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1. Introduction

The single-demand facility location (SDFL) problem is a well-
studied optimization problem. In this problem, we are given a set of
potential facilities F to be opened to serve a total demand of D units.
Each facility i € F has an opening cost f; > 0, a per-unit shipping
cost ¢; > 0,and a capacity limit u; > 0. The goal is to find a subset S
of facilities F to open and an assignment o : S — %= of facilities
to demand that minimizes the total cost, such that the capacity of
each opened facility is respected and the total demand is assigned.
In particular, if we open a subset S C F and have assignment o, we
need that o (i) < u; foreachi € Sand ), (o (i) = D; the goal is to
minimize ),  (fi+c¢i-o(i)). Wewillusec(S, o) = Y, s(fi+ci-o (i)
to denote the cost of a solution (S, o). The problem can easily seen
to be NP-hard by a reduction from the knapsack problem (see, for
instance, Florian et al. [5]).

The single-demand facility location problem is the single-client
version of the more general capacitated facility location problem.
Although the single-demand facility location problem is NP-hard, it
has a fully polynomial-time approximation scheme (FPTAS) given
by Carr et al. [3]. A polynomial-time approximation scheme (PTAS)
is an algorithm which computes a (1 + €)-approximate solution
within polynomial time for any fixed ¢ > 0. An FPTAS further
requires that the running time is polynomial in both the input
size and 1/e. Carr et al. obtain a 2-approximation algorithm for
the problem by rounding the solution to an exponentially-sized
linear programming relaxation of the problem with flow-cover in-
equalities. They show how to solve the relaxation via the ellipsoid
method. They obtain an FPTAS by using the multiplicative-weight
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algorithm of Garg and Kénemann [6] in combination with a dy-
namic program to find a most violated constraint. Van Hoesel and
Wagelmans [10] give a direct dynamic programming algorithm
to obtain an FPTAS. Carnes and Shmoys [2] give a primal-dual
2-approximation algorithm for the problem; it creates a feasible
solution to the dual of the flow-cover-based linear programming
relaxation given by Carr et al., and uses this dual solution to infer a
good solution to the integer primal problem.

In this work, we give a simple greedy algorithm that yields
a 2-approximation algorithm for the single-demand facility loca-
tion problem; we extend this algorithm to a PTAS. Our greedy
algorithms are straightforward to understand, and follow the
techniques developed by Gens and Levner [7] and later analyzed
by Csirik et al. [4] for the minimum knapsack problem. Csirik
et al. show that the greedy algorithm of Gens and Levner is
a 2-approximation algorithm for min-knapsack, and then refine
the algorithm to obtain a 3/2-approximation algorithm. The min-
knapsack problem admits an FPTAS, via a straightforward reduc-
tion to the standard knapsack problem (see, for instance, Ibarra and
Kim [8] for an FPTAS for knapsack). Carnes and Shmoys [2] develop
a primal-dual 2-approximation algorithm for min-knapsack. Bien-
stock and McClosky [ 1] prove that for any € € (0, 1) one can obtain
a (1 + €)-approximate solution for the min-knapsack problem by
solving a polynomially-sized linear program.

2. Greedy algorithms for the min-knapsack problem
We begin by reviewing the min-knapsack problem, and the

greedy algorithm for it given by Gens and Levner [7]. The min-
knapsack problem is defined as follows. There are items indexed

by 1, ..., nthat can be put into a knapsack. Each item i has volume
¢; > 0 and value aq; > 0, and there is a target value D. The
goal is to choose a subset F C {1, ..., n} of items of minimum
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volume such that the total value of items in F is at least D. The
standard (max) knapsack problem has the same input except it has
avolume limit V rather than a target value D and the goal is to find
a subset F of items of maximum value such that the total volume
is at most V. The standard version is known to be NP-hard due to
Karp [9]. The min-knapsack problem can be shown to be NP-hard
via a straightforward reduction from the standard version.

We now review the Gens and Levner [7] greedy algorithm for
min-knapsack. First, sort items by non-increasing order of ratio
”' and redefine the indices by this ordering so that % G ==

‘1" . Now define sequences of small items and big items as follows.

Let kq be the mdex such that ¥ a; < D < Y ¥1g; and let

= {1,...,ki}. Let ky be the index larger than k; such that
Zlesla, —l—ak2 < Dand Zl 1a+a >Dforanyl: ky <1 < k.
Define By := {ax,+1, ..., Gk,—1}. Let k3 be the index larger than k,

k .

such that } ;¢ a; + Z 2l <D < Y0+ Zfz;al Define
Sy = {ay,, .. ak3} and so on. We can 1nduct1vely define the small
item sets S; and big items sets Bj so that S = {ak,; ), ..., Gk, ,}
and B; = {akzl T+ e akzj_l} for all j such that S; or B; is deﬁned.
Then we have that

Z ai+a >D

| .
'EUJ‘:]SJ

holds for any land r € B,.

Let C be the set of solutions with the form Ul 1S; U {r} for
r € B, The greedy algorithm finds the mlnlmum -cost solution
in C and returns it. Csirik et al. [4] show that this algorithm is a
2-approximation algorithm for the min-knapsack problem.

3. A greedy 2-approximation algorithm for the single-demand
facility location problem

In this section, we develop a greedy 2-approximation algorithm
for the single-demand facility location problem that is inspired by
the min-knapsack algorithm of Gens and Levner [7] and its analysis
by Csirik et al. [4].

3.1. Notation and concepts

We use the 3-tuple (f;, ¢;, u;) to denote a facility i whose opening
cost, per unit connection cost, and available capacity are f;, ¢; and
u; respectively. We assume that f;, ¢; and u; are all nonnegative
real numbers for any facility i. An instance of the single-demand
facility location problem is denoted as SL({(f;, ¢i, U;)}icr, D), where
{(fi, ci, u;)}ier is the set of available facilities and the positive real
number D is the demand; we define this notation since to obtain
our PTAS we will need to create modified instances of the problem.
Define p; = f'“’”‘ . We reindex facilities so that p; < p < ---
= Pn-

Now we define the notion of small facilities and big facilities as
in Csirik et al. [4].

Definition 1. Given the problem SL({(f;, ¢i, u;)}icF,
define the following indices and sets.

D), inductively

e Let S; be the subset {1, . k1} C F, where k; is the index
such that Y1 u; < D and Zl Ui + U 41 = D

e Let By be the subset {k; + 1,...,k; — 1} C F, where k; is
the index larger than k; such that Ziesl u; + u; > D for all
lef{ki+1,...,kp —1}and >, uj +uy, <D.

In general, we have that

ieSy

e Sjisthesubset{ky_», ..., ky_1} C F,where kz, 1 isthe index
larger than ky;_, such that ZIEUI 15, Uit ZQ’ ' u; < Dand

i=ky—2
Zleu’rzllsrul + Uiy _+1 = D;

e Bjisthesubset {ky_1+ 1,..., ky — 1} C F, where ky, is the
index larger than ky;_; such that Z,EUI S Ui+ ug > D for all

se{ky_1+1,...,ky—1}and ZIGUI i, Ui + g, < D.

Let g be the index such that |F| € S, or [F| € Bg. Then we say
{S}{_, and {Bj}_, (where By is allowed to be an empty set) are
the small sets and big sets respectively for the problem instance
SL({(fi, ¢i, ui)}ier, D). We call the facilities contained in big sets and
small sets big facilities and small facilities respectively.

The small facility sets {S;};_, and big facility sets {B;}]_, allow us
to define candidate solutions to the single-demand facility location
problem as follows.

Definition 2. Given problem instance SL({(f;, ¢;, u;)}ier, D) and its
small and big facility sets {S;}{_, and {B;};_,, define a collection ¢;
of pairs (S, o) for S = Uf;]S, U{r}forallqg’ =1,...,qandr € By;
for each such S, define the corresponding o such that o (i) = u; for
each small facility i € S, and o(r) is the remaining demand, which
is assigned to big facility r (thatis, o(r) =D — Ziesf[r}uf)'

To be specifi/c, for (S,0) € Cy, the set S consists of the first
q' small sets ULS; and one big facility r € By for some ¢q'. By
the definition of the small and big facility sets given above, the
assignment o given is always possible.

3.2. The greedy algorithm for single-demand facility location

By choosing the minimum-cost solution over all the candi-
date solutions in C;, we will obtain a 2-approximate solution for
the single-demand facility location problem. For a given instance
SL({(fi, ci, ui)}ier, D), let us denote the algorithm that constructs
the corresponding candidate set C; and chooses the minimum-cost
solution from C; as Algorithm G1(SL({(f;, ¢i, U;)}ier, D)).

Theorem 3. The algorithm G{(SL({(f;, ci, u;
approximate solution to SL({(f;, ci, Ui)}icF,
time O(nlogn), where n = |F|.

Jier, D)) gives a 2-
D). The algorithm runs in

Proof. Let (S*, o*) be an optimal solution to the problem instance
SL({(fi, ci, ui)}icr, D). Notice that there must be at least one big
facility in S* in order for it to be a feasible solution. Let p be the
big facility of least index in S*. Consider the solution (S, o), where
S consists of all small facilities of index less than p, plus the big
facility p, and & is such that 6(i) = u; for all small facilities in S,
and 6(p) = D — Zies_{p}u, is all remaining demand. Clearly this

solution (§ , o) is in the candidate set C; considered by Algorithm
G1. We only need to show that this solution is within a factor of
two in cost of (§*, o*). In particular, we will prove that

(8,6) < c(S*, 0*) +f, <2-c(S*, o),

which will prove the result.

Recall that p; = f‘“’”’ fl + ¢;, and that facilities are indexed
in order of nondecreasmg ,o, 'Since p is the big facility of lowest
index in S*, and (S, o) assigns all demand not assigned to p to small
facilities of index smaller than p, a simple interchange argument

shows that
)<Y pi-o(i). (1)

E pi-o(i
. ies*

Because for any small facility i € S, o(i) = u;, we have that
pi - 6(i) = fi + ¢ - 6(i). Also, for facility p, ¢, - 6(p) < pp - 5(p).
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Thus we have that

c5.6)<fo+ > pi-6li). (2)
ieS
Similarly, since for any facility i € S*, p; - o*(i) < fi + ¢; - o*(i), we
have that
Yo ot(i) <c(s* o). (3)
ieS*
Thus by combining Inequalities (2), (1), and (3), we get that
C(§8 <fp+zpl' <fp+Zpi
ieS ieS*
<c(S*o")+fr<2-c(S*0%), (4)
as desired.

Regarding the time complexity of the algorithm, we need
O(nlogn) time to sort the facilities and then O(n) time to define
the big and small facilities. There are at most O(n) big facilities,
each of which defines a candidate solution in C;. For each candidate
solution, it takes at most O(n) time to compute its cost. Therefore
in total we need O(n?) time to execute the algorithm. However, we
can note that as we compute each candidate solution, we consider
the index of each big facility in turn, and use all lower indexed
small facilities to capacity. Thus we can compute the cost of the
next candidate solution by checking the cost of filling the next
big facility with the remaining demand, and we do not need to
recalculate the cost of the small facilities that have been used thus
far. Therefore, we only need O(1) time to compute the cost of each
candidate solution, for a total running time of O(nlogn). O

4. Generalization to a polynomial-time approximation scheme

In this section we show how to generalize the algorithm above
to a PTAS for the SDFL problem We give a sequence of algorithms
{Gi}ken, such that each Gy is a ¥ k ! _approximation algorithm run-
ning in time O(n* log n); we use induction on k to prove the result.
We formalize this idea in the following theorem.

Algorithm 1: Algorithm G (SL({(f;, ¢i, Ui)}icr, D))
if k = 1 then

return G](SL( (fu Ci, U 1) l€F7 D))
else

C < Gi(SL{(fi, ci, ui)}ier, D));

foreach big facility p in SL({(f;, ¢;, Ui)}icr, D)) do

(S.6) < Gia(SL{(fi. ¢,
facility (0, ¢, up) ;
if p € S then
S < S—{puip);
6(p) = a(p)
else
(S,0) < (5,5);
C<«cU{S, o)}

N

return the solution (S,

Ui)}ier\ipyuipy» D)), where p is the

¢) in C of minimum cost.

Theorem 4. For each positive integer k, Algorithm 1 is a ’““T‘

approximation algorithm Gy, for the SDFL problem. The time complex-
ity for algorithm Gy is O(n*logn), where n is the size of the set of
facilities.

Proof. The theorem is true for k = 1 by Theorem 3. So as-
sume k > 1. By induction we assume that a ;= -approximation

algorithm Gy_; exists. Now we show that there is an algo-
rithm G, with approximation ratio ”71 Given a problem instance
SL({(f;, ci, ui)}ier, D), let (S*, o*) be an optimal solution. Let p be the
big facility with least index in S*, and let OPT = ¢(S*, o*). We now
consider two cases based on the relationship of f, and OPT.

1. If f, < OPT, then Gy(SL({(f;, i, ui)}icr, D)) returns a
approximate solution since by Inequality (4) in the proof of
Theorem 3 we have shown that G; returns a solution of cost
at most

k+1

1
OPT +f, < (1 + E) OPT.

2. If f, > 1OPT, then OPT — f, < *1OPT. Let p denote
the facility p with no opening cost, ie. p = (0, ¢y, Up).
Let OPT' be the cost of an optimal solution to the modi-
fied instance SL({(f;, ¢i, ui)}ie(r\ipyuipy> D); because (S*, o) is
feasible for the modified instance, and costs f, less in the
modified instance (since we changed the cost of facility p
to 0), we have that OPT" < OPT — f,. By induction, Al-
gorithm Gy 1 (SL({(f;, ci, ui)}ie( (PR D)) returns a solution
(S,6) such that ¢(5,6) < £5OPT < A OPT — A f,.
The algorithm converts (§ ,0) into a solutlon (S,0) to the
original instance SL({(f;, ¢, ui)}jer, D) by replacing p with p
and setting o(p) = 6(p) if p € S; this replacement incurs an
additional cost of f,. Therefore

cS,0)<cS,6)+f, < L(OPT fo) +fp

1
= OPT + ——(OPT —
TP

1 k+1
< OPT + X —OPT = TOPT

where the final inequality uses that OPT — f, <
noted at the beginning of this case.

10PT as

Since we must be in one of the two cases when p is the big facility
of least index in $*, and the algorithm finds solutions for both cases
and returns the minimum-cost solution from the two cases, it must
return a solution of cost at most "*T]OPT.

Recall that G; has time complexity O(nlogn). If G,_; has time
complexity O(n*~!logn), then G, has time complexity of n -
O(n*~"log n) which is O(n*logn). O
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