of the 
difference between di and dj to the absolute value 
of the difference between dk and dl as s2. Finally, 
we let s1 divide s2 to get p and compare p with 
the exchange threshold ϕ. If p is less than ϕ, we 
exchange edges according to d1, d2, d3, d4. There 
are two candidate strategies in Figs. 4b and 4c.

Based on the criteria mentioned above, the 
nodes that have similar degrees will connect with 
each other, thus enabling the evolution of indi-
vidual topology toward the onion-like structure. 
Besides, the exchange threshold ϕ is defined in [0, 
1), and it cannot be 1 because the two edges will 
not be exchanged in that case. We control the 
efficiency of the mutation operator by changing 
the value of ϕ. The appropriate exchange thresh-
old ϕ can effectively avoid inefficient exchange 
edges operation.

Simulation Results
In order to extract valid information of nodes 
in smart cities, we simulate deployment of IoT 
using Matlab. The nodes are deployed randomly 
in a circular area with diameter equal to 500 m. 
Considering that each node must have sufficient 
neighbors during the process of building initial 
topology, the communication range is set to 200 
m. Then the node’s geographic information and 
neighbor list are extracted for our algorithm. The 
parameters of our algorithm are obtained by many 
experiments. Finally, we set the optimal number 
of a population to 10, and the optimal number of 
individuals in a population to 20. Because more 
iterations means more time cost, we set iterations 
to 200 by considering various factors.

The threshold of exchange edges pChange 
slides from 0.1 to 1, and the sliding interval is 0.1. 
All the results of the experiment are taken from 
the average value of the k(k  10) times inde-
pendent simulation experiments. The vertical axis 

Figure 4. The candidate for the topology connection: a) initial topology; b) can-
didate 1; c) candidate 2.
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represents the ratio of the r value after optimizing 
to the initial r value. As shown in Fig. 5a, the value 
of the vertical axis changes with the different val-
ues of PChange. The curve shows a growing trend 
with the increase of PChange. As the curve grows, 
some local peaks can be seen, but the maximal 
value is gotten at 0.9. Thus, the value of PChange 
is set to 0.9 in the following simulation experi-
ments.

Figure 5b illustrates that the metric r increases 
with the number of iterations of MPGA. At the 
beginning, the metric r of the initial topology is 
low; the value of r is increased obviously from the 
1st to the 70th generation. After the 70th gener-
ation, the optimization result increases slowly due 
to the value of r having increased to a high level.

Based on the established initial IoT topology, 
we compare our algorithm to two existing algo-
rithms, namely the Hill Climbing algorithm [14] 
and the Simulated Annealing algorithm [15]. 
Both of these algorithms keep the initial degree 
of every node unchanged. Figure 5c shows that 
the optimization results of the Hill Climbing algo-
rithm, the Simulated Annealing algorithm, and our 
MPGA-based algorithm in different sizes of IoT 
topology. The size of topologies are set to 100, 
150, 200, 250, and 300 nodes. The results are the 
average of k (k > 10) independent experiments, 
and each IoT topology remains connected after 
optimization. As shown in Fig. 5b, the value of r 
presents a downward trend with the increase of 
network sizes, and our algorithm has better per-
formance than the other two algorithms.

Conclusion
Based on the big data of smart cities, nodes’ geo-
graphic information and neighbor list are extract-
ed. Then we construct the initial topologies of IoT. 
A novel MPGA-based algorithm is proposed to 
optimize the robustness of the network topology 
against malicious attacks.

We have designed two novel operators, the 
crossover operator and mutation operator. The 
initial degree of each node is unchanged during 
the process of these operators. Thus, the energy 
cost of adding edges will not be increased. Finally, 
we have simulated our algorithm and two existing 
algorithms. Their performance in improving the 
robustness of topologies is compared under differ-
ent network sizes.

The experiment results show that the robust-
ness of IoT topology against malicious attacks can 
be improved significantly by our algorithm. The 
values of R in the two existing algorithms reduce 
quickly with the size of networks increasing, but 
our algorithm still maintains the values of R at a 
high level. Thus, our algorithm can significant-
ly improve the robustness of IoT in smart cities, 
especially against malicious attacks.
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