
Cloud Based Communication in B2B Model

Tamara Luarasi and Andi Domi Tomi Thomo, Agim Kasaj and Erjon Baboci

Department of IT, Mathematics and and Statistics Department of IT, Mathematics and and Statistics
European University of Tirana European University of Tirana

Tirana, Albania Tirana, Albania
tamara.luarasi@uet.edu.al agim.kasaj@uet.edu.al

Abstract - The new technology supports new business scenarios
or new implementations for the existing ones. The paper
describes an implementation of B2B scenario. The Google
cloud platform as service makes possible a digital broker
system between businesses linked by interests. Architecture of
this digital broker consists of common Cloud SQL database,
hosted on Google platform, and a Google App Engine
application. The users will use the web application from a
browser or from small devices through an Android application.
In both cases the system will have a user interface for updating
the common database and setting the queries over it. As
example of a business pair is considered the pair farmer-
market, which is very much in need for communication
especially on difficult rural zones. The paper represents the
methodology used for the digital broker creation.

Keywords - digital broker, cloud computing, web services,
mobile applications.

I. INTRODUCTION

 We observe a huge demand for situational and ad-hoc
applications desired by the mass of business end-users that
cannot be fully implemented by the IT departments[1]. A
typical case is the solution to support the individual
businesses in difficult rural zones and their need for
communication and information about the market and its
needs. These solutions would be specific to various ad-hoc
B2B scenarios. The broker facilitates transactions between
sellers and buyers, generally without ever owning what is
being sold and profiting from a charge on top of the sale
price [2]. The case study that is considered here is a digital
broker system that serves to a pair peasant-market. The
peasant needs to know the markets, and the best one to sell
the products. The best way for him is to have this
information by a smart-phone or iPhone. Darin Newsom
says that nearly 20 percent of survey respondents said they
use grain tracking software as part of their operation.
Seventy-eight percent said they use a smartphone as their
primary way of accessing market prices, and 50 percent said
they use a tablet [3]. Fig. 1 represents a series of appropriate
steps in android smart-phone, to be used by the peasant
from one side (client 1) and by a market on the other side
every day. A button on the screen will display a list of the
available markets (for the peasant) associated by some
characteristics, and clicking on each of them, some
additional details will be shown. For each of them, the
quantity of the product that can be sold is sent by the
peasant and this request is asked to be approved by him. On

the other side the market can see all the requests and
approves some by pressing a button. The approvals from
both sides update a common database, in the way that after
each approval the information that both sides see, is
updated.

II. CLOUD COMPUTING

 Cloud computing is a new technology that allows users
to process data over the Internet in real time. The
combination of trade liberalization and technological
innovation are used to be seen as mutual friends that
stimulate economies to specialize more every time in
higher-skilled labour exports. While technological
innovation kills some jobs, it also creates new and better
ones [4].

Fig. 1 The B2B scenario activity.

 Cloud computing is very supportive for an individual to
do its own business without the need to purchase hardware
and software. Cloud Computing is on-demand access to a
shared pool of computing resources. It helps consumers to
reduce costs, reduce management responsibilities and
increase business agility [5]. A cloud service brokerage
serves as an intermediary between you and your cloud
service provider by aggregating multiple cloud services,
integrating them with in-house apps and customizing them
to meet your needs [6]

 Several cloud platforms offer their infrastructure and
their services platform freely, thus allowing the individuals
to become digital brokers. This new technology brings a
transformation in the way how the people work. An

2014 8th Asia Modelling Symposium

978-1-4799-6487-1/14 $31.00 © 2014 IEEE

DOI 10.1109/AMS.2014.17

27

important part of the work is to be aware of this technology.
There are several frameworks that we can choose to achieve
our goal and we have to know them, to compare them and to
integrate all the necessary components for the chosen
framework. The integration of the existing platforms with the
services, the accomplishment of the necessary configurations
is the essential part of the work, because this part defines the
development process of an application. In this study we have
chosen the Google platform.

III. RESEARCH FRAMEWORK
 The framework that is chosen is the Google framework,
Fig. 2. Gone are days of manually configuring and load-
balancing your servers based on traffic. A major advantage
of App Engine is that it automatically scales your
application for you [7]. An App Engine application is
deployed on Google and we have an internet address to use
it. This application can be used from an Android device or
from a web browser. The App Engine application provides
the connection with the cloud database.
 The development of such a system has two aspects. One
of them is a series of steps on Google Console side, and the
other is the development of a Google Web Application on
Eclipse and the deployment of this application on Google.
 Another work on the Google side is the creation of a
Cloud SQL instance, its configuration and the linkage of this
instance with the Google App Engine identifier.
 From the Google Console we create a starting project
and define some settings by a Wizard. Two components are
defined for this project: a Google App Engine component
[8], and a Google Cloud SQL component [9]. The last one
includes the Google App Engine Component identification
in his configuration.

Fig. 2 The Framework

 On the other side, that is, on the development
environment, Eclipse in our case, some other configurations
are done to provide the connection with the console Google
project components and Google API. In Eclipse we have
included first of all the Google plugins, which make
possible the development of a Google web application
which is part of Google App Engine.

IV. DATABASE MODEL

 The database model is presented in the Fig 3. The main
entities shown are the Offer (offers and requests), the
Market-Info, the User-Info, the Operations, and some other
entities are the Location (location for the user and for the
market), Offer’s Type, and the user’s Activity. An operation
is linked with an offer or request and with a user. These
relations between the entities justify the following schema.

class Data Mo

Tregu

*PK ID: INTEGER
* Emri: VARCHAR(50)
* Vendodhje: INTEGER

+ FK_Vendodhje(INTEGER)

+ PK_Tregu(INTEGER)Vendodhje

*PK ID
 Qark: VARCHAR(50)
 Rrethi: VARCHAR(50)
 Njesia: VARCHAR(50)
 VendodhjeHarte: DOUBLE

+ PK_Vendodhje() Tipi

*PK ID: INTEGER
 Emertimi: BIGINT

+ PK_Tipi(INTEGER)

Oferta

*PK id: INTEGER
 Tregu: INTEGER
 perdoruesi: INTEGER
 tipi: INTEGER
 cmimi: FLOAT(0)
 sasia: DOUBLE
 dt_fi l l imit: DATE
 dt_mbarimit: DATE

+ FK_perdoruesi(INTEGER)
+ FK_tipi(INTEGER)
+ FK_Tregu(INTEGER)

+ PK_Oferta(INTEGER)

Veprime

*PK id: INTEGER
 oferta: INTEGER
 perdoruesi: INTEGER
 koutim: DOUBLE
 status: BOOL

+ FK_oferta(INTEGER)
+ FK_perdoruesi(INTEGER)

+ PK_Veprime(INTEGER)

Perdoruesi

*PK id: INTEGER
 Emri: VARCHAR(50)
 Mbiemri: VARCHAR(50)
 Aktiviteti: INTEGER
 Dt_regjistrimit: DATE
 Vendodhja: INTEGER

+ FK_Aktiviteti(INTEGER)
+ FK_Vendodhja(INTEGER)

+ PK_Perdoruesi(INTEGER)

Aktiv iteti

*PK ID: INTEGER
 Emertimi: VARCHAR(50)

+ PK_Aktiviteti(INTEGER)

+FK_Vendodhje

+PK_Vendodhje
+FK_Tregu

+PK_Tregu

+FK_tipi+PK_Tipi

+FK_perdoruesi

+PK_Perdoruesi

+FK_oferta+PK_Oferta

+FK_perdoruesi

+PK_Perdoruesi

+FK_Aktiviteti +PK_Aktiviteti

+FK_Vendodhja

+PK_Vendodhje

Fig. 3 The database model

V. RESEARCH METHOD

A. The AppEngine application

 The servlet technology is used for the Google web
Application, which is deployed later on Google. The
property option of the Eclipse project, and Google option
inside it, makes possible the inclusion of the Google App
Engine Component ID inside the Eclipse project and the
connection with the database. At the beginning we connect
the web application with a local MySQL database. Inside
the application the connection with the local database is
provided by:

Class.forName("com.mysql.jdbc.Driver")url =
"jdbc:mysql://127.0.0.1:3306/database_name?user=root";

 The testing process includes the running of the
application in Eclipse as a web application, and from the
browser we use the address http://localhost:8888/googleproject,
where googleproject is the name that identifies our servlet in
the web.xml file in our project. When we have tested
everything with a local database, we replace the local
database with the Cloud MySQL database. Meanwhile, the
Google Cloud SQL instance console gives us the possibility
to create our database, which was tested locally. Inside the
code the connection will be as follows:
Class.forName("com.mysql.jdbc.GoogleDriver");
url="jdbc:google:mysql://project-ID:SQL-component-
ID/database_name?user=root";

28

 Where project-ID is the project identification on Google
side, and SQL-component-ID is the identification of Cloud
SQL component on Google site too. From this moment we
are able to deploy our web application in Google, and this
means that we can use now our application from the
browser with a URL address that Google provides us in the
moment of the Google App Engine component creation.
 All this process provides the web application which can
be considered now as a Google service and make us able to
use a Cloud database for which we are interested.
 We can use this service with a URL address from a
browser, or by a smart-phone. The architecture of the web
application corresponds to the Fig 4.

Fig. 4 The web application architecture

public�class�Parameters�{�
���public�String[]�parameters;�
���public�StringBuffer�strError=null;�
� ��
���public��Parameters�(String[]parameters)�{�
������if�(validate(parameters)){�
� ��this.parameters�=�new��
�������������String[parameters.length];�
� ��for(int�i=0;�i<�parameters.length;i++){�
� �����this.parameters[i]�=��
�������������������parameters[i];}}�
������}�
���public�boolean�validate(String[]�fields)�{�
� ��strError�=�new�StringBuffer();�
� ��for(int�i=0;i<fields.length;i++){�
� �����if(fields[i]�==�null){��
� �������strError.append("parameter�
���������������"+(i+1)+"�is�missing");�
� �������return�false;}�
� �����if(fields[i].equals(""))�{��
� ����������strError.append("parameter�
���������������"+(i+1)+"�is�empty");�
� �����return�false;}� }�
� �����return�true;�
��}�
��public�String[]�getParameters()�{�
�����return�parameters;}�
��public�String�getErrorString()�{�
�����return�strError.toString();}�
��}�

Fig. 5 The class Parameters

 The model in Fig. 4 represents a set of classes, which
correspond to the database tables and Android Screens. The
last ones manage the different user operations. There is a
communication by parameters between android and servlet,
or controller. To generalize this communication we have
used a separate class of Parameters, Fig. 5, where we deal
with parameters that come from the Android. They are
accepted and validated. All the screen classes will be
extensions of the class Parameters.
 The Android Screen classes manage the operations of
each screen. For example the class that manages the login
operation, or answers to the first screen, Fig. 6, just
performs a selected statement in response to the parameter
value like below, where User class is a class that
corresponds to the database user table:

public�class�Screen1�extends�Parameters�{�
���private�User�user;�
���public�Screen1(String[]�parameters){�
������super�(parameters);}�
�����
���public�User�getUser()�{�
������return�user;� }�
���public�boolean�getInfo()�{�
������try�{�
� ����ConnectionDB.connection();
� ����String�querySQL�=��
������������"SELECT�*�FROM�user�WHERE�ID�="�+��
�������Integer.parseInt(parameters[0])+�"��
������������AND�password�=�'"+�parameters[1]+"'";�
�������Statement�stmt�=��
������������ConnectionDB.conn.createStatement();�
� ����ResultSet�rs�=��
������������stmt.executeQuery(querySQL);�
� ����boolean�querySuccessful;�
� ����if(rs.next())�{�
���������user=�new�User(rs.getInt(1),.�.�.);�
� ������querySuccessful�=�true;�
�������}�else�querySuccessful�=�false;�
� ����ConnectionDB.conn.close();�
� ����return�querySuccessful;}�
� catch�(Exception�e)�{�
� ����e.printStackTrace();�
� ����return�false;}���}}�

Fig. 6 The screen1 class

 The servlet, Fig. 7, plays the role of a controller that
manages all the communications with the other classes
sending there the parameters from the Android application.
The results that come from the operations of screen classes
will be sent into Android Application.

29

public�class�BrokerwebappServlet�extends��
�����������������������������HttpServlet�{�
���String[]�parameters;�
���Screen1�screen1;�
���User�user;�
�
���public�void�doGet�(HttpServletRequest�request,�
����������������HttpServletResponse�response)�{�
���char�screen�=��
�������request.getParameter("screen").charAt(0);�
���parameters�=��
�������request.getParameterValues("parameters");�
���switch(ekrani){�
���case�'1':�//�screen�1�
�����screen1=�
�������new�Screen1(parameters);�
�����if�(screen1.validate(parameters)){�
� �if(screen1.getInfo())��
� ���user�=�screen1.getUser();�
� ����writeObject(user,�request,response);�
�����}�else{�
� �writeObject(screen1.getErrorString(),�
�������request,response);}�
�����break;�
�����.�.�.����
�����default:�
���}�
}� �
void�writeObject(Object�obj,�HttpServletRequest��
���request,�HttpServletResponse�response){�
���try�{�
������ObjectOutputStream�oos�=�new��
���������ObjectOutputStream(�
������������response.getOutputStream());�
������oos.writeObject(obj);�
������oos.flush();� � � �
������oos.close();�
���}�catch�(Exception�e)�{�
������e.printStackTrace();� }�
���}�
���public�void�doPost�(HttpServletRequest��
������request,�HttpServletResponse�response)�{�
�����doGet(request,�response);}�
}�

Fig. 7 The controller (the servlet)
Fig. 8 Android Screens

����
�
�
�
�
�
�
�
�
�
�
�
�
���

� �

� �

� �

30

 The connection is managed by a separate class
ConnectionDB

public�class�ConnectionDB�{�
���public�static�String�url�=�null;�
���public�static�Connection�conn=null;�
���public�static�void�connection(){�
������try�{�
�������if�(SystemProperty.environment.value()�
�������==SystemProperty.Environment.�
�������������������Value.Production)�{�
� ����Class.forName(�
������������"com.mysql.jdbc.GoogleDriver");�
���������url="jdbc:google:mysql:�
����������//uet�project�2014:�
����������uet�project�sql�2014/�
����������database_name?�
����������user=root&password=xxxx";�
� ������}�.�.�.��
����}�catch�(Exception�e)�{�.�.�.}�
�
public�static�void�close(){�
���try�{�
�����conn.close();�
���}�catch�(SQLException�e)�{.�.�.}}}�

Fig. 9 The class that provides the connection with database

VI. THE ANDROID APPLICATION

 The web application can be used from a browser or from
small devices like smart-phones, but as we mentioned, the
smart-phone will be the most used by the end-user. We need
to have specific Android applications that will be used by
the both side of the B2B scenario. The Fig. 8 represents the
Android screens of one side. We have used a few simple
Android screens, considering the fact that the daily use of
them to be as easy as possible for a user. A key point of the
Android application is the communication with the web
application. For this we use the class AsyncTask [10],
which makes possible the handling of background threads,
such as the communication with the internet.
 The Fig. 10 shows the communication part of the
Android application with and web application.

.�.�.��
private�class�WebOperations�extends��
�����AsyncTask<String,�Void,�String>�{�

protected�String�doInBackground(�
�������String...�urls){�

������String�response�=�"";�
������for(String�url�:�urls)�{�
��������try{�
� ������HttpClient�client�=��
����������������new�DefaultHttpClient();��
� ������HttpContext�context�=�null;���
� ������String[]parameters�=��

����������������new�String[2];�
������������parameters[0]=�

����������������String.valueOf(�
�������������������obj.getField1());�
��� ����������������������String.valueOf(�
�������������������obj.getField1());�
�����������.�.�.��
� �����String�URLparam=�
����������������parameters[0].toString()+"?";�
� �����for(int�i=1;i<�
�����������������parameters.length�1;i++)�
� � �URLparam+="�parameters=�
����������������"+�parameters[i]+"&";�
� �����URLparam+=�"parameters�="+�
���������������parameters[parameters.length�1];�
� �����HttpPost�post�=��
����������������new�HttpPost(URLparam);�������
� �����HttpResponse�response�=��
����������������client.execute(post);�
� �����ObjectInputStream�content=�
�����������������new�ObjectInputStream(�
�������������������response.getEntity().�
�����������������������getContent());��
� �����try�{obj�=�
�����������(Entity1)content.readObject();�
�����������}�catch(ClassNotFoundException�e)�
�������������������������{.�.�.}��
����}�catch(IOException�e){.�.�.}}��
��������return�response;�}�
�protected�void�onPostExecute(String�result)�
����{���txtText.setText(result);}}�
.�.�.�

Fig. 10 The communication part of the Android application with web
application

VII. CONCLUSION

The situational and ad-hoc applications give solution to
various B2B scenarios. A digital broker system would be a
helpful business to establish connections between
businesses linked by interests and which support various
B2B scenarios. A methodology is given in this paper to
create a digital broker system. This methodology is based
on the recent technology. It is sufficient for one computer
today to provide such a system. One App Engine
application, one Cloud database and an Android
application are the basic components of this system. This
would be a helpful experience for every ID individual to
create his/her own business.

REFERENCES

[1] Robert G. Siebeck, …, 2009, Cloud-based Enterprise Mashup
Integration Services forB2B Scenarios

[2] Noren,E. (2013 January 14) Digital Business Models How Companies
Make Money Online. Ten Digital Business Models

[3] http://openmarkets.cmegroup.com/7468/dtn-survey-a-glimpse-at-
what-farmers-are-planning-for-2014

31

[4] Evert-jan Quak (2014 February 26) Revaluing labour, Views on job
creation within economics

[5] Zaigham Mahmood, Richard Hill (2011) Cloud Computing for
Enterprise Architectures

[6] John Moore, December 10, 2012
[7] By Kyle Roche, Jeff Douglas, 2009 Beginning Java Google App

Engine

[8] https://developers.google.com/appengine/
[9] https://developers.google.com/appengine/docs/java/cloud-sql/
[10] Lars Vogel, 2013 Android Background Processing with Handlers and

AsyncTask and Loaders
[11] http://developer.android.com/about/index.html
[12] https://developers.google.com/+/mobile/android/sign-in

32

