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A new reliability model in replication-based Big Data
storage systems

Jun Wang1 2,  Huafeng Wu2 *    , Ruijun Wang1

Abstract

Reliability is a critical metric in the design and development of replication-

based big data storage systems such as Hadoop File System (HDFS). In the

system with thousands of machines and storage devices, even in-frequent failures

become likely. In Google File System, the annual disk failure rate is 2.88%,which

means you were expected to see 8,760 disk failures in a year. Unfortunately,

given an increasing number of node failures, how often a cluster starts losing data

when being scaled out is not well investigated. Moreover, there is no systemic

method that can be used to quantify the reliability for multi-way replication

based data placement methods, which has been widely used in enterprise large-

scale storage systems to improve the I/O parallelism.

In this paper, we develop a new reliability model by incorporating the prob-

ability of replica loss to investigate the system reliability of multi-way declus-

tering data layouts and analyze their potential parallel recovery possibilities.

Our comprehensive simulation results on Matlab and SHARPE show that the

shifted declustering data layout outperforms the random declustering layout in

a multi-way replication scale-out architecture, in terms of data loss probability

and system reliability by up to 63% and 85% respectively. Our study on both

5-year and 10-year system reliability equipped with various recovery bandwidth

settings shows that, the shifted declustering layout surpasses the two baseline

approaches in both cases by consuming up to 79 % and 87% less recovery band-
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width for copyset, as well as 4.8% and 10.2% less recovery bandwidth for random

layout.

Keywords: Reliability, Random declustering, copyset, Multi-way replication,

Continuous Time Markov Chains (CTMC)

1. Introduction

Today, an increasing number of big data storage systems are turning to use

multi-way replication based storage architecture for the sake of high availability

and reliability [18, 16, 3, 10].

Reliability is increasingly important in big data storage systems built from5

thousands of individual components. As the storage system scale up, it increases

both capacity and bandwidth, but it also makes disk failures more common [35].

In petabyte-scale file systems, disk failures will happen in a daily bases. In the

system with thousands of machines and storage devices, even in-frequent failures

become likely. Therefore, analyzing the system reliability through an analytic10

method is useful since they can provide a reference for developers to choose the

best layout catering their requirements.

With regards to the modeling of system reliability, it should considers all the

situations that will make the system unreliable. Intuitively, when people think

about system reliability, they will tend to consider the data loss probability15

and the system recovery bandwidth [5, 6, 37]. However, in a replication-based

storage systems, the loss of replicas will also have an influence on the system

reliability which should not be neglected. This motivates us to create an effective

and comprehensive analytic model to obtain an accurate reliability results.

Many replication schemes are proposed to improve the reliability without20

taking the impacts on performance into account. For example, some schemes

were designed to improve the reliability by concentrating the replicas in a small

subset. These plans may give rise to performance degradation because the re-

dundancy is not only used to improve the reliability but also used to serve the

normal read to enhance the throughput. Increasing the scatter width can alle-25
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viate this problem by spreading the replicas evenly in a larger subset. Thus, it

is important to improve reliability while minimizing the impacts on the perfor-

mance.

It may be noted that it is not feasible to build a real testbed to evaluate

the reliability of a large-scale redundancy storage system with different layout30

schemes. Once the block distribution scheme is selected, the layout can no

longer be changed after the production storage system is up to work. Moreover,

there is no systemic method which can be used to quantify the reliability for

multi-way replication based data placement methods. This is especially true

when the number of copies exceeding two. This is because the replicas of data35

on one failed disk are distributed among multiple disks in the declustered storage

system, if either one of the disks fails before the failed disk completely recovered,

the data block will lost permanently. As a result, the data loss probability has

increased. This motivates us to exploit the impact of data layouts on reliability

in multi-way replication storage systems.40

In this paper, we propose a comprehensive reliability model to investigate

the system reliability of multi-way declustering data layouts and analyzing their

potential parallel recovery possibilities.

This paper makes the following contributions:

1. Propose a new reliability model to investigate the system reliability of45

multi-way declustering data layouts.

2. Utilize the reliability model for analyzing the data loss probability and

system repair rate with different data layout schemes;

3. Quantify the most important parameter used in the model, P (l), which is

the probability that the disk does not lose data with l failed disks in the50

system with either mathematical proof for copyset replication layout [1] or

reasonable sampling techniques for shifted declustering [36] and random

declustering3;

3Random declustering layout distributes data blocks according to given randomization al-

gorithms, which map the key (or the index) of a data block to a position in the storage system.
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4. Analyze the possible optimal parallel recovery schemes for copyset repli-

cation, shifted declustering and random declustering layouts;55

5. Make specific comparison between these three layouts, which are the most

widely used in current enterprise large-scale multi-way replication storage

systems;

6. Simulate the reliability model, compare and explain the system reliability

with considering various recovery bandwidths.60

In the remainder of the paper, we use n for the number of disks in a sys-

tem, and k for the number of ways of replication. This paper is organized as

follows: Section 2 introduces prior research related to the reliability study of

large-scale multi-way replication storage systems. Section 3 gives the continuous

time Markov chains (CTMC) model for system reliability, and quantifies the pa-65

rameters used in the model. In Section 4, we present, quantify and compare the

key parameters for the three different data layouts. In Section 5, we simulate

the reliability using the Matlab software [25] and the SHARPE package [27] and

explain the results. The conclusion is discussed in Section 6.

2. Related Works70

2.1. Copyset replication

Copysets [1] replication technique is proposed to reduce the data loss fre-

quency by introducing a near optimal trading off between number of nodes on

which the data is scattered and the possibility of data loss. The problem is de-

fined by several parameters R,N,S, which stand for number of replicas, number75

of nodes and the scatter width respectively. There are two phases of the copyset

application technique, which are permutation and replication. The first phase

refers to an offline activity that creates a number of permutations by randomly

permuting the nodes into the system. The second phase executes when a chunk

needs to be replicated. The number of permutation depends on scatter width S,80

which is equal to S/(R− 1). The primary replica can be placed on any node of

the system, while others are placed on the nodes of a randomly chosen copyset
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that contains the first node. This design provides an optimal tradeoff between

the scatter width and the number of copysets. Comparing with random replica-

tion method, copysets is able to reduce the probability of data loss form 99.99%85

to 0.15% under power outage in a 5000-node RAMCloud cluster.

2.2. Random and shifted declustering approach

Recently, a general multi-way replication-based declustering scheme has been

widely used in enterprise large-scale storage systems to improve the I/O paral-

lelism. Specifically, a random replication method [3] is widely used in large-scale90

storage systems due to its simple replication technique and strong protection

against uncorrelated failures. Unfortunately, its high data loss rate and poorly

handling of common correlated failures make the random replication method

lose its generality in large-scale storage systems. There is also another copy-

set replication method [1] that has been proposed to obtain lower data loss95

frequency. Although the copyset replication technique is able to greatly reduce

the probability of data loss, however it trades-off the data loss frequency with the

amount of lost data in each incident. Thus reliability issue remains a main con-

cern. To improve the system reliability, a placement-ideal data layout–Shifted

declustering [36] has been created to obtain optimal parallelism in wide variety100

of configurations and load balancing in both fault-free and degraded modes.

2.3. Muti-way Replication

RAID is first introduced in the mid 80’s for improving both the performance

and reliability of storage systems by providing redundancy through replication

or parity schemes. RAID-1 applies mirroring, the simplest policy for replication105

based redundancy. Declustered layout schemes for replication based disk arrays

include chained declustering [23], group-rotational declustering [14], and inter-

leaved declustering [15]. Among them, chained declustering can be generalized

to multi-way replication, but to the best of our knowledge, no such implemen-

tation exists. Group-rotational declustering is used in media streaming servers110

configured with 3-way replication to improve the quality of Video On Demand
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services [13]. Interleaved declustering is difficult to leverage up to multi-way

replication. shifted declustering is a scalable solution for multi-way replication

storage over any number of disks achieving optimal parallel performance [36].

Due to the availability benefits and the ease of maintenance, the switch from115

parity to multi-way replication is being further encouraged by the wide adoption

by such mission critical systems as Google’s File System (GFS) [18], Amazon’s

Dynamo [16] used to power Amazon.com and Amazon’s S3 service, Microsoft’s

FARSITE [10], projects using Apache’s Hadoop File System (HDFS) [3], video

on demand services [13], and Geographic Information Systems (GIS) [30].120

There are also theoretical methods for replica distribution in a large data

cluster. RUSH [22] was introduced for the replica placement issues in large

distributed storage systems. RUSH is a family of algorithms that has excellent

randomization performance and low conflict probabilities, so it can be used in

distributed storage systems which allowed each node to distribute data objects.125

Tosun compared a series replicated declustering schemes for spatial data sys-

tems such as GIS, where majority queries obey some explicit patterns [30]. For

example, range queries cover a geometric shape of a spatial data set. However,

decentralized systems have not been used in reality. Current enterprise systems

such as the Google File System [18], are still centrally controlled due to the ease130

of maintenance.

2.4. Existing Reliability Models

Xin et al. [34, 35] analyzed the reliability in terms of MTTDL (mean time-

to-data-loss) of large-scale distributed storage systems, configured with two-

way and three-way replication. They apply Markov chains, where the state135

represents the failed number of data objects in a single redundancy group4.

This model is based on the assumption that the data objects are independent,

4For replication based redundancy, a redundancy group includes all copies of a data unit.

For parity based redundancy, a redundancy group includes all data stripe units as well as

parity units of a data stripe.
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as well as redundancy groups. With this assumption, it makes sense to only

model one redundancy group is enough, and if at time t, the reliability of one

redundancy group is R(t), then the reliability of the whole system is simply140

1− (1−R(t))r, where r is the number of redundancy groups in the system. In

this model, single data object failure should be allowed. However, they take

disk failure rate as the data object failure rate. With this failure rate, all data

objects on a disk fail when the disk fails. Accordingly the failure of data objects

are no longer independent, and it is contradictory to the assumption. As long145

as the events of disk failure exist, it is not reasonable to view the redundancy

groups as independent. We will also explain that disk failure is the dominant

factor rather than data block failure to evaluate the impacts of data layouts on

system reliability in Section 4. Gafsi et al. applied continuous time Markov

chains (CTMC) to model the reliability of distributed video servers [17]. Their150

analysis is based on parity redundancy and two-way replication redundancy.

They categorized the redundancy schemes into one-to-one, one-to-all and one-

to-some, where one-to-all and one-to-some are declustering layout policies.

Currently, there is no systematic research on the reliability issues for redun-

dancy systems with multi-way replication. Among reliability metrics, the most155

straightforward one to understand is the failure free period, during which the

system provides services without any data loss.

3. Extended Reliability Model

The uncorrelated failures, such as failures of individual servers or disks, hap-

pen thousands of times a year. For example, In Google File System, the annual160

disk failure rate is 2.88%, which means you were expected to see 8,760 disk

failures in a year. Concurrent failures, such as failures of servers in a rack or

larger domain, happens dozens of a year. Large-scale correlated failures, such

as the entire cluster loses power, happens once or twice every year. Our model

is evaluated based on the real-life enterprise observations. We also compare165

the applicability of these data layout schemes. While the random declutter-
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ing and copy set replication can be used both for block-level and object-based

storage system, the shifted declustering cannot be applied to the object-based

storage system. Continuous time Markov chain (CTMC) has been utilized for

the modeling of multi-way replication declucstered storage system [37]. In this170

section, we will further extend the model by abstracting the CTMC model to

an ordinary differentiate equation (ODE) group.

Symbol Description
R: Recovery State
F: Absorbing State
I: The set of states 
γ: Transition rate to R
λ: Disk failure rate
μ: System repair rate
δ: Transition rate to F
K: Number of replicas 

Theorem 1: replica lost
(1~(k-1) replica lost in a k-
way replication layout)
𝑹𝑹𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 = 𝒔𝒔 − 𝑷𝑷𝑹𝑹(𝒔𝒔)

Theorem 2: Data block lost (k 
replicas lost in a k-way 
replication layout)
𝑹𝑹𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 = 𝑹𝑹𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 − 𝑷𝑷𝑭𝑭(𝒔𝒔)

0 1 2 3 I I+1 Imax

F

R

..…. …... ..…. …...

γ1 γ2 γ3 γI
γI+1

γImax

δ1

δ2

δ3 δI

δI+1

δImax

λ0 λ1 λ2 λI

μ0 μ1 μ2 μI

..…. …... ..…. …...

..…. …... ..…. …...

Figure 1: State transition in declustered layouts

In order to precisely analyze the reliablity of the storage system, we made

the following assumptions:

• The state space I is the set of states with a certain number of failed disks.175

• A disk failure means that the data of the failed disk is unreachable and un-

recoverable in place permanently. Other types of failures such as problems

in cables, network, air conditioning and power are not considered.

• All the disks are homogeneous with the same failure rate.

• Storage systems with different layouts store the same amount of data per180

disk.

• Recovery procedure starts right after disk failure.

• The recovery is at block level, and the switch overhead (seeking and ro-

tating time) between normal service and recovery is not considered.

• The storage network bandwidth is not a bottleneck in parallel recovery.185
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• The workload per disk in the storage system follows an even distribution.

The storage system is not saturated at any time point.

With these assumptions, CTMC is the desired model to describe the devel-

opment of a storage system. Define pi(t) as the probability that the system is

in the state i at time t. The graphical representation of a CTMC was presented190

in Figure 1 and can be abstracted to an ordinary differentiate equation (ODE)

group as shown in equation 1. With regards to the system reliability, there

are two situations we should take into consideration. Take 3-way replication

method as an example. The first situation happens when one or two replica

of the data blocks have been lost due to node failures, disk failures or system195

unrecoverable errors. In this case, the data lost instance has not happened but

the system reliability was degraded because of only one or two copies of the data

block remaining functionally. The second situation happens when the data lost

instance was happened, which means 3 replica of the data blocks have been lost.

In this case, the data blocks will lost permanently, which should be avoided in200

the storage system design. We will analysis and formulate the above two cases

in details in Sections 3.1 and 3.2.

d

dt
P = QP (1)

whereQ is the generator matrix [26], P is defined P = [p0(t), p1(t), . . . , pR(t), pF (t)]′

as the vector of pi(t)’s, and
d

dt
P is defined

d

dt
P = [

d

dt
p0(t),

d

dt
p1(t), . . . ,

d

dt
pR(t),

d

dt
pF (t)]′

as the vector of the first derivative of pi(t)’s for all i.205

The element of Q on the i-th (0 ≤ i ≤ lmax + 1) row and the j-th (0 ≤ j ≤
lmax + 1) column (represented by qij) is the transition rate from the state i to

the state j. The elements of the generator matrix of the CTMC in are:
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qij =





λi, if 0 ≤ i ≤ lmax−1 and j = i+ 1

µi, if 1 ≤ i ≤ lmax and j = i− 1

δi, if 1 ≤ i ≤ lmax and j = F

γi, if 1 ≤ m ≤ k − 1, 0 ≤ i ≤ lmax−1 and j = R

−∑
i 6=j qij , if i = j

(2)

Equation Group (1) can be expanded in terms of Equation Group (3) using

qij .210





dp0(t)

dt
= −λ0p0(t) + µ0p1(t)

dpi(t)

dt
= −(µi−1 + λi + δi)pi(t) + λi−1pi−1(t) + µipi+1(t),

1 ≤ i ≤ lmax

dpR(t)

dt
=

lmax−1∑

i=0

k−1∑

j=1

γipbj (t)

dpF (t)

dt
=

lmax∑

j=1

δjpj(t)

(3)

The functions pi(t)’s (0 ≤ i ≤ F ) solved from the ODEs (3) with the initial

condition: p0(0) = 1, pi(0) = 0 (∀i > 0) is the probability that the system is in

state i at time t. The initial condition means at the initial time, the probability

of the system without disks failure (at state 0) is 100%. pbj
(t) represents the

probability of replica lost pb in state j at time t.215

3.1. Case 1:

In this section, we will analyze and formulate the relationship between sys-

tem reliability and the probability of replica lost. The state R represents the

recovery state, which means 1 to k − 1 replicas have been lost in a k-way repli-

cation approach. The system reliability has been degraded and is defined in220

equation (4):

Rsystem1(t) = 1− pR(t) (4)
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R represents the recovery state, the function pR(t) is defined as the system

unreliability under recovery mode. We will discuss the aggressive parallel re-

covery in Section 4.4. As we discussed in the above paragraph, pR(t) is closely

related with the probability of replica lost pb. Now, we further investigated and225

computed the probability of replica lost defined in equation (5).

pb(m) =





m

C(N, 1) · C(k,m)
,

m: 1 ≤ m ≤ k − 1,
(5)

where m stands for the number of replicas, k is defined as the total number

of replicas for each data block, and N represents the total number of data blocks

per disk. Based on the principle of permutation, the equation (5) can be further

expanded and shown in the following equation (6).230

pb(m) =





m ·m!
N · k · (k − 1) · . . . · (k −m+ 1)

,

m: 1 ≤ m ≤ k − 1,
(6)

Apparently, pb = 0 if m = 0. If the replica lost after one more disk failure,

the system transits from the state l to state R, and the transition rate γl is

defined as:

γl = (n− l) · λ · (1− pb) (7)

Where n represents the total number of disks in the storage system. The tran-

sition rate γl is related to the number of failed disks, the disk failure rate and235

the probability of replica lost. In the next section, we will investigate the other

situation that will affect the system reliability mentioned above.

3.2. Case 2:

Since the state F represents absorbing state, the function pF (t) is usually

defined as the system unreliability [31]. Meanwhile, the reliability of the system240

is defined in equation (8):

Rsystem(t) = Rsystem1(t)− pF (t) (8)
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The mean time to failure (MTTF) of the system described by an absorbing

CTMC is defined in Equation (9) [31]. In this particular model for a storage

system, F is the state of losing data, and the MTTF of the system is actually

the mean time to data loss (MTTDL).245

MTTDL =
∫ ∞

0

Rsystem(t)dt (9)

In our model, λl and δl are functions of P (l), which is defined as the prob-

ability that the system does not lose data after the l-th disk failure.

Apparently, P (l) = 1 if l < k, and P (l) = 0 if l > lmax. With l failed disks, there

are n−l disks which may fail, so the rate of another disk failure is (n−l)λ, where

λ represents the disk failure rate. If there is no data loss upon l disk failures,250

and no data loss after one more disk failure, the system transits from the state

l to l+ 1, and the transition rate is (n− l)λP (l+1). On the other hand, if there

is data loss after one more disk failure, the system transits from the state l to

the state F , and the transition rate is (n− l)λ(1− P (l+1)). Accordingly,

λl = (n− l) · λ · P (l+1) (10)
255

δl = (n− l) · λ · (1− P (l+1)) (11)

The value of P (l) and the repair rate µl when the system has l failed disks

are also different from layout to layout. In the following section, we will inves-

tigate the above two values in our shifted declustering layout as well as random

declustering layout in the later sections.

4. Reliability Analysis260

4.1. Shifted Declustering Layout

Shifted declustering [36] is a layout scheme that distributes the replicas

within one redundancy group with a certain distance. The distance increases in

each iteration by one. Depending on the number of disks n, shifted declustering

has two solutions:265
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1. Basic solution

The basic solution is applied to the situations when n is odd or n = 4

for k = 3, and n is prime for k ≥ 4.

For k-way replication (k ≥ 3), the k replicas within one redundancy

group are distributed to k disks, and from the first disk in these k disks270

onwards, each disk has a fixed distance after the previous one.

For example, assuming that the disks are labeled from 0 to n − 1, if

k = 3, and one redundancy group is distributed to disks d1, d2 and d3,

then d2 = (d1+y) mod n, and d3 = (d2+y) mod n, where y is the distance

between the replicas of this redundancy group. The layout is illustrated275

in Figure 2 and explained in [36].

Figure 2: Shifted declustering layout

Due to the layout feature, data will be lost upon l disk failures if there

exists a set of k failed disks with a fixed distance between neighboring

disks. Otherwise, there is no data loss. The value of P (l) (no data

loss after l disk failures) is the probability that given l failed280
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disks, for any k out of the l disks, there is no fixed distance be-

tween neighboring ones. Therefore, we are looking for the sub-suite

{i0, i1, . . . , il−1} ⊆ [0, . . . , n − 1] such that ∀{j0, j1, . . . , jk−1} ⊆
{i0, i1, . . . , il−1}, where {j0, j1, . . . , jk−1} is a combination of k ele-

ments out of the sub-suite {i0, i1, . . . , il−1}, and d does not exist for all285

m ∈ {0, 1, . . . , k − 1}, j
(m+1) mod k

= (jm + d) mod n.

Denote Ssd(n, k, l) as the number of choices to select l disks from n

disks with k-way replication configuration, obeying the conditions shown

above. Therefore,

P (l) =
Ssd(n, k, l)
C(n, l)

(12)

In particular, if l = k, P (k) = 1 − n(n − 1)/2C(n, k), because if first290

failed disk is chosen, there are (n − 1)/2 types of distances to decide the

other k − 1 failed disks to cause data loss. There are n ways to select the

first disk, so there are in total n(n− 1)/2 ways to select k failed disks to

lose data.

2. Extended solution295

The extended solutions are applicable to the cases when n is even and

n > 4 for k = 3, and n is non-prime for k ≥ 4.

For the extended, solution replaces n in the numerator in Equation 12

with n′, where n′ is the maximum number that is smaller than n and

there exists a basic solution for n′-disk, k-way replication configuration.300

If k = 3, n > 4 and n is even, n′ = n− 1, because n− 1 is odd and there

is basic shifted declustering layout for (k, n− 1) configuration. If k > 3, n

is non-prime, then n′ is the largest prime number smaller than n.

Now the value of P (l) is

P (l) =
Ssd(n′, k, l)
C(n, l)

(13)

Similar to the basic solution, if l = k, P (k) = 1 − n(n′ − 1)/2C(n, k).305

Because if first failed disk is chosen, there are (n′−1)/2 types of distances

to decide the other k − 1 failed disks to cause data loss.
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When l = k, the value of P (k) can be explicitly given:

P (k) = 1− n(n′ − 1)/2C(n, k) (14)

where n′ = n for the basic solution; n−1, for the extended solution if k = 3;

n′ is the maximum prime number less than n for the extended solution if k > 3.310

In shifted declustering layout, the equations for P (l) are difficult to summa-

rize. This is because the combination behavior is evaluated by “fixed distances”,

which varies from 1 to bn′/2c. So it is not easy to distinguish independent sub-

sets for the purpose of generalizing the behavior. For this reason, we have

difficulty in abstracting the expression of P (l) explicitly.315

Figure 3: Copyset Replication layout

4.2. Copyset Replication Layout

Copyset replication is a novel technique that provides a near optimal so-

lution between scatter width and the number of copsets [1]. Figure 3 is an

example of copyset replication technique with a scatter width equals 4 and the

number of replicas for each chunk is 3. In this example, there are 12 chunks320
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in each disk and 3 replicas for each chunck. Take chunk (0,0)in disk 0 as an

example, the other two replicas (0,1) and (0,2) are either in disk 1 or in disk

2. Figure 3 illustrates that the chunks of disk 0 is either replicated on disk 1

and disk 2 or replicated on disk 3 and disk 6. In this case disk {0,1,2} and disk

{0,3,6} are formed as copysets. Based on this regulation, the total combination325

of copysets of these nine disks are {0,1,2}, {0,3,6}, {1,4,7}, {3,4,5}, {6,7,8} and

{2,5,8}. Accordingly, the system will only lose data if and only if it loses a

whole copyset. However, copyset replication method trades off the probability

of data loss with the amount of lost data in each incident. In other word, the

storage system may not lose data frequently as comparing with shifted or ran-330

dom declustering layout but may lose a larger amount of data if node failure

happens.

Therefore, if three nodes fail at the same time, the probability of data loss

in this specific example is:

numberofcopysets

totalnumberofcopysets
=

6
84

= 0.07 (15)

Explicitly, if k-way replication has been used in this copyset technique, each335

copyset group must contain at least k nodes to ensure that all replicas of the

primary chunks will be included. As we mentioned before, the data loss will

only happen when a whole copyset has been lost. Thus, if l disks fail and l is an

integer multiples of k,the probability of no-data loss after the l-th disk failure

is:340

P (l) = 1− 2n
k

C(n, k)
l

k
(16)

Otherwise, the probability of no-data loss after l disk fails will be:

P (l) = 1− 2n
k

C(n, k)
b l
k
c (17)

4.3. Random Declustering Layout

Random declustering layout distributes data blocks according to given ran-

domization algorithms, which map the key (or the index) of a data block to
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Figure 4: Random Declustering layout

a position in the storage system. Assume that each data block has a unique345

key, and the blocks within a redundancy group have different keys. Ideally, a

good randomization algorithm distributes data in a balanced manner. If a disk

fails, all other disks should share the same amount of traffic redirected from the

failed disk. Figure 4 illustrates an example of random declustering layout.

The probability of losing (or not losing) data upon l failed disks depends350

not only on l, the number of disks (n), and the number of replicas in each

redundancy group (k), but also on the number of redundancy groups (r). The

number of redundancy groups is a function of n, k, the used capacity of disks

(S), and the size of a data unit (s). We assume that the used space of each disk

is the same, and the size of a data unit is fixed. The number of redundancy355

groups can be derived as r =
S × n
s× k , where S × n means the total used space

for data storage, and s× k is the space used by one redundancy group.

There are C(n, k) ways to distribute a redundancy group. We assume that

an ideal random declustering algorithm has the ability to distribute redundancy

groups to at most combinations of disks possible. With this assumption, if360
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r < C(n, k), the redundancy groups are distributed to r combinations of k disks.

If r ≥ C(n, k), all C(n, k) combinations are used for distributing redundancy

groups. Upon l disk failure, the probability of losing data is the probability

of that the k failed disks is one combination of the r combinations used for

distributing redundancy groups. When l = k, the probability of not losing data365

is:

P (k) = max(1− r/C(n, k), 0) (18)

For l > k, due to the lack of mathematical regulations to describe the be-

havior of random declustering, we use sampling techniques to obtain the values

of P (l).

4.4. Aggrestive parallel recovery and the repair rate µl370

Recovery is commonly performed in two different ways: off-line and on-

line [20]. In large-scale storage systems, on-line recovery is more acceptable,

because the system will not pause service while the recovery process is under-

going. In this paper, we assume that on-line recovery is used and each disk

will dedicate a certain amount of bandwidth for recovery if the disk is involved375

in a recovery process. This assumption is reasonable, because such bandwidth

allocation schemes are widely used in storage quality of service (QoS), and can

cooperate with other mechanisms like latency control, burst handling, etc. to

guarantee a minimum compromise of storage performance[19]. If recovery is

considered as an event that requires a priority in a storage system, similar poli-380

cies can be used to provide a certain amount of sources for this process.

For simplicity, we assume a fixed bandwidth per disk in recovery (defined as

recovery bandwidth per disk), optimizing the storage QoS is out of our research

emphasis of this work. Since in current disk drive architectures there is only one

read/write channel, at any time a surviving disk is either under normal service385

or under recovery. The concurrency of normal service and recovery at a course

grained time scale can be obtained in a time sharing manner at a fine grained

time scale. For example, we are able to get a 10 KB/sec recovery bandwidth
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usage by controlling a disk to transfer 10 KB recovery data per second, and to

serve normal requests in the remaining time.390

Let µ = br/S, where S is the capacity of a disk used for storage, and br is

the recovery bandwidth per disk, so µ is the rate of sequentially recovering one

failed disk. We assume an aggressive recovery scheme: for a failed disk, its data

replicas can be found from multiple other disks, and as many as possible disks

sharing redundant data with the failed disk will be involved in the recovery395

process. When a disk fails, a new disk is added, but the aggressive recovery

does not recover the failed disk’s data to the new disk sequentially. Instead, the

system will take advantage of spare space on all surviving disks and the new

disk to recover the data as fast as possible. First the data is reconstructed and

written to the available spare space, then the recovered data is moved to the400

new disk in the background to restore the system to the original layout before

failure. As long as the data of the failed disks is restored somewhere in the

system, the failed disks are considered as recovered.

With the above assumption, the recovery rate upon l-disk failures (µl) is

proportional to the number of disks which can provide data for recovery. We405

define the disks providing data for recovery as source disks, and the disks which

the recovered data is written to as target disks. At any moment, a disk can

only be a source disk or a target disk. If the number of source disks surpasses

half of the total number of disks, we consider bn/2c as the number of source

disks, because at most bn/2c source-target disk pairs can be formed. Upon l410

disk failures, we assume l blank disks are added, when l < n/2, the possible

maximum source disks is stillbn/2c; when l ≥ dn/2e, the possible maximum

source disks is n − l, which is the number of all surviving disks. Accordingly,

we can get an upper bound of recovery rate: min(bn/2cµ, (n− l)µ).

However, the upper bound recovery rate may not be achievable in non-ideal415

layouts, because the replicas of data on the failed disk may be limited to a small

number of surviving disks. As a result, the transfer rate can be expressed as

the product of a factor x and the value µ, where x is the smaller one among

bn/2c, n − l and the number of source disks. In addition, with different failed
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disk combinations, the number of source disks differs. With this assumption,420

we can conclude the ranges of µl for each layout:

In shifted declustering and random declustering layouts, all surviving disks

can provide data for recovery, so the recovery rate is always min(bn/2cµ, (n −
l)µ).

For random declustering, we make the assumption that all disks across all425

nodes have an equal probability of being selected to become a replica holder.

This is a slight deviation from the Google File System [18] (and Hadoop’s

HDFS [3]) which incorporates rack position awareness and thus limits the nodes

and drives that could potentially be selected by the random placement algo-

rithm. This assumption simplifies the analysis of the system while still provid-430

ing a model that could be used within the locality group specified in these real

world systems.

For copyset replication,µl ≤ min((k− 1)lµ, bn/2cµ, (n− l)µ) , where n must

be a multiple of k.

The highest recovery rate is achieved if the l failed disks are in as many435

redundancy disk groups as possible. This includes the following situations:

• If l ≤ n/k, the highest recovery rate is achieved if the l failed disks are

in l different redundancy disk groups, because for each failed disk, k − 1

surviving disks within its redundancy disk group are its source disks. In

this case, the recovery rate is (k − 1)lµ. In addition, if (k − 1)lµ >440

b(n − l)/2cµ, the highest recovery rate is b(n − l)/2cµ, since it is the

upper bound as analyzed above.

• If n/k < l ≤ n(k−1)/k, the highest recovery rate is achieved if the l failed

disks are in all n/k redundancy disk groups, so all surviving disks can be

source disks. Therefore, in this case, the recovery rate reaches the upper445

bound, which is min(bn/2cµ, (n− l)µ).

As a result, the highest recovery rate is min((k − 1)lµ,

bn/2cµ, (n− l)µ), so µl ≤ min((k − 1)lµ, bn/2cµ, (n− l)µ).

20



In contrast, the lowest recovery rate is achieved if l failed disks are in as

few redundancy disk groups as possible. This happens when the l failed disks450

are limited within dl/(k − 1)e redundancy disk groups. In each of bl/(k − 1)c
redundancy disk groups, k − 1 disks fail, and the failed disks can be recovered

by only one surviving disk. In the remaining redundancy disk group (if dl/(k−
1)e 6= bl/(k − 1)c), l mod (k − 1) disks fail, and they can be recovered by

k − (l mod (k − 1)) disks.455

4.5. Comparison between Copyset,Shifted and Random Declustering

Some current enterprise-scale storage systems adopt random data layout

schemes to distribute data units among storage nodes [18, 3]. There is also

theoretical research on algorithms for random data distribution in large-scale

storage systems [22]. Random declustering attracts people’s interests, because460

it brings a statistically balanced distribution of data, thus providing optimal

parallelism and load balancing in both normal and degraded mode5.

Compared to random declustering, Shifted declustering layout deterministi-

cally guarantees the optimal parallelism and load balancing for replication based

storage systems. For a large data set, both random and Shifted Declustering465

deliver comparably high performance due to optimal parallelism, but they may

provide different reliability. In Shifted Declustering layout, P (k) (probability of

not losing data when the system has k failed disks) is independent from the

number of redundancy groups. It is given as Equation (14) in Section 4.1. We

also find that P (k) in random declustering layout is closely related to the num-470

ber of redundancy groups (r) in the system, mentioned in Equation (18) in

Section 4.3.

Copyset replication is able to achieve the best probability of no data loss

comparing with random and Shifted Declustering layout due to its carefully

5If there are disk failures in the system, but the data set is still complete, the service work

load which is supposed to be processed by the failed disks is directed to surviving disks. This

system status is called degraded mode.
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replication of the data blocks which largely reduce the number of redundancy475

groups to minimize the probability of data loss.

Figure 5: The comparison of P (k) between copyset,shifted and random declustering

From Equations (14) and (18), we can see that as long as n and k are deter-

mined, P (k) of Shifted Declustering is fixed. While P (k) of random declustering

is negatively linear with r. This indicates that the more the redundancy groups

in random declustered storage systems, the higher the probability of data loss480

upon k disk failures. Additionally, in Section 4.4, we show that these two layouts

have the same potential for parallel recovery, so the reliability can be directly

reflected by the value of P (k).

In Figure 6, we quantitatively compare the change of P (l) with the number

of disks (n) and the number of redundancy groups (r). We assume k = 3, the485

number of disks varies from 100 to 5,000, and the number of redundancy groups

varies from 5,000 to 5 × 109. The left diagram demonstrates the dependence

of P (k) on n and r in random declustering. Each line reflects the value change

of P (k) for a certain r and a varying n. We can see that with a fixed number

of disks, the more redundancy groups the system has, the smaller is P (k), thus490

the easier the system lose data upon k disk failures. We enlarge the portion

near P (k) = 1 to the right diagram, and add the P (k) values of both shifted

declustering and copyset. When the number of disks in the storage system is

larger than 100, we can see that P (k) of shifted declustering and copyset are

constantly approaching 1 with the increase in the number of disks, so the larger495
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the system scale, the lower the probability that the system will lose data upon

k disk failures. However, when the storage system only has 99 disks, the P (k) of

copyset is worse than shifted declustering because it is sensitive to the number

of disks as well as the scatter width.

There is a break-even point of r (denoted by r∗) that random and shifted500

declustering have the same value of P (k). It can be found by making Equa-

tions (14) and (18) equal to each other, and solving the following equation:

1− r∗/C(n, k) = 1− n(n′ − 1)/2C(n, k) (19)

Equation 19 yields r∗ = n(n′ − 1)/2. For a given number of disks (n), if

r > r∗, shifted declustering has higher reliability, and vise versa.

Considering a storage system with 1,000 disks, configured as in the Google505

File System: each data chunk has three copies, and each copy is 64 MB. The

break-even number of the redundancy groups r∗ = 499, 000, this only allow

the system to store at most about 96 TB (96 GB per disk) data when using

the random declustering layout, otherwise the system is less reliable than with

shifted declustering layout. Notice that 96 GB per disk is a small amount of510

capacity in today’s hard drives. For larger storage system with more disks, the

data size per disk will be even smaller for the random declustering layout to

provide the same reliability as achieved with the shifted declustering.

4.6. Performance Analysis and Comparison

For sequence read accesses, we use a metric named maximum parallel read515

counts. For M concurrent reads and N storage nodes, if M is less than N, the

maximum parallel read counts is M, otherwise the maximum parallel read counts

is N. For shifted declustering layout, it is easy to achieve maximum parallel read

counts. For random declustering and copyset replication, the primary data are

distributed randomly, thus, these two schemes could satisfy this metrics some-520

times. However, for small random read accesses, the primary data in shifted

declustering layout is organized in a hash function. The hash function may map
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the popular data to a small subset of overall disks, which may cause an unbal-

anced workload distribution. Thus, for random-dominated request distribution,

shifted declustering will perform worse than the other two schemes.525

For write performance, the write performance of these configurations are

based on the load-balancing capacity. If the workloads are evenly distributed

all the time, the write performance of these configurations will be almost the

same. However, if the workload is unevenly distributed, the number of disks,

which can host the copies of hot-spot node, are different for different data layout530

schemes. The copyset replication has worse write performance than other two

data layout schemes, because of smaller scatter width.

In addition to the performance comparison in normal mode, we should also

discuss the performance comparison in degraded mode. The degraded mode

means the scenario when partial nodes failed or powered down. In degraded535

mode, the shifting declutering will perform better than the random declutering,

because shifting declustering scheme spread the data more evenly. At the same

time, the random declustering performs better than copyset replication. As the

scatter width of copyset replication is much smaller than the other two schemes,

the copyset replication is the worst scheme in the degraded mode.540

In conclusion, for sequence read accesses, shifted declustering outperforms

the other two schemes. However, for random read accesses, shifting declustering

is the worst scheme in the case when the popular blocks are mapped to a small

subset of overall disks. Random replication will achieve the best performances

among these three data layout schemes. The write performance of these config-545

urations are the same under evenly distributed workload mode. Under unevenly

distributed workload, copyset will be the worst case due to the smallest scatter

width. In addition to the performance impact, we compare the applicability of

these data layout schemes. While the random declustering and copyset repli-

cation can be used both for block-level and object-based storage system, the550

shifted declustering cannot be applied to object-based storage system.

In addition to the response time, the recovery time is also an important met-

ric to measure the data layout schemes. Firstly, we make comparison between
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the copyset replication and random declustering layout. The difference between

these two layout schemes are the number of disks to host the R-1 secondary555

replicas. Thus, the parallelism of recovery under two schemes are different. As-

sume the number of nodes is N, the replication factor is R, and the scatter width

is S. For the random scheme, the value S is designated as N −1. Thus the R−1

secondary replicas are randomly distributed in N − 1 nodes. As the copyset

replication is designed to reduce the probability of data loss, the value S is set560

far smaller than N. We take an example to show that the recovery rate under

random replication will be larger than copyset replication. For example, assume

that N=9, R=3 and S=3. For copyset replication, the R-1 secondary replicas are

held in 3 disks. For random replication, the R-1 secondary replicas is distributed

in 8 disks. Secondly, we compare shifted declustering and random declustering.565

The shifted declustering will be better than Random scheme, because the R-1

secondary replicas within shifted declustering are evenly distributed in the N-1

nodes. In conclusion, the recovery time of shifted declustering will be the best

one and Copyset replication is the worst one.

5. Simulation Results570

5.1. Methodology

We use the SHARPE package [27] for the simulation of system reliability.

The simulation time is 10 years, in steps of a month. We simulate a storage

system of 999 disks with both of the HDDs and SSDs, configured as three-way

replication, with shifted ,random and Copyset layouts.575

For the disk failure rate λ, we use 3% ARR (annual replace rate), which

corresponds to λ = 0.25% per month for hard disk drives. This value is from

Schroeder et al.’s observation [28]: in real-world large storage and computing

systems, the ARR of hard drives is between 0.5% and 13.8%, and 3% on average.

It is much higher than the failure rate provided by the most vendors, a MTTF580

(mean time to failure) of a single disk from 1,000,000 to 1,500,000 hours, which

corresponds to an AFR (annual failure rate) between 0.58% and 0.88% [28].
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As it refers to the solid state drive (SSD), we use 1.5% annual disk failure rate,

which corresponds to λ = 0.125% per month. This value is from the observations

of Enterprise storage forum [9].585

The size of a data replica was set to 64MB, which is a typical data block

size for Hadoop File system(HDFS). The capacity of a disk used for the storage

is 1TB, which is a normal size of a hard disk drive used for storage systems. In

our simulation, all the disks are considered to be hard disk drives (HDD). Other

storage devices such as SSD are out of the research scope of our paper.590

The recovery rate upon l failed disks is determined by the product of the

available source disks and the sequential recovery rate offered per disk (µ).

We will simulate the reliability for 10 years with different values of µ. In the

Section 5.3.2, we give a range of the recovery rate upon l failed disks (µl) for

standard mirroring and chained declustering, but we only take their highest595

recovery rate in the simulation.

The values of parameters in the simulation are listed in Table 1.

To evaluate the impacts of these data layout schemes on performance, we

make an experiment in a 3-server cluster with 15 storage nodes. While the

storage nodes can be server or storage-devices, we use one HDD as one storage600

node. These storage servers are connected by a gigabit ethernet switch, and

each storage server has a 4-core CPU, a 32GB RAM memory and 8 storage

device interfaces. The disks we used for evaluation are of the type IBM DNES-

309170W. The number of data surfaces is 5 and the number of cylinders is 11474.

While the rotation speed (in rpms) is 7200, head switch time is 0.062000.605

In order to compare the impacts of different data placement policy on the

performance of storage system, we modified an open-source block-level dis-

tributed storage system called Sheepdog. This distributed storage system is

designed for the KVM/QEMU. Sheepdog exploited a Consistence Hash Table

as the default data placement. While the primary data placement of random610

declustering and copyset replication follow the same policy, the differences are

the secondary and tertiary data placement schemes. For random decluster-

ing, the secondary and tertiary replicas are randomly distributed. We use the

26



Table 1: Parameters in Simulation

Parameter and description Value

n: Number of disks in the system 999

k: Number of ways of replication 3

l: Number of failed disks 3 to 666

P (l): Probability of no data loss upon l-disk failure See Section 3

λ: Disk failure rate (HDD) 0.25% per month

Disk failure rate (SSD) 0.125% per month

λl: Transition rate from l-disk failure to l + 1-disk failure (n− l)λP (l+1)

without data loss

γl: Transition rate from l-disk failure to l + 1-disk failure (n− 1)λ(1− pb)

with replica lost

δl: Transition rate from l-disk failure to l + 1-disk failure (n− l)λ(1− P (l+1))

with data loss

br: Reserved bandwidth for recovery per disk 0 KB to 10 MB

S: Capacity of a disk used for storage(HDD and SSD) 1 TB

µ: Sequential recovering rate br/S

µl: Recovery rate from l + 1-disk failure to l-disk failure See Section 3

s: Size of a data replica 64 MB

r: Number of redundancy groups 5,455,872

N : Number of the total data blocks per disk 16,384

chained declustering to implement the copyset replication, which means the

scatter width is 3. To implement shifted declustering, we modified the data615

placement based on the formulas in the paper[].

The real-life workload traces used in our evaluation are collected from 36

volumes within 13 enterprise servers by researchers in Microsoft Research Cam-

bridge. The data of these traces are one-week real-life formatted IO data in-

cluding timestamp, type, request size and so on. We use a tool called btrepay620

to replay these IO traces. We choose 4 representative traces from these real-life

traces. The characteristics of these traces are as shown in Table 2. As shown in

Table 2, trace usr has the largest IOPS and average request size.
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Table 2: The Features of Traces

Traces Write Ritio IOPS Avg. Req Function

usr 59% 83.87 22.66KB User home directories

web 70% 50.32 14.99KB Web SQL server

mds 88% 18.41 9.19KB Media server

rsrch 91% 21.17 8.93KB Research projects

5.2. Sampling Procedures

The sampling procedures for a storage with 999 disks and three-way repli-625

cations with shifted and random declustering are as follows:

• For shifted declustering, the values are obtained by the following simula-

tion procedure: for any l between 3 and 666,6 randomly generate 10,000

vectors of l numbers between 0 and 998 as failed disks; for each vector,

check whether this particular failed l disks causes data loss according to630

the criteria discussed in Section 4.1. P (l) is estimated by the result of di-

viding the number of vectors that do not cause data loss by 10,000. This

process is repeated 5 times, and the average P (l) is used as the final value.

• For copyset replication, we assume the capacity for storage is 1 TB per

disk, the data replica size is 64 MB, so the 999-disk system can store635

5,455,872 redundancy groups in total. We generate 5,455,872 random

vectors with three numbers between 0 and 998 to represent where the

three replicas in each redundancy group are distributed.

• For random declustering, we assume the capacity for storage is 1 TB per

disk, the data replica size is 64 MB, so the 999-disk system can store640

5,455,872 redundancy groups in total. We generate 5,455,872 random

vectors with three numbers between 0 and 998 to represent where the

three replicas in each redundancy group are distributed. The following

6For 999-disk three-way replication storage, if the number of failed disks is more than 2/3

of the total number of disks, data loss becomes a definite event.
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procedure is similar to that used for shifted declustering, for any l between

3 and 666, randomly generate 10,000 vectors of l numbers between 0 and645

998 as failed disks; for each vector, check whether this particular failed

l disks cause data loss by checking whether it contains three elements of

any vector that is used to store a redundancy group. P (l) is estimated by

the result of dividing the number of combinations that do not cause data

loss by 10,000. Repeat the process 5 times, and compute the average P (l).650

5.3. Probability of No-data-Loss

With the methodology introduced in Section 5.1, we calculate the value of

P (l) (the probability of no data loss in case of l disk failure) in a 999-disk system

(n = 999) with 3-way replication (k = 3), configured with shifted and random

declustering layout schemes by Matlab [25]. The value of P (l) is illustrated in655

Figure 6.

Figure 6: Probability of no data loss in a 999-disk system (P (l))

Theoretically, a 999-disk 3-way replication system can tolerate as many as

666 failed disks, but P (l) drops close to 0 much earlier than l approaching 666,

as shown in Figure 6. For shifted declustering and random declustering layouts,
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P (l) drops to 0 at 28 and 13, respectively. For the same number of failed disks,660

We can see that our shifted declustered layout always has the higher possibility

of not losing data comparing with random declustering.

5.3.1. System Reliability without Recovery

If the system does not apply any recovery mechanism, the system relia-

bility can be obtained by assigning br = 0. The system reliability of shifted665

declustering and random declustering layouts are illustrated in Figure 7. The

physical meaning of system reliability at time t (represented by Rsystem(t)) is

the probability of the system surviving until the time point t. The reliability

without recovery is a direct reflection of P (l). Thus, a higher probability of the

system not losing data results in a higher overall system reliability rating due670

to it being more difficult to enter the failed state. We can see that after the

third month, the reliability is almost 84% and 60% for shifted declustering and

random declustering respectively. This reliability results has the same tendency

of the P (l) of these two layouts. Without considering the recovery, the Copy-

set layout achieve the best reliability result because of its high probability of675

no-data-loss.
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Figure 7: System reliability of a 999-disk system without recovery
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With this specific configuration, shifted declustering has a significant advan-

tage in terms of reliability to random declustering. This result is consistent with

our analysis in Section 5.3.

5.3.2. System Reliability with Recovery680

The previous section discusses the storage system reliability without data

recovery in place. It reflects how reliable the system will be with different data

layouts, when disk failures are not detected, or replicas on failed disks are never

recovered. In this section, we simulate the system reliability of different layouts

with the aggressive recovery schemes introduced in Section 4.4.685

With the aggressive recovery schemes, shifted declustering layout has the

best reliability for a given recovery bandwidth per disk for recovery (br) among

all layouts. The simulation results in Section 5.3.1 show that with recovery,

shifted declustering layout’s system reliability is better than the random declus-

tering and the Copyset. This is reflected in the fact that the shifted declustering690

layout is slower to transmit from non-data-loss states to the data-loss state than

the other two. Additionally, although the Copyset layout has a higher probabil-

ity of no-data-loss, the amount of data lost is huge compared with the other two

layouts. Therefore, when we take data recovery into consideration, the system

reliability will decrease. As a result, even these three layouts have the same695

potential of optimal parallel recovery, the reliability with recovery of shifted

declustering exceeds the other two.

We can see that from Figure 8, shifted declustering with 10 KB/sec recovery

bandwidth per disk (5 MB/sec accumulative recovery bandwidth for 999-disk

system) obtains more than 99% reliability after 5 years, while the Copyset lay-700

out requires more than 100 KB/sec recovery bandwidth per disk to achieve the

same reliability. Similarly, to reach the same reliability, the random declustering

layout has to use 20 KB/sec. It is true that the reliability can be improved by

increasing the recovery bandwidth to obtain a higher recovery rate. Nonethe-

less, as long as the disk transfer bandwidth is fixed, higher recovery bandwidth705

means lower bandwidth for normal services, so higher recovery bandwidth will
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Figure 8: Reliability after 5 years

drag down the normal service performance of the disks involved in recovery.

Obviously, for the same reliability goal, the burden on surviving disks of shifted

declustering is the lightest, because the service load is balanced among all sur-

viving disks, and the bandwidth used by each disk for recovery is low. In com-710

parison, for the Copyset, the service load on the source disks is heavier than the

other surviving disks, because they need to serve requests which are supposed

to be served by the failed disks besides normal service; the recovery bandwidth

per disk is also higher. These two reasons result in a load imbalance more severe

in Copyset. If we want to achieve the same recovery bandwidth of 120 MB/sec,715

which is the highest recovery bandwidth obtained in the Panasas parallel file

system [32] with around 120 disks, corresponding to 999 MB/sec for a 999-disk

system three-way replication, for shifted declustering, about 2 MB/sec recovery

bandwidth per disk is enough. While for Copyset, about 500 MB/sec recovery

bandwidth is needed, which is almost impossible to obtain with current storage720

technology.

Figure 9 shows the system reliability during the first ten years, with the

recovery bandwidth per disk set to 10 KB/sec (br = 10 KB/sec). Currently
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the sustained transfer rate of hard drives can be higher than 100 MB/sec7,

so 10 KB/sec dedicated to recovery has little impact on the regular service725

workloads. We can see that with such a small recovery bandwidth per disk, the

shifted declustering layout obtains a near 99% reliability even after ten years

(Figure 10). With the same recovery bandwidth, the reliability of other layouts

is lower. To reach the same reliability as shifted declustering, other layouts need

more recovery bandwidth per disk.730

5.3.3. System reliability with and without considering probability of replica lost

In order to show the accuracy of our proposed reliability model, we conduct

a comparison between the system reliability with and without considering the

probability of replica lost. We run the simulation to obtain the 5 years system

reliability results for all the three replication methods by setting the system735

recovery bandwidth to 10KB/sec. In the first round of simulation, we do not

considering about the probability of replica lost with setting the initial system

7The Barracuda 7200.11 Serial ATA (released May 2008 by Seagate) is specced to have a

sustained transfer rate of 105 MB/sec [7].
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reliability equals to 1. In the second round of simulation, we have taken proba-

bility of replica lost into account by utilizing our proposed model and obtained

a more precise outcomes.740

The results have been illustrated in Figure 12. Based on the results, we can

see that the probability of replica lost do have an influence on the overall system

reliability. For shifted, random and copyset replication methods, the system

reliability result with considering the probability of replica lost are 96.5%, 91.7%

and 16.8% respectively. However, we obtain 99.4%, 94.2% and 18% for the745

above three replication methods by introducing the probability of replica lost.

The differences among these two set of experimental results are 2.9%, 2.5%

and 1.2% respectively. The reason that the overall system reliability is low for

copyset replication approach is because of the selected low recovery bandwidth

(10KB/sec), which was discussed in Section 5.3.2.750

5.3.4. The comparison between System reliability of HDD and SSD

A typical SSD uses NAND-based flash memory which is a non-volatile type

of memory. With this essential characteristic, you can read and write to an

SSD all day long and the data storage integrity will be maintained for well over
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Figure 11: Mean Time to Data Loss

200 years. An SSD does not have a mechanical arm to read and write data, it755

instead relies on an embedded processor called a controller to perform a bunch of

operations related to reading and writing data. An example of a fast controller

today is the SandForce SATA 3.0 (6GB/s) SSD controller that supports burst

speeds up to 550MB/s read and write speeds. Due to its great performance

compared to traditional hard disk drive, lots of enterprise storage systems are760

seeking to use SSDs as the major storage device if the faster performance is

their major consideration. Conversely, an HDD might be the right choice if you

need a large amount of storage capacity, spend less money and do not care too

much about the boost up speed. Since SSD gain an increasingly popularity in

future’s storage systems, we carried out an comparison of the reliability analysis765

between HDD and SSD to give the system designers an overview about these

two types of storage systems.

From the Figure 13, we can see that the storage systems using SSD have

a better system reliability for all three data replication methods. This is be-

cause SSD has a lower disk failure rate compare to the HDD. The comparison770

of average 5 year’s reliability between HDD and SSD that is shown in Fig-

ure 14 illustrates that the reliability of SSD outperform HDD for all three data

replication methods, Copyset, Shifted and Random by 8.1%,4.13% and 3.7%

respectively.
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5.4. Mean Time to Data Loss775

Mean time to data loss (MTTDL) is the expected duration between the state

of all disks functioning in a storage system (state 0 in Figure 1) and the state of

data loss (state F in Figure 1). Figure 11 demonstrates the simulation results

of mean time to data loss based on the parameters listed in Table 1.

The left bar in each group is the MTTDL without recovery. The Copyset780

lasts the longest, 23.3 months. We can see that without recovery, even the

most “reliable” system is unacceptable, because data in that system will start

to lose approximately two years. The right bar in each group is the MTTDL

with 10 KB/sec recovery bandwidth per disk. With the advantage of paral-

lel recovery, shifted declustering and random layouts have higher accumulative785

recovery bandwidth than the Copyset layout. As a result, the MTTDL is im-

proved by 253 times and 29 times in the shifted declustering and random layout

respectively.

In addition, the difference in reliability of shifted declustering and random

declustering layouts are not very significant. For example, after 5 years, shifted790

declustering layout has a 99% reliability, and random declustering layout has
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Figure 13: The comparison of 5 year’s reliability between HDD and SSD

a 95% reliability; after 10 years, the values becomes 98% and 90%. However,

the difference of system reliability yields significant improvement in terms of

MTTDL in the shifted declustering layout compared to the other two layouts.

In the shifted declustering layout, an almost 8.5 times higher MTTDL than the795

second ranked layout, random declustering layout, is observed in our simulation

environment. Tt is also 254 times higher than the Copyset. These result indi-

cates that the shifted declustering layout achieves the highest reliability given

a fixed resource budget among all layouts in comparison. On the other hand, it

has the maximum flexibility to be tuned to a desired reliability goal.800

5.5. The performance impact

Figure 15 shows the average response time under various traces. First, the

random declustering outperforms other two schemes. Hash functions used in

the shifted declustering may map the popular data to a small subset of overall

disks. This will give rise to a unbalanced workload distribution resulting in805

performance degradation. The copyset replication has a worse performance

than random declustering because only a small set of disks host the replicas

of hot-spot node. Second, the average response time of random and Shifting
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Figure 14: The comparison of average 5 year’s reliability between HDD and SSD

Declustering are almost the same under traces mds and rsrch. This is because

the read/write ratios is so small that the write performance of two schemes are810

almost the same. Third, the copyset replication has the largest average response

time because of the placement of the secondary and tertiary replicas, which are

concentrated in a small subset of all disks. Last, the trace usr has the largest

response time among four different traces. This is because the trace usr has the

highest IOPS and the largest average request size as shown in Table 2.815

Percentile latency is an importance metric of the response of a data center.

In order to get into the insight of comparison, Figure 16 shows the average re-

sponse time and 50th/90th/95th percentile latency of three data layout schemes

under workload trace usr. We can find under the 50th and 90th percentile la-

tency, the response time of different configurations are almost the same. This is820

because they have same performance in normal mode and under load-balanced

scenarios. However, the unbalanced load will increase the gap between these

configurations. Thus, the 95th latency of copyset replication is much larger

than random declustering and shifted declustering.
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6. Conclusions825

In this paper, we have modeled the reliability of multi-way replication storage

systems with different data layout schemes. We make the following conclusions:

• Modeling of the system reliability should not only take data loss probabil-

ity and recovery bandwidth into account, but also need to consider about

the probability of replica lost in order to obtain an accurate result.830

• The reliability of random declustering layout is highly dependent on the

number of redundancy groups in the system. With the increase of redun-

dancy groups and/or the number of disks in the system, the reliability of
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random declustering drops.

• The shifted declustering is less sensitive to the scale of the storage system835

comparing with random declustering. With the same resource provided

for recovery per disk, the shifted declustering layout achieves almost 100%

reliable that last for 10-years long period. In particular, the data integrity

of the shifted declustering layout lasts 85% times longer in our simulation

than random declustering layout.840

• The Copyset replication method obtained the best system reliability due

to its carefully arrangement of the data blocks. However, by considering

of the recovery bandwidth, the system reliability has been greatly affected

especially when the bandwidth is low.

• Our study on both 5-year and 10-year system reliability equipped with845

various recovery bandwidth settings shows that, the shifted declustering

layout surpasses the two baseline approaches in both cases by consuming

up to 83 % and 97% less recovery bandwidth for copyset, as well as 5.2%

and 11% less recovery bandwidth for random layout.

• The experiment results of performance impacts demonstrate that random850

declustering outperforms other two schemes and the Copyset replication is

the worst-case scheme. The Copyset performs worse than other replication

schemes as we expected because only a small set of disks host the replicas

of the hot-spot node. In other words, the placement of the secondary and

tertiary replicas within the Copyset replication are concentrated in a small855

subset of all disks. Hash functions employed in the shifted declustering

may map the hot data to a small subset of overall disks. This data lay-

out schemes may give rise to performance degradation due to the uneven

workload distribution.

As random declustering layout is widely adopted by enterprise large-scale sys-860

tems configured with multi-way replication, shifted declustering layout is a
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promising alternative for its proved optimal performance and high reliability

with low recovery overhead.
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