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Abstract

The sensitivity of general dynamic response of a structure with respect to a perturbation in a parameter of a dynamic

system is addressed in this paper. The sensitivities of response of the structure when under sinusoidal, impulsive and

random excitations is calculated, and their properties discussed. Local damage in the structure is represented by a

perturbation of a system parameter, and a new sensitivity-based approach is presented for identifying the local damages in

a structure directly from the measured dynamic responses. The solution is obtained with the penalty function method

iteratively with regularization. Simulation studies on the effectiveness and accuracy of the proposed method are performed

including measurement noise and initial model errors, and experiment work on steel beams with local damages has also

been conducted. The proposed method is seen to give acceptable results even with the different types of model errors taking

advantage of the plentiful amount of measured data from the responses.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Due to unforeseen conditions and circumstances, it is never possible to design and build a structure that is
not liable of failure. Structural aging, adverse environmental effects, etc. are examples affecting the safety and
reliability of a structure. Regular inspection and condition assessment of an engineering structure are
necessary so that early detection of any defect can be made, and the safety and reliability of the structure can
be determined. Early damage identification allows maintenance and repair works to be properly programmed
and thus minimizing the maintenance costs.

Many researchers have presented methods for damage identification using natural frequencies and mode
shapes, including the sensitivity methods [1–7], optimization methods [8], modal residual methods [9–12],
wavelet transform methods [13–18] and modal force error methods [19,20]. More recently, Liu and Chen [21]
presented a computational inverse technique for identifying stiffness distribution in structures using structural
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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dynamic response in the frequency domain, where the sensitivity matrix of displacement amplitude with
respect to the stiffness factor was calculated by Newton’s method.

In the damage identification of structures, the damage parameters are generally related to the stiffness as
discussed by Araujo dos Santos et al. [5], Bicanic and Chen [2] and Chen and Bicanic [3]. When discretizing the
structure into a number of finite elements, the stiffness distribution in the structures is expressed in terms of the
stiffness parameters. One of the main difficulties in identifying the stiffness parameters lies in the large number of
unknowns. When solving an inverse problem of parameter identification, it is usually formulated as an objective
function of a weighted sum of squared difference between the measured value and the corresponding simulated
value of the dynamic properties of the structures. The inverse reconstruction can then be solved by minimizing the
objective function. Genetic algorithms (GAs) have been widely used as a searching technique for such nonlinear
problem. The advantages of GAs lie in, (a) they do not need the sensitivity analysis and initial guess [22–24]; and
(b) they converge to the global optimum solution. However, the disadvantage of GAs is computationally extensive
and they suffer from slow convergence at the later stage due to the nature of random searching. Thus, for problems
with large number of parameters to be identified, the use of GA becomes less practical.

This paper addresses the problem of insufficient measured data for the identification of a dynamic system
with a larger number of unknowns. Dynamic response can be measured at all accessible degrees-of-freedoms
(dof) of a structure, and the amount of data is only limited with time. It is directly used in the proposed
method as an unlimited source of damage information in the damage detection problem. The sensitivity
matrix of dynamic response of a structure with respect to a perturbation of a system parameter is addressed.
An error function, defined as the difference between the calculated and measured responses of the structure, is
used in the sensitivity equation for the system identification problem. Penalty function method is used for the
iterative solution with regularization. The sensitivities of the dynamic responses with respect to the unknown
parameters are then calculated to form the sensitivity matrix. Computation simulation with a plane frame
structure and the European Space Agency Structure illustrate the effectiveness and accuracy of the proposed
method. Satisfactory results can be obtained even when the measured data is polluted with noise and with
initial model error. Experimental results from two steel beams in the laboratory also demonstrate the
advantage of the plentiful amount of dynamic response data and the accuracy of the proposed method.

2. Forward problem

2.1. Dynamic response of the structure

For a general finite element model of a linear elastic time-invariant structure, the equation of motion is
given by

½M�f €dg þ ½C�f _dg þ ½K �fdg ¼ ½B�fFg, (1)

where [M], [C] and [K] are the system mass, damping and stiffness matrices respectively. Rayleigh damping is
adopted which is of the form ½C� ¼ a1½M� þ a2½K �, where a1 and a2 are constants to be determined from two
modal damping ratios. If a more accurate estimation of the actual damping is required, a more general form of
Rayleigh damping, the Caughey damping model [25] can be adopted. f €dg, f _dg and fdg are the acceleration,
velocity and displacement response vectors of the structure, {F} is a vector of applied forces with matrix [B]
mapping these forces to the associated dof of the structure. The dynamic responses of the structures can be
obtained by direct numerical integration using Newmark method.

2.1.1. Sensitivity of response in time domain

For the perturbation of a system parameter, Da, the perturbed equation of motion is obtained by
differentiating both sides of Eq. (1) with respect to the system parameter. Assuming the parameter is related
only to the stiffness of the dynamic system, we have,

½M�
q €d
qai

( )
þ ½C�

q _d
qai

( )
þ ½K �

qd

qai

� �
¼ �

q½K �
qai
fdg � a2

q½K �
qai
f _dg ði ¼ 1; 2; . . .NÞ, (2a)
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where fqd=qaig, fq _d=qaig, fq €d=qaig are vectors of the displacement, velocity and acceleration sensitivities with
respect to the unknown parameter. ai is the parameter in the ith element or other stiffness parameter of the
system. Similar equation can be written for the perturbation of parameters which are related to the system
mass and damping matrices.

Let

€Y ¼
q €d
qai

; _Y ¼
q _d
qai

and Y ¼
qd

qai
,

we have

½M�f €Y g þ ½C�f _Y g þ ½K �fY g ¼ �
q½K �
qai
fdg � a2

q½K�
qai
f _dg. (2b)

Since fdg and f _dg have been obtained from Eq. (1), the right-hand side of Eq. (2b) can be considered as an
equivalent forcing function, and the equation is of the same form as Eq. (1). Therefore, the sensitivities €Y ; _Y
and Y can also be obtained by Newmark method.

3. Inverse problem

In the forward analysis, the dynamic responses and their sensitivities with respect to a system parameter of a
finite element system can be obtained from Eqs. (1) and (2). In the inverse problem, the system parameter is
required to be identified from the measured responses. In other words, the parameters are chosen to best fit the
experiment data. There are in general two ways to fit the data: one is simply using the least-squares method
which minimizes the square error sum; the other is the sensitivity-based analysis method which has different
formulation for different problems, and it is often obtained approximately by neglecting the higher order
terms of the formulation. The latter approach is adopted in this study. The objective function is defined as

gðaÞ ¼
Xl

j¼1

Xnt

i¼1

fR̂ij � Rijg
T½W �fR̂ij � Rijg, (3)

where l is the number of measurement locations, nt is the number of time instances of the measured data. {a} is
the vector of unknown parameters ða1; a2; . . . ; aNÞ

T to be identified, R is the vector of calculated response of
the structure from a known set of faig and R̂ is the vector of measured response. [W] is the weight matrix.

3.1. Penalty function methods

Penalty function method is generally used for modal sensitivity with a truncated Taylor series expansion in
terms of the unknown parameters [26]. In this paper, the truncated series of the dynamic responses in terms of
the system parameter a are used to derive the sensitivity-based formulation. The identification problem can be
expressed as follows to find the vector {a} such that the calculated response best matches the measured
response, i.e.

½Q�fRg ¼ fR̂g, (4)

where the selection matrix [Q] is a matrix with elements of zeros or ones, matching the dof corresponding to
the measured response components. Vector {R} can be obtained from Eq. (1) for a given set of {a}.

Let

fdzg ¼ fR̂g � ½Q�fRg ¼ fR̂g � fRcalg, (5)

where {dz} is the error vector in the measured output. In the penalty function method, we have

fdzg ¼ ½S�fdag, (6)

where {da} is the perturbation in the parameters, [S] is the two-dimensional sensitivity matrix which is one of
the matrix at time t in the three-dimensional sensitivity matrix shown in Fig. 1. For a finite element model with
N elements each with M system parameters, the number of unknown parameters is N�M, and N�M
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Fig. 1. Three-dimensional sensitivity matrix.
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equations are needed to solve the parameters. Matrix [S] is on the parameter-t plane in Fig. 1, and we can
select any row of the three-dimensional sensitivity matrix, say, the ith row corresponding to the ith
measurement for the purpose. When writing in full, Eq. (5) can be written as

fdzg ¼

R̂ðt1Þ

R̂ðt2Þ

..

.

R̂ðtlÞ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
�

Rcalðt1Þ

Rcalðt2Þ

..

.

RcalðtlÞ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
,

with lXN�M to make sure that the set of equation is over-determined. Eq. (6) can be solved by simple least-
squares method as follows:

da ¼ ½STS��1STdz (7)

or

ajþ1 ¼ aj þ ½S
T
j Sj�

�1ST
j ðR̂� RcalÞ. (8)

The subscript j indicates the iteration number at which the sensitivity matrix is computed.

3.2. Regularization

Like many other inverse problems, Eq. (7) is an ill-conditioned problem. In order to provide bounds to the
solution, the damped least-squares method (DLS) [27] is used and singular-value decomposition is used in the
pseudo-inverse calculation. Eq. (7) can be written in the following form in the DLS method:

da ¼ ðSTS þ lIÞ�1STdz, (9)
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where l is the non-negative damping coefficient governing the participation of least-squares error in the
solution. The solution of Eq. (9) is equivalent to minimizing the function

Jðfdag; lÞ ¼ Sda� dzk k
2
þ l dak k2, (10)

with the second term in Eq. (10) provides bounds to the solution. When the parameter l approaches zero, the
estimated vector {da} approaches to the solution obtained from the simple least-squares method. L-curve
method [28] is used in this paper to obtain the optimal regularization parameter l.

3.3. Procedure of iteration

Usually the initial analytical model of a structure deviates from the true model and measurement from the
initial intact structure is used to update the analytical model. The improved model is then treated as a
reference model, and measurement from the damaged structure will be used to update the reference model.
The vector of parameters found corresponds to the list of damages occurred in the structure.

When response measurement from the intact state of the structure is obtained, the sensitivities are computed
from Eq. (2) based on the analytical model of the structure and the input force obtained in experiment. The
vector of parameter increments is then obtained from Eq. (9) or (10) using the computed and experimentally
obtained responses. The analytical model is then updated and the corresponding response and its sensitivity
are again computed for the next iteration. Convergence is considered to be achieved when the criteria
jjfakþ1g � fakgjj=jjfakþ1gjjptolerance is met, where {ak} is the vector of unknown parameter calculated at the
kth time instance. When measurement from the damaged state is obtained, the updated analytical model is
used in the iteration in the same way as that using measurement from the intact state. The final vector of
identified parameter increments corresponds to the changes occurring in between the two states of the
structure. The tolerance is set equal to 1.0� 10�6 in this study except otherwise specified.

Eq. (6) has been popularly used in the form of the first-order approximation of the increment on the left-
hand side of the equation. The higher order term of the Taylor expansion has been omitted in the
computation. The iterative computation described above on the updating of the sensitivity and the system
aims at reducing error due to such omission, particularly with large local damages.

4. Computation simulation

4.1. A plane frame structure

A plane frame structure as shown in Fig. 2 is studied to illustrate the proposed method. It consists of 11
Euler–Bernoulli beam elements with 12 nodes each with three dof. The frame is fixed at nodes 1 and 12
modelled with large translational and rotational stiffnesses of 1.5� 1010 kN/m and 1.5� 1010 kN-m/rad,
respectively. The mass density of material is 2.7� 103 kg/m3 and the elastic modulus of material is 69� 109N/
m2. The height and width of the frame are respectively 1.2 and 0.6m, and the cross-sectional dimensions of
member are b ¼ 0.01m and h0 ¼ 0.02m with the second moment of inertia in the plane of bending equals
6.67� 10�9m4. The first five undamped natural frequencies of the intact frame are 13.095, 57.308, 76.697,
152.410 and 196.485Hz. Rayleigh damping model is adopted with the damping ratios of the first two modes
taken equal to 0.01. The equivalent Rayleigh coefficients a1 and a2 are respectively 1.3395 and 4.52� 10�5.

4.1.1. Features of the response sensitivities

The time response depends on the excitation force, and the sensitivity of the response with respect to
perturbation of a local system parameter would be different. This study is to find what type of force excitation
would be best for damage detection using the proposed method. Sinusoidal, impulsive and random excitations
are studied to calculate the dynamic responses and their sensitivities with respect to a system parameter of the
frame. The elastic modulus of material in element 1 is selected as the perturbed parameter.

The excitation force is applied at node 2 along the x-direction. The sinusoidal force is taken as F ðtÞ ¼

10 sinð2pftÞ N where f is the excitation frequency taken equal to the first and third modal frequencies of the
frame and at 25Hz, which is between the first and second modal frequencies. The impulsive force lasting for
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0.1 s duration is expressed in the following form with a magnitude of 10N:

F ðtÞ ¼
200ðt� 0:05Þ; 0:05ptp0:1;

200ð0:15� tÞ; 0:1ptp0:15:

(

Uniformly distributed random force between +10 and �10N and normally distributed random force
between 0 and 10N are also applied separately.

The response is measured along the x-direction at node 9 with a sampling rate of 500Hz including the first
five modes of the structure.

Figs. 3–8 show the time histories of the excitation force, the displacement response and its sensitivity, plus
the acceleration response sensitivity with respect to the perturbed system parameter for each type of the forces
described above. Since the magnitudes of all the excitation forces are equal, a direct comparison of the
responses and their sensitivities is possible.

Fig. 3 gives the sensitivities from sinusoidal excitation at the undamped fundamental frequency of the
structure. The amplitude of the displacement response increases gradually until the energy input is balanced by
the energy dissipated from damping where the amplitude becomes relatively stable. In the computation of the
sensitivities from Eq. (2), the forcing function consists of both the displacement response and the velocity
response. The velocity is approximately one thousand times larger than the displacement. However the second
term on the right-hand-side of the equation is one hundred times smaller than the first term because of the
small damping coefficient a2. Therefore the forcing term in Eq. (2) is dominated by the displacement response
which increases in the first stage and becomes relatively constant later. Therefore, the amplitude of the
sensitivities obtained also increases with time and it becomes stable when the energy input and energy
dissipation are balanced.

Fig. 4 gives the sensitivities from sinusoidal excitation at the third undamped natural frequency of the
structure. Explanation on the pattern of the curves is similar to Fig. 3. The small variation in the amplitudes of
the response and the sensitivities in Fig. 4 have been checked with Fast Fourier Transform (FFT) analysis. The
irregular waveform in the first 5 s is due to the transient responses from the first few modes arising from the
application of the excitation. The response after 20 s is dominated by a component at the excitation frequency
as shown in the FFT spectrum in Fig. 9.

Fig. 5 gives the sensitivities from sinusoidal excitation at 25Hz, which is between the first and the second
natural frequencies of the structure. The displacement response consists of a combination of responses mainly
at the first and second natural frequencies of the structure. This can be explained by the modal superposition
principle. This response becomes relatively stable with time under the damping effect. The sensitivities
obtained under the forcing function dominated by the displacement response also consist of components at
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both frequencies but with the component at the first natural frequency dominating. The sensitivities diminish
with time but maintain a small amplitude of vibration because of the relatively stable input dominated by the
displacement response.

Fig. 6 gives the response sensitivities from impulsive excitation. The displacement response is dominated by
the first natural frequency of the structure with the higher frequency components diminish rapidly with
damping. The response reduces to zero with time. The sensitivities obtained from Eq. (2) increase with the
input energy larger than the dissipated energy and reach a maximum at around 1.2 s. All the sensitivities
diminish to zero with time under the damping effect.

Fig. 7 gives the response sensitivities from uniformly distributed random excitation. The first five modes of the
structure are excited with strong contribution to the displacement response. The sensitivities obtained from Eq. (2) are
under the force excitation dominated by the displacement response with vibration at the first five natural frequencies
of the structure, and they also consist of a combination of components at the first five natural frequencies of the
structure with both increasing and decreasing amplitude under the damping effect. The sensitivities will not diminish
to zero with time as the displacement responses always exist under the random excitation.

Fig. 8 gives the response sensitivities from normally distributed random excitation. Observations with the
responses and their sensitivities are similar to those obtained from under uniformly distributed random
excitation.

The shapes of the three types of response sensitivities in time are similar for each type of excitation, but it is
different for different excitation. A comparison of the sensitivities in Figs. 3–8 shows that sinusoidal excitation
would give higher sensitivities than random force excitations while those from impulsive excitation exhibit the
smallest sensitivity. This may be due to the reason that there is only one impact acting on the frame in the
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duration studied, while the other excitations act on the frame continuously in the same period giving higher
energy input. The sensitivities from excitation at lower modal frequency of the structures are larger than those
from a higher modal frequency. But the sensitivities from excitation at a lower frequency which is not a modal
frequency are very small. These observations show that the sensitivities are dependent on the displacement
response of the structure as seen in Eq. (2). This can be further explained from the view point of energy input:
the largest energy input on the structure is from the sinusoidal excitation at the first natural frequency, such
that the sensitivities are largest under this excitation. The smallest energy input is from the impulsive force and
the sensitivities are the smallest.

4.1.2. Damage scenarios

Six damage scenarios of single and multiple damages in the frame with and without measurement noise are
studied and they are shown in Table 1. Three more scenarios with different types of model errors are also
included as Scenarios 7–9. Local damage is simulated with a reduction in the elastic modulus of material of an
element. Sinusoidal excitation of F ¼ 10 sinð12ptÞ N is used for the identification with a frequency well below
the fundamental frequency of the structure. The sampling rate is 1000Hz and 200 data of the response
collected along the x-direction at node 9 are used in the identification unless otherwise specified. The relative
percentage error in the identified result is defined as

Relative error ð%Þ ¼
jjfaidg � fatruegjj
jjfatruegjj

� 100%,
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where {aid} and {atrue} are vectors of the identified and true values of the parameter, respectively. The damage
locations can be identified correctly in all the Scenarios, and the relative error is shown in Table 2.

Scenarios 1 and 2 study the single damage scenarios with different excitation frequency. The sinusoidal
excitation described above at 6 and at 25Hz are used for the two scenarios, respectively. The displacement
response along the x-direction at node 9 is used for the identification. The iterative solution converges after 13
and 15 iterations respectively with a maximum error of 0.1% and 0.01% in element 5 for the two scenarios
respectively, and the corresponding optimal regularization parameters are 8.6� 10�15 and 8.7� 10�15

respectively. The excitation frequency seems not to have significant effect on the identified results.
Scenarios 3–5 are on multiple damages with different type and amount of measured responses for the

identification. Damages in the frame are modeled with 5% reduction in the elastic modulus of material in both
elements 3 and 6. The sinusoidal excitation force at 6Hz and measured displacement as for Scenario 1 is used
for Scenario 3, while acceleration response at the same dof is used for Scenario 4 and two displacement
responses in the global x-direction at node 9 and in the global y-direction at node 5 are used for Scenario 5.
Very good results are obtained after 22, 16 and 21 iterations respectively, and Table 2 gives the error of
identification in all the elements with a maximum error of �0.36% in element 9, 0.12% in element 5 and
�0.20% in element 9 for the three scenarios respectively. The optimal regularization parameter is 6.8� 10�15,
2.9� 10�10 and 1.5� 10�15 respectively. Acceleration response is noted to give better identified results then



ARTICLE IN PRESS

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

F
(N

)

0 0.5 1 1.5 2 2.5
-5

0

5
x 10-4

x 10-14

x 10-12

x 10-10

 

D
is

p
l.
(m

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
 -2

0

2

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

 -1

0

1

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-1

0

1

 

Time (sec.)

d
∂/

∂E
 

. 

d
∂/

∂E
 

. . 

∂d
/∂

E

Fig. 6. Response sensitivity from impulsive excitation.

Z.R. Lu, S.S. Law / Journal of Sound and Vibration 303 (2007) 305–329314
displacement response, while the relative identified error is reduced by about 50% when more
displacement data is used in the identification (Scenario 3 versus Scenario 5). Fig. 10 compares
the ‘‘measured’’ displacement and acceleration responses of the structure with damage Scenario 2, the
calculated responses of the initial structure and the reconstructed responses from the final updated
structure. The local damage is small and its effect on the global dynamic response is very small as shown
in the figure. The ‘‘measured’’ and reconstructed responses are, however, observed to be very close to each
other.

Scenario 6 studies the effect of measurement noise on the identification. A normally distributed random
error with zero mean and a unit standard deviation is added to the measured displacement as

d̂ ¼ dcal þ Ep Noise varðdcalÞ,

where d̂ is the vectors of polluted displacement; Ep is the noise level; Noise is a standard normal distribution
vector with zero mean and unit standard deviation; var( � ) is the variance of the time history; dcal is the vector
of calculated displacement. Scenario 1 is again studied. The two displacement responses as for last study are
used for the identification with 10% noise included. Satisfactory results are obtained after 41 iterations with a
maximum error of 2.5% in element 6. The optimal regularization parameter is 6.3� 10�14. The convergence
tolerance has been increased to 5.0� 10�7 allowing larger variation in the iteration results. Higher relative
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errors are found in the identified results when comparing with the noise-free results indicating that
measurement noise has large effect on the damage identification.

Scenarios 7–9 are on the effect of different types of initial model error to the identification. Scenario 7
consists of no simulated damage in the structure, but with the initial elastic modulus of material of all the
elements under-estimated by 5% in the inverse identification. The simulated ‘‘measured’’ responses as for last
scenario are computed using the true elastic modulus of material with additional 10% random noise. The
solution converges to the true value in 286 iteration steps with a maximum error of �2.65% in element 5 with
an optimal regularization parameter of 8.3� 10�15. This study illustrates the accuracy of the proposed
approach with a practical system updating with model error. A relatively good finite element model is
therefore needed for the presented damage detection.

Scenario 8 restudies Scenario 7 but with the first two modal damping ratio change from 0.01 to
0.02 in the inverse identification. The same ‘‘measured’’ responses calculated with the true parameters as for
Scenario 6 are used for the identification. The identification results converge to the true value after 42
iterations with a maximum error of 2.69% in element 6 and with an optimal regularization parameter of
6.4� 10�14.

Scenario 9 restudies Scenario 7 but with changes in the support stiffnesses. The support stiffnesses in the
finite element model are reduced to 1/10th of the original values in the inverse identification. The identification
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results converge to the true value after 45 iterations with a maximum error of 2.54% in element 6 and with an
optimal regularization parameter of 6.5� 10�14. Result from Scenarios 7–9 shows that the proposed approach
of system identification is less affected by initial model errors.
4.2. The European Space Agency Structure

The European Space Agency Structure (ESAS) is studied as another numerical example to illustrate the
effectiveness of the proposed method. The finite element model of the structure is shown in Fig. 11. The
structure is modeled by 48 frame elements and 44 nodes with three dofs at each node for the translation and
rotational deformations. Each frame element is constructed by integrating an Euler-Bernoulli beam element
with a rod element. The modulus of elasticity of material is 7.5� 1010N/m2 and the density is 2800 kg/m3. The
total number of dofs in the analytical finite element model is 132. The first twelve natural frequencies of the
intact ESAS structure are 16.86, 63.13, 80.05, 131.34, 173.33, 196.23, 201.73, 214.42, 221.81, 246.60, 274.68
and 284.13Hz. Rayleigh damping is used for constructing the damping matrix, and the modal damping ratios
of the first two modes are taken as 0.01 and 0.02 respectively.
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Table 1

Damage Scenarios for plane frame structure

Damage

scenario

Damage

location

(element no.)

Reduction in elastic modulus Noise Measurement

1 6 5% Nil 9x-displacement

2 6 5% Nil 9x-displacement

3 3 and 6 5%, 5% Nil 9x-displacement

4 3 and 6 5%, 5% Nil 9x-acceleration

5 3 and 6 5%, 5% Nil 9x, 5y-displacement

6 6 5% 10% 9x, 5y-displacement

7 No damage 5% under-estimation in the elastic modulus of all

elements

10% 9x, 5y-displacement

8 6 5% reduction+increase of damping ratios from 0.01 to

0.02

10% 9x, 5y-displacement

9 6 5% reduction+support stiffnesses reduced to 1/10th of

their original values

10% 9x, 5y-displacement
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4.2.1. Damage detection studies

Damage in the structure is simulated as a reduction in the stiffness of individual element, represented as a
reduction in the elastic modulus of material, with the other properties remain unchanged. Four damage
scenarios are studied as listed in Table 3. A sinusoidal excitation force of F ¼ 5000 sin(22pt) N is applied at the
end of the cantilever structure along the global negative y-direction as shown in Fig. 11.
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Table 2

Error (%) in the identified results of damage Scenarios 1–9

Damage

scenarios

Noise Error (%) in each element

1 2 3 4 5 6 7 8 9 10 11

1 — 0.0 0.0 0.0 0.0 0.1a 0.0 0.0 0.0 0.0 0.0 0.0

2 — 0.0 0.0 0.0 0.0 0.01a 0.0 0.0 0.0 0.12 0.0 0.0

3 — �0.04 �0.08 0.24 �0.31 0.26 �0.02 0.12 0.25 �0.36a 0.13 �0.02

4 — 0.01 �0.02 �0.03 0.01 0.12a �0.01 �0.12 0.01 0.03 0.02 �0.02

5 — �0.02 �0.04 0.12 �0.16 0.13 �0.01 0.06 0.12 �0.20a 0.06 �0.01

6 10% 0.93 1.32 �0.82 1.18 �0.96 2.50a �1.91 1.11 0.85 1.43 �1.05

7 10% 0.13 �0.48 �0.3 0.31 �2.65a 0.18 �0.79 -0.5 �0.9 0.79 0.86

8 10% 1.16 1.42 �0.86 1.23 �1.02 2.69a �1.96 1.14 0.96 1.52 �1.26

9 10% 0.95 1.34 �0.81 1.16 �0.98 2.54a �1.93 1.13 0.86 1.42 �1.08

aDenote the largest value in the group.
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4.2.1.1. Scenario 10: study on multiple damages close to the supports. Two local damages are introduced in
elements 1 and 13, which are adjacent to the supports of the structure. The sampling rate is 500Hz and one
second of ‘‘measured’’ data is used for the identification. The local damages are identified after 25 steps of
iteration with the optimal regularization parameter equals to 1.2� 10�10. Fig. 12 shows that the two local
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Table 3

Damage scenarios for ESAS structure studies

Damage

scenarios

Damage location (element no.) Reduction in elastic modulus Noise Measurement

10 1 and 13 10% Nil 5y-acceleration

11 20, 21, 35, 36, 37, and 40 10%, 7%, 15%, 10%, 10% and 10% Nil 5y and 18y-acceleration

12 1, 13, 20, 21, 35, 36, 37, and 40 10%, 10%, 10%, 7%, 15%, 10%, 10% and

10%

Nil 5y and 18y-acceleration

13 1, 13, 20, 21, 35, 36, 37, and 40 10%, 10%, 10%, 7%, 15%, 10%, 10% and

10%

1%, 10% 5y and 18y-acceleration
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damages are identified very accurately with a maximum relative error less than 0.1%, while there is no error in
all other elements. This shows the efficiency and the accuracy of the proposed method.

4.2.1.2. Scenario 11: study on the effect of different sampling rate. Six local damages are introduced in
elements 20, 21, 35, 36, 37 and 40. These damages are adjacent to each other as shown in Fig. 11, simulating a
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Z.R. Lu, S.S. Law / Journal of Sound and Vibration 303 (2007) 305–329320
damage zone spanning over several members of the structure through a joint connection. Two sampling rates
are studied: (a) 500Hz, which includes the first 10 modes of the structure; (b) 200Hz, which includes the first 3
modes. One second of the ‘‘measured’’ acceleration responses from the 5th node along the global y-direction
and the 18th node along the global y-direction are used in the identification. The required iteration numbers
are 26 and 29 for the cases of 500 and 200Hz sampling rates respectively and the optimal regularization
parameters are found to be 1.24� 10�10 and 1.31� 10�10 respectively. Fig. 13 indicates that the local damages
are identified very accurately with no alarm in other elements. This shows that a sampling rate as low as
200Hz can give good accuracy in the identified results.
4.2.1.3. Scenario 12: Effect of amount of measured data for identification. The group of damages in Scenario
11 is enlarged to include two more local damages in elements 1 and 13. Two different lengths of data are
studied: (a) 200 data points; and (b) 500 data points. The same acceleration responses for the last study are
used. The sampling rate is 500Hz. The required iteration numbers are 27 and 30 for Cases (a) and (b)
respectively and the regularization parameters are 1.26� 10�10 and 1.34� 10�10 respectively. Fig. 14 shows
that the local damages are identified very accurately with no alarm in other elements. This shows that data
length as short as 200 is sufficient to give good accuracy of the identified results so long it is larger than the
number of unknowns.
4.2.1.4. Scenario 13: Effect of measurement noise. The last damage scenario is re-examined with a sampling
rate of 500Hz and the same set of ‘‘measured’’ acceleration response as for last study is used. 1% and 10%
noise level are separately included in the measured response data. The required iteration numbers are 31 and
35 for the cases with 1% and 10% noise level respectively and the optimal regularization parameters are found
to be 1.36� 10�10 and 1.41� 10�10 respectively. Fig. 15 shows that the measurement noise has large effect on
the identified results in comparison with the noise free studies above. The maximum relative error for 1%
noise level is �3% in element 20 and for 10% noise level is 5.1% in element 13 while there are false alarms in



ARTICLE IN PRESS

5 10 15 20 25 30 35 40 45 50

Element number

-20

-15

-10

-5

0

5

C
h
a
n
g
e
 i
n
 E

 (
%

)

-20

-15

-10

-5

0

5

C
h
a
n
g
e
 i
n
 E

 (
%

)

0 5 10 15 20 25 30 35 40 45 50

Element number

Fig. 14. Identified damages from different data points: (a) data points ¼ 200; and (b) data points ¼ 500.

Z.R. Lu, S.S. Law / Journal of Sound and Vibration 303 (2007) 305–329 321
elements 12 and 24. These results indicate that the measured noisy data is preferably to be improved before it
is used for damage detection in real application.
5. Experimental verification

5.1. Free– free supported steel beam

Two simple structures have been tested in the laboratory to verify the proposed method. The first
experiment is with a free–free supported steel beam. The length, width and height of the beam are respectively
2.1, 0.025 and 0.019m, and the elastic modulus and mass density of the material are 2.07� 1011N/m3 and
7.83� 103 kg/m3 respectively. The beam is suspended at its two ends as shown in Fig. 16. It is discretized into
20 Euler–Bernoulli beam elements with three dof at each node. The flexural rigidity of all the elements is taken
as the unknowns to be identified in the inverse analysis. The first five natural frequencies of the intact beam are
22.87, 62.76, 123.05, 203.24 and 303.45Hz from modal test of the beam. A sinusoidal force at the frequency of
half of the first natural frequency of the beam was applied at the nodal point of the first vibration mode of the
beam 480mm from the left free end with an exciter model Ling Dynamic LDS V450. The lateral acceleration
obtained with a B&K 4370 accelerometer at the middle of the beam was used to identify these unknown
flexural rigidities. Sampling frequency is 2000Hz. Time history of the input sinusoidal force was also recorded
for calculating the numerical response of the beam. The acceleration response data of the first five seconds is
used for the damage detection. Rayleigh damping is adopted and the modal damping ratios were recorded as
0.007 and 0.01 for the first two modes from the dynamic response. With experiences from the numerical study
above, the high frequency measurement noise in the measured acceleration was removed using 21-point
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moving average. The convergence tolerance in the iteration is changed to 5.0� 10�7 allowing for larger
variation in the iterative results.

It is known that the finite element modeling error in the intact structure has, in general, significant effect on
the accuracy of the damage identified results. In most cases, the initial finite element is updated first to obtain a
good representation of the intact structure. Table 4 lists the first five frequencies of the intact beam from
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Table 4

The measured and the analytical natural frequencies (Hz) and the relative error (%) of the steel free-free beam with multiple cracks

Crack scenarios Mode

1 2 3 4 5

No crack

Experimental 22.87 62.76 123.05 203.24 303.45

Analytical 22.83/�0.18 62.74/�0.03 123.04/�0.0 203.03/�0.12 302.86/�0.2

Two cracks

Experimental 22.74 61.77 119.75 198.49 299.50

Analytical 22.71/�0.22 62.25/�0.03 120.73/0.82 200.55/1.04 301.37/0.62

Four cracks

Experimental 21.97 56.58 110.96 188.38 289.87

Analytical 21.96/0.0 56.94/0.64 111.82/0.78 190.01/0.87 288.33/�0.53

Note: � / � denotes the modal frequency/relative error.
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eigenvalue analysis as well as the experimental frequencies. It is noted that these two sets of frequencies match
each other very well indicating the finite element model of the beam is good enough for damage detection.
Two damage scenarios were then created for the study.
5.1.1. Scenario E1: Single damage element

Two cracks are introduced at 1.66 and 1.72m from the left free end with 3 and 9mm crack depth
respectively, and they are created using a machine saw with 1.3mm thick cutting blade. The two cracks are
close to each other and both of them are in element 17 of the finite element model. The crack damage is
modeled as a reduction in the flexural rigidity of this element. The first five measured natural frequencies of the
damaged beam are 22.74, 61.77, 119.75, 198.49 and 299.5Hz respectively. The equivalent damage is calculated
as 12.8% reduction in the flexural rigidity of the cracked element with a crack model [29], such that the first
five calculated modal frequencies are: 22.71, 62.25, 120.73, 200.55 and 301.37Hz matching closely with the
experimental modal frequencies with very small relative errors as shown in Table 4. Very good prediction on
the damage in element 17 is obtained after 77 iterations as shown in Fig. 17(a), and the errors in the identified
results are shown in Table 5 with a maximum error of �2.43% in element 18 adjacent to the damage element.
The optimal regularization parameter is 6.7� 10�9.
5.1.2. Scenario E2: Multiple damage elements

The two cracks in the last Scenario are deepened to 12mm each. Another two cracks are introduced at 1.49
and 1.52m from the left free end of the beam with 9 and 6mm depth respectively. Both the latter two cracks
are in element 15. The first five experimental natural frequencies of the damaged beam are 21.97, 56.58, 110.96,
189.33 and 289.06Hz. The equivalent damages for the two sets of cracks are calculated as 37.4% and 57.6%
reduction in the flexural rigidity of elements 15 and 17 respectively, such that the first five calculated modal
frequencies are: 21.96, 56.94, 111.82, 190.01 and 288.33Hz matching closely with the experimental modal
frequencies with very small relative errors as shown in Table 4.

Good identified results are obtained after 95 iterations as shown in Fig. 17(b). The errors in the identified
results are shown in Table 5 with a maximum error of �4.34% at element 17. The corresponding optimal
regularization parameter is 1.02� 10�8. This experimental study shows that the proposed method could
identify the location and magnitude of damage with good accuracy.

Fig. 18 shows the measured experimental force applied on the structure and a comparison of the measured
acceleration with the reconstructed acceleration from the final updated structure of Scenario E2. The
reconstructed acceleration is noted matching very closely with the measured values throughout the whole time
history.
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Table 5

Error (%) in the identified results in Scenarios E1 and E2

Element no. Scenario E1 Scenario E2

1 1.2 3.01

2 1.87 3.11

3 �2.02 �3.06

4 �2.32 2.81

5 �2.37 3.43

6 2.32 3.21

7 2.21 2.68

8 �1.61 �2.28

9 �1.03 �1.72

10 �2.01 �3.16

11 �2.18 �2.18

12 �2.21 �3.22

13 2.11 3.19

14 2.05 3.64

15 �1.51 �3.31

16 �1.85 �4.02

17 1.02 �4.34a

18 �2.43a �3.12

19 1.82 �2.13

20 1.41 �1.32

aDenote the largest value in the group.
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5.2. A simply supported steel beam

The proposed method is further demonstrated with another laboratory work on a simply supported steel
beam as shown in Fig. 19. The parameters of the beam are: length 2.0m, width 25mm and height 19mm, the
elastic modulus and mass density of the material are 2.065� 1011N/m2 and 7.832� 103 kg/m3 respectively. It
is discretized into sixteen Euler beam elements with three dof at each node. A mass of 2.61 kg is hanged by a
fine nylon rope at node 11 of the beam, and the excitation generated by cutting the rope will serve as the input
force. The true value of the force is 25.58N and is an ‘‘impulsive force’’ acting at the initial time t ¼ 0.
Mathematically, it is expressed as

f ðtÞ ¼
Mg; t ¼ 0;

0; t40:

(
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The flexural rigidities of all the elements and the assumed impulsive force are taken as the unknowns in the
inverse analysis. The initial values of the damage parameters for all the finite elements are all zero.

A commercial data logging system INV303 and the associated signal analysis package DASP2003 are used
in the data acquisition. The sampling frequency is 2000Hz. A modal test was conducted on the intact beam as
well as after a damage was introduced into the beam. The damage is introduced by removing equal thickness
of 0.5mm material from both sides of the beam over a length of 9mm in element 13, with one edge of the
damage zone starting at node 13. The first five natural frequencies of the undamaged beam are 10.523, 41.316,
92.615, 165.353, and 254.625Hz, and those for the damaged beam obtained from the modal test are 10.282,
40.508, 91.264, 164.695 and 250.583Hz. The impact test described above was conducted on the beam for
identifying the damage.

Two acceleration responses collected by B&K 4370 accelerometers at nodes 7 and 9 of the beam were used
for damage detection. 2000 data obtained from the two accelerometers from 0.5 to 1.5 s after the application of
excitation were used for the identification. The first 0.5 s data was skipped because of the many high frequency
components in the response caused by the impulsive force generated by the falling weight. The equivalent
reduction in the flexural rigidity of element 13 is found to be 11.3% after reducing the middle dof to the two
end nodes 13 and 14 by Guyan reduction.

The required number of iteration for convergence in the damage identification is 134, and the corresponding
optimal regularization parameter is 11.36. Fig. 20 shows the identified flexural rigidities, and the reduction in
element 13 is 12.9% which is close to the true value. But there is a large false alarm in element 12. This
observation can be explained since element 12 is immediately adjacent to the damage and the vibration energy
in the element would be much more disturbed than those in other elements as discussed by Shi and Law [30].
Fig. 21 shows the time histories of the reconstructed acceleration and the corresponding measured acceleration
smoothed with twenty terms orthogonal polynomial function to remove the measurement noise [31]. The time
series match each other very well. The natural frequencies of the beam calculated with the identified
parameters are 10.268, 40.734, 92.251, 164.701 and 253.219Hz which also match the experimental frequencies
very well indicating the success of the identification.

6. Discussions

There are several important aspects of the proposed approach which cannot be covered in the studies above
are discussed in the followings:
�
 The computation of the dynamic response and its sensitivity is based on the Newmark method. Yet there
are other numerical methods or analytical method [32] by which the sensitivities can be obtained. The
numerical approach has a lower limit of sampling rate below which the accuracy of computation will be
affected [32].

�
 The excitation input using a dynamic hammer is only suitable for laboratory test. For large practical

structure where a large amount of input energy is required to have sufficient excitation of the structure,
natural excitation such as ground-borne excitation [33] or vehicular excitation [34,35] would be more
appropriate.
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Fig. 20. Identified change in flexural rigidity in the experimental beam.
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�
 Initial model error and random measurement noise are two most significant factors influencing the accuracy
of any damage detection algorithm. Their effect can, however, be quantified or limited if only one of them
exist [36]. The error due to the model error, would however, be amplified if both of them are present, and
therefore a two-stage approach for the damage detection is usually adopted with the first stage to identify
the initial model error and the next stage to identify the local changes in the structure. This approach has
been adopted in the present study.

�
 Accurate damage detection not only requires an effective algorithm of computation, but also an

appropriate model description on the target damage such that a relevant parameter can be taken as the
unknown in the identification. The most general form of damage description of a change in the elastic
modulus of material has been adopted in the simulation study to illustrate the effectiveness of the proposed
approach, while more accurate description of the crack damage and the removal of material in the
experiments have been used to illustrate the accuracy of the proposed approach.

�
 The proposed approach takes advantage of the plentiful measured data in the response time history to

formulate an over-determined set of equations for the damage detection. The information obtained from a
sensor location is limited in the modal-based approach. But with the present response-based approach, each
response data at one discretized time instance forms one equation in the optimization. The over-determined
set of equations can be formed easily from even one measured location. Fig. 17 shows that the identified
results obtained from using 5 s of data are much better than those obtained from using 1 s of measured
response. The optimal combination of sensor locations and optimal sensor number, however, needs to be
studied but with some new technique and objective function which differ from what we have with modal
parameter based identification techniques.

7. Conclusions

Sensitivity of general dynamic response of a structure with respect to a perturbation of a system parameter
is studied. Sinusoidal excitation is shown better than the impulsive excitation or random excitation to give
higher sensitivity with the presented simulation examples. A novel damage identification method based on
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dynamic response sensitivity is proposed. The sensitivity matrix of the dynamic response with respect to a
system parameter is calculated, and it is used in a sensitivity-based method to update the parameters using
measurement from two states of the structure. This approach involves measurement error while the different
modeling errors of the system can be identified iteratively taking advantage of the plentiful measured data.
Although only one or two response measurement are involved for the examples studied, more accurate results
can be obtained when longer durations of measurement are included in the identification. This study also
shows that acceleration measurement seems to give better identified results than displacement measurement.
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