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Abstract. This work presents a relax-and-fix algorithm for solving a
class of single product Maritime Inventory Routing Problem. The prob-
lem consists in routing and scheduling a heterogeneous fleet of vessels to
supply a set of ports, keeping inventory at production and consumption
ports between lower and upper limits. T'wo sets of constraints are pro-
posed both for tightening the problem relaxation and for obtaining better
integer solutions. Four MIP-based local searches to improve the solution
provided by the relax-and-fix approach are presented. Computational ex-
periments were carried out on instances of the MIRPLIB, showing that
our approach is able to solve most instances in a reasonable amount of
time, and to find new best-known solutions for two instances. A new
dataset has been created by removing the clustered characteristics of
ports from the original instances, and the effectiveness of our method
was tested in these more general instances.

Keywords: Maritime Inventory Routing Problem, Relax-and-Fix, MIP-Based
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1 Introduction

Maritime transportation is the major mode of transportation used when consid-
ering large quantities of goods, mainly bulk products. The Maritime Inventory
Routing Problem (MIRP) arises when one has to manage both the scheduling
of vessels and the inventories at ports. It can be considered a variant of the
Inventory Routing Problem, which combines vehicle routing and inventory man-
agement. However, MIRP deals with special features of maritime transportation.

This work considers the single product MIRP model proposed by [12]. Given
a finite planning horizon, a fleet of heterogeneous vessels, and a set of ports, one
must decide for each vessel which ports will be visited, when they will be visited,
and the amount of product that should be loaded or discharged when a vessel
operates at each port. In this problem variant, ports are grouped in geographi-
cal regions, such that each region has only production (loading) or consumption
(discharging) ports. Each port has fixed storage and operating capacities, while
production/consumption rates may vary along the planning horizon. The in-
ventory of ports is supplied by vessels, and by simplified spot markets when
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necessary. Vessels can differ by capacity, speed, and cost per sailed kilometer.
The problem is classified as deep-sea, the case in which vessels spend most of the
time traveling than operating at ports. The objective is to maximize the revenue
of delivered products at consumption ports, subtracting travelling, operating,
and spot market costs, and respecting inventory bounds of vessels and ports.

There are many opportunities for optimization considering maritime trans-
portation. The reviews [6,5] present a good overview of works involving opti-
mization of maritime transportation. In [12] a good review on MIRPs models
and solution methods is presented, besides proposing a core model with addi-

tional features and side constraints. They also proposed a benchmark library for
the problem, called MIRPLIB [1].

The work of [4] was one of the pioneers in combining inventory managing and
routing of vessels. Besides presenting an arc-flow formulation for the problem of
transporting ammonia. For this problem, a path-flow formulation with coupling
constraints embedded in a Branch-and-Price algorithm was proposed.

Next, we present some works that deal with deterministic and single product
MIRPs. [2] proposed a discrete time fixed-charge network flow model (FCNF)
for a short-sea MIRP, with variable consumption and production rates at ports.
New valid inequalities generalized from the lot-sizing literature were proposed.
Also, branching priorities were used for improving the search on the branch-and-
bound algorithm. The FCNF model was capable of providing tight bounds and
obtaining optimal solutions faster than the original formulation. [8] proposed a
branch-and-price guided search for solving an extended MIRP formulation. The
approach has the advantage that its components are not problem-dependent. Six
local search schemes were proposed for improving the solution. Experiments have
shown that the method can produce high-quality solutions quickly, even being
generic. [14] proposed a framework for the inventory routing problem, which can
accommodate practical features. A case study on a MIRP was done consider-
ing draft limits and minimum transport cargo for each vessel. Cuts, branching
strategies, and a large neighborhood search were presented for finding optimal so-
lutions. [9] studied MIRP models with continuous and discrete time formulations,
with one or parallel docks. Experiments thereof demonstrated that continuous-
time formulations can be more efficient than a discrete time model. [3] worked
on a MIRP for transporting feed produced at a factory to salmon farmings in the
Norwegian cost. The proposed mathematical model was reformulated for improv-
ing branch-and-bound efficiency and tightening the bounds by valid inequalities.
Additionally, two matheuristics based on practical aspects of the problem were
proposed for obtaining feasible solutions and for improving the current solution.
[11] proposed a two-stage algorithm based on Benders decomposition for solving
the deep-sea MIRP proposed in [12]. An extended time-space network was used
for accommodating practical assumptions on the problem. Improvements on so-
lutions were obtained by MIP-based local searches, branching strategies, valid
inequalities, and lazy constraints. The proposed approach provided tight lower
bounds and high-quality solutions in a reasonable computational time. [10] pre-
sented different matheuristics and hybrid approaches for solving a long-horizon
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MIRP. Several computational experiments were performed on a set of MIRPLIB
instances, and results provided new best-known values for 26 instances.

We solve a MIRP making use of a Relax-and-Fix (R&F) algorithm. R&F is a
matheuristic that splits the problem into intervals or subproblems, solving them
sequentially. In the first iteration, only integer variables of the first interval keep
the integrality constraints. The remaining variables are relaxed. The model is
then solved by a MIP solver for obtaining a partial solution. After solved, all or
a part of the integer variables are fixed to their current values, and the integrality
constraints are reintroduced to the variables of the next interval, resulting in a
new subproblem to be solved. The algorithm iterates until there is no relaxed
interval left. This technique can decompose the problem in different manners.
When considering a time decomposition, the R&F has similarities with the roll-
ing horizon heuristic. An overview of R&F can be found in [13].

The work of [15] applies an extended R&F algorithm on a MIRP variant,
known as LNG inventory routing problem. The authors consider a structure called
end-block, that initially simplifies or ignores part of the model for reducing the
number of linear variables to be solved repeatedly.

This work presents a R&F algorithm based on the work of [15] for solving
the MIRP variant presented in [12]. A set of constraints is built based on assu-
mptions of [11], while we have proposed another set of constraints based on a
assumption. They are used for tightening relaxation bounds and improving the
efficiency of the algorithm. Also, four MIP-based local searches are proposed
either for improving feasible solutions or removing infeasibilities. Our objective
is to provide a more general method for solving MIRP instances with planning
horizons up to 60 days. Although not outperforming the results of [11], our
method provided new best-known values for two instances. Also, we modified
the original instances in order to show that the solution approach remains effec-
tive when ports are not grouped in regions.

The remainder of this work is organized as follows. Section 2 presents the
MIRP formulation and the additional constraints. In Section 3 we describe the
solution method used in our computational experiments, which are presented in
Section 4. Finally, Section 5 presents conclusions and future works.

2 Problem Formulation

We use the arc-flow MIRP model from [11], which is presented here for the sake
of completeness. Let V be the set of vessels, J the set of ports, and 7 the set
of time periods, where T = |T|. Ports are split in subsets J% for production or
loading ports (A; = 1), and J° for consuming or discharging ports (A; = —1),
where 7 = JY U JC, and J¥ N J® = 0. Ports are grouped in production
regions RY and discharging regions R¢, such that R = RF URC. The discrete
time model is built under a port-time structure, composed of a set of nodes
and a set of directed arcs. Each vessel v € V has its own arc set A", while
the nodes set is shared by all vessels. Regular port-time nodes n = (j,t) € N
represent a possible operation (loading or discharging) by a vessel at port j € J
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at time t € 7. Node set Ny 141 is composed by set N, a source node ng, and a
sink node nr41, which represent the starting and ending positions of each vessel
in the system, respectively. Each arc set A" is composed by five arc types. A
source arc a = (ng, (7,t)) links the source node to the initial vessel position,
arriving at port j at time period t. Traveling arcs a = ((j1,t1), (j2,t2)) represent
a voyage that departs from port j; at time ¢; and arrives at port jo at time to,
such that j; # jo. Waiting arcs a = ((4,%), (j,t + 1)) represent that the vessel
remains at the same port j at times ¢ and ¢ + 1. Sink arcs a = ((j,t), nr4+1) link
a regular node to a sink node, for vessels that exit the system at port j at time t¢.
Arc a = (ng,nr41) links source and sink nodes for unused vessels. We ignore
this arc as the instances proposed in [12] consider that all vessels are used.

Binary variable z¢ is set to 1 if vessel v travels along arc a € A", and binary
variable 2%, is 1 if vessel v operates (discharge or load product) at port j in time
t. Continuous variables sj; and sy represent the inventory of port j and vessel
v at the end of time period ¢, respectively. Variables f7, represent the amount
loaded or discharged at port j in time period ¢ by vessel v. Variable «a; is the
amount of product sold to or bought from a spot market by port j at time period
t. The single product MIRP can be modeled as follows:

max Z ZZRjtfft—Z Z Cozq ZZZ te:)z Zngtagt(l

jeJCteT veV vEV a€AY JET tET vEV JET teT
+1if n = no,
s.t. Z Ty — Z 2o =4 —1lif n=nry1, VneNors1,veEV (2)
a€FSY a€RSY 0 ifneWnN,
Sjt = Sji—1+ A (djt =3 fh- Oéjt) , Vn=(,t) eN (3)
veY
st=st1+ Y. Ajfh, VEETweEV (4)
{n:(j,t)e./\f}
Y 2 <Bj, Yn=(j,t)eN (5)
vey
zj < Z T, Vn=(jt)eN,veV (6)
acRSY
sy >Q%z., YveV,ae Apc, (7)
st <Q°(1—=zy), YveV,ae Aép, (8)
Za3t<aj X vijieJg 9)
teT

0<ap<a®™, VjeJ,teT (10)
Fﬁ“n it < [ S Fji* 20, V= (j,t) e N,veV (11)
SP < sje <SP, V= (G,t) €N (12)
0<s; <Q" VveV,teT (13)
z, €{0,1}, YveV,ac A% 2z}, €{0,1}, Vn=(j,t) e N,veV . (14)

Objective function (1) maximizes the revenue R;; of the unloaded product
at discharging ports, subtracting arc costs C} used by each vessel. The third
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term is an additional value that induces vessels to operate as soon and as few
times as possible. The penalization value P;; for using spot markets is accounted
in the last term of the equation. Constraints (2) refer to the flow balance of
vessels along the nodes, where F'S? and RS} refer to the set of outgoing and
incoming arcs associated with node n € Ny r41 and vessel v € V, respectively.
Constraints (3) define ports inventory balance at the end of each time period,
where dj; represents the production/consumption rate of port j in time period ¢.
Constraints (4) refer to the vessels inventory balance at the end of each time
period. Constraints (5) limit to B; (berth limit) the number of vessels that
can operate simultaneously at a node. Constraints (6) require that a vessel can
only operate at a node if it is actually at that node. Constraints (7) require
that the vessels must travel at the maximum capacity when traveling from a
loading port to a discharging port or to the sink node, where Ap = {a =
((j1,1), (42, 1)) € AV : j1 € JF,jo € T° U {npi1}}. Constraints (8) require
that a vessel must be empty when traveling from a discharging port to a loading
port or to a sink node, where A%p = {a = ((j1,1), (ja, ') € AV : j1 € T, ja €
J¥ U{nry1}}. Constraints (10) limit to o2 the amount of products sold to or
bought from spot markets by a port in each time period, and (9) limit to e
the cumulative amount for using spot markets. Constraints (11) impose that
the amount loaded/discharged by a vessel at a port must lie between F ﬁin and
F3™ in each time period. Constraints (12) assure that ports inventory must lie
between lower S and upper S limits in each time period. Constraints (13)
limit the vessel inventory to its capacity QY. Finally, (14) restricts the variables
z, and z7, to be binaries.

2.1 Additional Constraints

In this section we consider simplifying assumptions that lead to two sets of
constraints for the presented MIRP. They are useful for tightening the lower
bound and for accelerating the relax-and-fix approach. We proposed the first set
based on the following assumption: considering a small vessel, which capacity
Q" is less or equal to F3** for some j € J and ¢t € T, then it can fully load
or discharge in just one time period at port j. Equation (15) imposes that if a
vessel operates at a port in a time period, it must leave the port in the same
time period. This assumption allows a vessel to be available for more voyages,
avoiding that it waits at a port after finishing its operation.

Yo al=z>VieJteTveV: Q" < Fjj™ . (15)
aEFS:’L/

In Eq. (15), F'S?, C FS! is the set of outgoing arcs from node n = (j,t) for
vessel v which arrives at a port of different type, or arrives at the sink node.
One may ask if constraints (15) do not cut a possible optimal solution in
which a small vessel may split its inventory, operating consecutively at two ports
of the same region. However, fractioning a vessel inventory between two or more
ports in a region means that a smaller amount will be discharged or loaded
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at these ports. Therefore, the stocks at ports will reach their lower/upper limits
sooner, requiring that another vessel operates at these ports sooner, too. This
“premature” visit incurs additional costs and may be avoided by forbidding
split inventory of small vessels.

The second set of constraints is based on the “Two-port-with-no-revisit”
assumption of [11]. It assumes that if a vessel arrives at a port in some region,
then: i) it will visit at most one more port before leaving the region; ii) once it
leaves the port, this port will not be revisited by the vessel before leaving the
region. [11] developed an augmented time-space network that easily implements
this assumption. However, implementing the assumption directly on model (1)
requires additional sets of binary variables and side constraints that increase
substantially the size of the model, making it more difficult to solve. We then
propose the constraints below:

ZZ Z :EZSZZ Z xo, YveV,reR . (16)

JEI tET acFS” JjEIT" tET a€RS”

n ninter

intra

In Eq. (16), J" is the set of ports of a region r € R, FS;.a is the set of
intra-regional arcs of vessel v that depart from node n, and RS?;.... is the set of
inter-regional arcs of vessel v that arrives at node n. Constraints (16) ensure that
the number of selected intra-regional arcs will be less or equal to the number of
entering arcs for each region and each vessel. The constraint is partially effective
when considering more than one visit to region r of vessel v. This occurs because
there may exist a visit that uses no intra-regional arcs (a vessel arrives at some
port in the region, operates, and departs to another region), and a second visit
that uses more than one intra-regional arc, violating the assumption but not the
constraints (16). This occurs because the constraints do not consider each visit
of a vessel to a region but the entire time horizon.

3 The Proposed Relax-and-Fix Approach

In the R&F, the planning horizon 7 is divided in p intervals, where 7 =

{1,...,p} is the set of all intervals. Each interval i € Z corresponds to all vari-
ables and constraints that have a time index ¢t € {%(2 —1),..., %2’}, such that
T mod p = 0.

Figure 1 illustrates the first, second, and last iterations of the R&F, consider-
ing a network structure for a single vessel, divided in p = 4 intervals. At the first
iteration (it = 1, Fig. 1-(a)), binary variables x; and zj, of the interval i = it
are restricted to be integer. This interval belongs to the “integer block”. The re-
maining intervals have their integer variables relaxed, belonging to the “relaxed
block”. The last two intervals (e = 2) are omitted from the problem. These in-
tervals belong to the called “end-block” [15], subject to e < p—2. A MIP solver
is then used for solving the current problem. At iteration it = 2 (Fig. 1-(b)),
binary variables of interval ¢ = it — 1 are fixed with the values obtained in the
previous iteration, now belonging to the “fixed block”. Original continuous vari-
ables of model (1)-(14) are kept unfixed in all iterations. Integrality constraints



276 M. Friske and L. Buriol

are reintroduced into the variables of the interval ¢ = it. Also, one interval from
the end-block turns to belong to the relaxed block. Then, the problem is solved
again by the MIP solver. The algorithm continues iterating until it = p, i.e. all
intervals have been removed from the end-block and integrality constraints are
reintroduced to the variables of all intervals (Fig. 1-(c)). At this point, a solution
for the original problem is then returned.

According to Fig. 1, arc variables = have a special treatment in the R&F
when they cross two different blocks. For example, let a = ((j1,t1), (j2,t2)) be
a travel arc crossing two different blocks. We consider that the block in which
time t9 belongs has dominance over the block in which #; belongs. This rule does
not apply to the source arcs (that are originally fixed) and sink arcs. Sink arcs
are never fixed in the R&F. This occurs because if a sink arc variable is set to 1
and fixed for some vessel, it will not be available in the remaining time horizon,
which can lead to an infeasible solution. On the other hand, if sink arcs are fixed
to 0, this implies that the vessel remains available in the system when maybe it
is no longer necessary, impacting on the objective function value.

In the relax-and-fix strategy, solving each interval up to optimality does not
necessarily lead to an optimal solution for the original problem. In this case,
we use MIP relative GAP and time limit as stopping criteria in each iteration,
as suggested in [15]. Initially, the MIP relative GAP is set to a positive value,
which is linearly decreased along the iterations such that in the last iteration
the MIP relative GAP is set to 0.0%.

During the R&F iterations, it is possible that the problem becomes infeasible
when an interval is fixed and integrality constraints are reintroduced into the
next interval. A common approach for avoiding infeasibility is to use an overlap
which does not fix part of the integer interval at each iteration [13]. In our
case the overlap just reduces the size of the fixed block, leading to more integer
variables to be solved along the iterations.

Even using overlap, port-time inventory bounds can be violated. It occurs
when no vessel can reach a port at specific times due to the previously fixed
routing decisions and the spot market variables are not sufficient to avoid lack
or surplus of inventory. To handle this issue, we introduce auxiliary variables
Bjt > 0,5 € J,t € T. These variables work as an unlimited spot market and are
highly penalized in the objective function. Eq. (3) is reformulated:

St = Sj1-1 T A (djt - Z fit — aje — 5jt> , Vn=(j,t) e N . (17)

veV

Note that the use of auxiliary variables avoids the solver to stop prematurely,
but if a variable §j;,j € J,t € T is positive at the end of R&F, the solution for
the original problem remains infeasible.

3.1 Improvement Phase

MIP-based local searches are applied on the solution returned by the R&F algo-
rithm for improving the solution quality, removing possible infeasibilities. MIP-
based local search is an effective method which has been used in several works,
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o)

integer block relaxed block end—block
(a) - First iteration: No fixed block.

fixed block integer block relaxed block end—block

(b) - Second iteration: One fixed interval, decreasing end-block.

fixed block integer block

(C) - Last iteration: No relaxed nor end-block.

@ Source node O Regular node @ Sink node

— Fixed arc - - = Integer arc  -.-.» Relaxed arc .....» End-block arc

Fig. 1. First, second, and last iteration of relax-and-fix for a network of a single vessel
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including MIRPs [14,7,8,11,3]. We describe four MIP-based local search pro-
cedures. They fix all integer variables from the solution obtained by R&F and
iteratively allow a set of these variables to be optimized. Continuous variables
are always free to be optimized in all approaches.

1. Improving Time Intervals. This procedure consists of dividing the time
horizon into m intervals, such that £ = {1, ..., m} is the number of iterations,
one for each interval. At each iteration, the integer variables of interval k
are unfixed, following the same rules adopted for the R&F. After being
optimized, theses variables are fixed to the newly obtained values. This pro-
cedure repeats iteratively until no improvement is achieved by optimizing at
least one interval in the m iterations.

2. Improving Vessels Pairs. Following the idea of [7] which explores the
neighborhood between two vessels, this procedure consists in iteratively se-
lecting a pair of vessels to be optimized. Let v; and ve be the vessels se-
lected to be optimized in an iteration. Then, variables xj and z7;, such that
ac€ AV, j e J,t € T,v eV :v={vy,ve} are unfixed. Vessels are selected
at random with no repetitions. The algorithm runs until no improvement
is achieved for ('g') iterations. As the number of pairs grows considerable
in large instances, after all pairs were tested once, the stopping criteria is
changed to |V| iterations without improvement.

3. Improving Vessels and Time Intervals. This improvement approach can
be viewed as a combination of the two previous methods. The time horizon is
divided into m intervals, allowing one interval to be optimized at a time. Also,
all integer variables corresponding to a vessel are allowed to be optimized per
iteration. After optimizing a solution, all integer variables of this vessel are
fixed to the new values, except those belonging to the interval which is being
optimized. Then, the next vessel and the same time interval is optimized.
The algorithm iterates between all time intervals and all vessels, m|)V| steps
in each iteration. The search stops when no improvement is achieved in one
complete iteration.

4. Improving Port Types. This procedure is suggested by [11] as an ex-
tension of the “Fix Supply” and “Fix Demand” proposed in [8]. First, all
integer variables associated with the loading ports are fixed, while integer
variables associated with discharging ports are optimized. Then, variables of
discharging ports are fixed to the new values, and the variables of loading
ports are optimized. Variables that correspond to arcs that connect ports of
different types are kept unfixed in the whole procedure for allowing a vessel
to depart from a region earlier if possible. According to [11], optimizing first
discharging ports is justified due to the fact that the instances usually have
more discharging ports than loading ports. This procedure repeats until no
improvement is achieved in solving the two ports type consecutively.

Besides the stopping criteria of each improvement approach, each itera-
tion/step has a time limit and MIP relative GAP as stopping criteria.
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4 Computational Results

This section presents computational results obtained by solving the MIRP model
with the algorithms described in Sect. 3 As in [11], we solved the model as a
minimization problem, turning the objective function (1) negative. The algo-
rithms were implemented using CPLEX 12.5 C++ API and compiled with the
optimization parameter —0O3. Experiments were carried out on a AMD-FX-8150
computer running at 3.6 GHz on a single core, with 32 GB RAM.

4.1 Benchmark Instances

Computational results were performed on “Group 1”7 instances available in the
MIRPLIB [1]. The instances name present their characteristics. For example, in-
stance “LR2_11_DR2 22 VC3_V6a” means that there exists 2 loading regions (LR),
and in each region there is one loading port, two discharging regions (DR), each
of them with 2 ports, three vessel classes (VC), and a total of six available ves-
sels (V), at least one for each vessel class. The letter at the end of the name is
used for differentiating instances with the same size. Each instance was tested
with time horizons of 45 and 60 days, with time periods of one day.

Modified Instances For removing the clustered characteristic of ports, we
modified the MIRPLIB instances concerning port coordinates and if necessary,
production/consumption rates. Usually, ports are grouped in regions, especially
in deep-sea configuration. However, it seems natural that there may exist cases
where each region has just one port, or ports in the same region are not necessar-
ily of the same type (loading or discharging). Let ; and y; be the coordinates of
each port in the original instance. Also, let T = max;jcs{z;}, ¥ = max;cs7{y;},
¢ = minjes{x;}, and y = minjcs7{y;} be the extreme coordinates of the in-
stance. Then, for each port j € J we define the new coordinates at random
as follows: z; = rand(z,7) and y; = rand(y,y). The seed value used for each
instance was Z. The distances between ports and cost of arcs are recalculated
according to [12]. Instance “LR2_22 DR2 22 VC3_V10a” turns infeasible due to the
new ports positions. For this case, the values of d;¢, 5 € J,t € T were reduced
by 10%. The modified instances are available in the author’s web page!.

4.2 Parameters and Methodology

From initial experiments with parameters that seemed to be promising, we built
a methodology for the computational experiments. First, the instances were di-
vided into two sets according to the number of loading regions. Set-1 corresponds
to the instances with one loading region (LR1), while set-2 corresponds to the
instances with two loading regions (LR2). The difficulty of solving the instances
can be evaluated by other characteristics (number of variables/constraints, av-

max

erage port capacity-to-rate ratio % [12], among others), but we prefer a first
J

! http://inf.ufrgs.br/~mwfriske
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simple classification to consider different parameters for each set. Also, we do not
distinguish the difficulty considering the time horizon of the same instance, i.e.
the parameter for an instance with T' = 45 will be the same for the correspon-
dent instance with 7" = 60. The exception occurs with the number of intervals p
that the time horizon is divided in the R&F. Parameters and possible values
tested for each set are described in Table 1.

Table 1. Parameter values used in the computational experiments

Value
Name Acronym set-1 set-2
Relax-and-Fix Number of intervals p {{651,190}} gzzg ; z gg
Overlap (%) 0 {15,30,50}
Time limit for solving each interval (s) thr {50,100,200} {100,200,400}
25 50 Not using B¢
o N 35 75
Local search Time limit for iteration (s) te 70 150 Using B¢
140 300
Time limit for the entire local search (s) &2 7200 10800

According to Table 1, each instance set can have more than one value for
each parameter. We first test the smallest value for each parameter, and when
necessary they are increased. For example, consider an instance from set-1 with
T = 45, the first test uses p = 5, 0 = 15, ¢} = 50. If the solution turns infeasible
during a R&F iteration, the overlap is increased from 15 to 30 and the test is
restarted. On the other hand, if R&F cannot find an integer solution in some
iteration due to the time limit per iteration ¢, it is increased from 50 to 100.
Even with the maximum values of o and #%, if no integer solution was found, or
solutions remained infeasible, we change the value of p from 5 to 9, and reset
the other parameters to the minimum values, increasing them if necessary. If no
solution has been found by varying the previous parameters, we added to the
model the auxiliary variables (3, again resetting p, o and % to its minimum
values. When using auxiliary variables, ti¢ is also increased. If a solution remains
infeasible during R&F or at the end of the local search, o, tit and i are increased
together. At this point, we stopped the tests, even if no feasible solution was
found.

The number of intervals in the end-block at starting the R&F algorithm is
always set to p — 2 in order to solve a minimum number of continuous variables
per iteration, saving computational time. The initial optimality GAP is set to
50%. For the local search procedures which divide the planning horizon in m
intervals (see items 1 and 3 of Sect. 3.1), we set m = 3. For all local search
procedures, the optimality GAP is set to 0.1%.

4.3 Lower Bounds

For evaluating the effectiveness of the proposed additional constraints, the lower
bounds were computed solving the relaxation of model (1) with and without the
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additional constraints. We consider the values that were obtained after the solver
performed the cuts in the first node of the branch-and-cut tree. Considering the
MIRPLIB instances, lower bounds improved on average 46.5% and 6.4% for
instances of sets 1 and 2, respectively. This improvement is solely due to the
first set of constraints. A reason for improving the bounds is that forcing some
vessels to depart from the port to another type of port after the operations avoids the
use of waiting arcs, which have no cost. The major effectiveness of the constraints
on instances of set-1 may occur because the vessels will be forced to depart in
direction to just one region. Then, if a vessel uses fractions of arcs when traveling
to another region, as these arcs have similar costs, the relaxation value can be
better. On the other hand, since in set-2 one must decide between ports grouped
in at least two separated regions, consequently, a fractional solution may use
arcs with a large cost difference. When considering the modified instances, the
constraints improved the lower bounds in 15.3% for set-1 and 11.3% for set-2.
The minor improvement on lower bounds considering instances of set-1 occurs
because the ports of the same type are not grouped into regions.

4.4 Relax-and-Fix and Improvement Phase Results

This section presents the results obtained using the relax-and-fix algorithm and
the MIP-based local searches. Two combinations of local searches were tested.
Combination A uses procedures 1, 2 and 4 from Section 3.1, respectively, while
combination B uses procedures 3 and 4, respectively. We present only the results
considering the combination B, as it performed better in most of the instances
than the combination A. The time limit ¢;3** of the improvement phase is equally
divided between the local searches used in each test. If some local search finishes
before reaching the time limit, the remaining time is available for the next local
search(es).

Table 2 presents the results of the MIRPLIB and modified instances. Col-
umn “Parameters” presents the parameter values, columns “R&F” present the
results considering only the R&F algorithm, while columns “LS” present the
results concerning the performed local search in the R&F solution. Columns
“BKV” present the best-known values of MIRPLIB instances obtained by [11].
Column “Obj” corresponds to the objective value, and column “Time” corre-
sponds to the total processing time in seconds. The processing time of [11] was
normalized using the PassMark Software 2. Column “GAPPRY” presents the rel-
ative deviation (%) x 100, where Obj corresponds to the objective value
of our algorithm, while BK'V corresponds to the objective value of [11]. Column
“GAPLB” corresponds to the relative deviation Ob_jgéB from the lower bound
LB. The average values do not include instances where the relative deviation is
labeled as “-”, meaning that no feasible solution was found.

MIRPLIB Instances Results. According to Table 2, the average time for
obtaining the corresponding solutions is shorter than the time reported by [11].

? http://www.cpubenchmark.net /
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The relative gap to the BKV was on average 2.2% for set-1 and 9.2% for set-2
when T = 45, and considering instances in which a feasible solution was found.
Considering a time horizon of 60 days, the average gap for set-1 was 5.8%, while no
feasible solutions were found for set-2. Our algorithm was able to find the same
value of BKV for three instances (marked in bold). The local searches improved
the objective function on average 11.4% considering only the results that did not
use (3;; variables in the solutions obtained by the R&F. Moreover, they were
able to remove the infeasibilities in five solutions found by the R&F. On the
other hand, on average 85.4% of the total time was spent in the improvement
phase. The average gap in relation to the lower bound was 37.2% for set-1 and
55.1% for set-2 (only considering feasible results).

Preliminary tests obtained new best-known values for two instances with
T = 45, presented in Table 3. Column “CPU” presents the computer where
the experiments were carried out, where “AMD” corresponds to the previously
described computer, while “Intel” corresponds to an Intel Core i5-2300 running
at 2.8 GHz, with 16 GB. Both experiments used the combination B of local
search procedures. Also, they did not use auxiliary variables 3;;.

Table 3. New best-known-values found in preliminary experiments.

Parameters R&F + LS BKV
CPU p o t¢ tjs|Time (s) Obj GAP®*V|Time(s) Ob)]
LR1.1.DR1.4.VC3_V1la|Core i5 5 20 50 50 1,578 -11,243  -0.03%| 12,009 -11,239
LR1_.1.DR1.4.VC3_V12b|AMD 5 15 50 20 1,942 -9,085 -0.17%| 1,742 -9,069

Instance

Modified Instances Results. Considering the modified instances, the relative
gap GAPLE was on average 10.1% for set-1 and 32.5% for set-2, being smaller
than the gap in the tests with MIRPLIB instances. This does not necessarily
mean that our algorithm is better considering these instances, but the linear
relaxations can be better in randomly distributed ports. Also, our algorithm was
able to find more feasible solutions for the modified instances than the MIRPLIB
instances. But, there are still instances that no feasible solution was found. The
average improvement of the objective function with the improvement phase was
9.7%, while the time spent in this phase was on average 87.6%.

5 Conclusion and Future Works

This work presented an extension of a relax-and-fix algorithm for solving a class
of Maritime Inventory Routing Problem. Two sets of additional constraints were
proposed, either for improving the bounds and for obtaining solutions faster.
MIP-based local search procedures were used for improving the solutions and
removing infeasibilities. Computational experiments were performed on MIR-
PLIB and modified instances. Although it did not obtain feasible solutions for
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all instances, our algorithm found good solutions in reasonable time, including
two best-known values for MIRPLIB instances. As future work, we intend to
model MIRP as a fixed charge network flow as in [2], using valid inequalities for
improving lower bounds, and using the relax-and-fix as the solution method.
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