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In a production environment where random yield plays a fairly significant role, a decision has to be 

made on how to handle products that do not satisfy given quality requirements. We consider a single- 

stage production system with a positive production time and random yield. To ensure that only high 

quality items are sold to the customer, a post-production quality control system has been put in place. 

We compare two different strategies for defective items: disposal or rework. Disposal is possible without 

any time delay whereas the rework process requires a positive rework time. While disposed-of items 

leave the production process, reworked products stay in the process and are assumed to be as good as 

products that are perfect when they are initially produced. The end products are stored in a warehouse to 

satisfy stochastic demand. We show how to determine the optimal base-stock level, which is very difficult 

because of unknown covariances between orders. Subsequently, an optimization model is proposed to 

support the planner’s decision on which strategy to choose when it comes to whether to dispose of 

or rework defective items. By means of a sensitivity analysis we show which parameters directly affect 

this decision and give managerial insights. The analysis indicates that significant cost reductions can be 

obtained by choosing the best strategy for defective products. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Customer service plays an especially important role in highly

competitive markets where dissatisfaction about e.g., product qual-

ity leads to a loss of the customer’s goodwill resulting in the

customer selection of a new vendor. Thus, the plan must be to

sell only high-quality products. A problem arises when the pro-

duction process is not perfect, such that random yield losses oc-

cur. Random production yield is a common problem in the high-

tech industry with complex production processes. For example, in

the production of microchips, yields differ between 60% and the

high 90% range depending on the manufacturer ( Foremski, 2012 ).

A second example is the production of curved glass for the dis-

play of a new cell phone series, where Samsung has to deal with

yields down to less than 50% ( McNutt, 2015 ). In such an environ-

ment, where sometimes more than every second item is defective,

it is obvious that random production yield cannot be neglected.

To guarantee that only high-quality products are sold to the cus-

tomers, a quality control inspecting 100% of all produced items is
∗ Corresponding author. 
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equired. The items passing the inspection are stocked in a ware-

ouse to serve stochastic customer demand. This begs the ques-

ion, how to handle all the defective products which should not

e sold to the customer due to poor quality. Several opportuni-

ies arise: the products can either be scrapped (see e.g., Yano &

ee, 1995; Huh & Nagarajan, 2010; Inderfurth & Kiesmüller, 2015;

onntag & Kiesmüller, 2017 ), sold as lower quality products for a

ower price (see e.g., Gerchak, Tripathy, & Wang, 1996; Hsu & Bas-

ok, 1999 ), reworked (see e.g., Wein, 1992; Grosfeld-Nir & Gerchak,

004 ) or used otherwise. 

In this paper, we study the strategic choice between scrapping

nd reworking which means that the planner can decide between

hese opportunities only at the beginning of the planning horizon.

e assume that reworked items satisfy all quality requirements

nd are as good as items that are well made from the start and can

e sold for the same price (see e.g., Inderfurth, Lindner, & Rachan-

otis, 2005; Gotzel & Inderfurth, 2005; Buscher & Lindner, 2007 ).

eworking defective products to raise their quality might be desir-

ble for a company for several reasons: First of all, rework might

e reasonable for economic reasons. This is the case when defec-

ive products are of substantial value because of expensive input

aterials, e.g., in the high tech industry ( Buscher & Lindner, 2007;

nderfurth et al., 2005 ) or when the time and cost for rework are

https://doi.org/10.1016/j.ejor.2017.11.019
http://www.ScienceDirect.com
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mailto:danja.sonntag@ovgu.de
https://doi.org/10.1016/j.ejor.2017.11.019


D. Sonntag, G.P. Kiesmüller / European Journal of Operational Research 267 (2018) 138–149 139 

l  

l  

p  

t  

t  

a  

t  

h  

t  

F  

i  

p  

c

 

b  

d  

w  

t  

t  

p  

w  

s  

d  

o  

s  

c  

c  

T  

s  

t  

c  

t  

o

 

w  

o  

f  

d  

f  

e  

o  

w

 

r  

v  

&  

j  

T  

g  

z  

i  

s  

w  

d  

c  

t  

o  

i  

t  

o

 

v  

T  

t  

m  

2  

t  

D  

s  

t  

w  

g  

t  

o  

s  

b  

g  

l  

o  

g  

t  

t  

v  

W  

d  

p  

q  

f  

s

 

t  

a  

i  

r  

s  

(  

v  

1  

l

 

a  

d  

i  

t  

c  

i  

s  

n  

f  

i  

i  

O  

p  

t  

n  

c

 

f  

a  

o  

a  

t  

d  

r  

a  

c  

p

 

w  

d  

d  

a

ower than for the initial production of new items. Second, new

egislation might force companies to reduce waste ( Teunter & Flap-

er, 2003 ). Third, ecological aspects are gaining more and more at-

ention and therefore influence the waste policy and the image of

he company ( Inderfurth et al., 2005 ). The image of a company has

n influence on customer satisfaction and therefore on sales and

he equity, which provide a competitive advantage especially in

ighly competitive markets where it is difficult to differentiate be-

ween the products ( Chen, 2010; Teunter & Flapper, 2003 ). Flapper,

ransoo, Broekmeulen, and Inderfurth (2002) give an overview of

ndustries mentioned in the literature where rework plays an im-

ortant role for at least one of the specified reasons (e.g., the semi-

onductor and pharmaceutical industry). 

We consider a single-stage production system producing

atches of items with a known and constant production time in-

ependent of the batch size, and stochastic proportional yield,

hich leads to a random number of defective items. In a stochas-

ic proportional yield model, the yield is a random multiple of

he input ( Henig & Gerchak, 1990 ). Subsequent to the production

rocess, a quality control system is in place, inspecting all items

ith no time delay. Items satisfying the quality requirements are

tocked in a warehouse to satisfy incoming stochastic customer

emand, whereas defective items are either entirely disposed of

r reworked. Note that once the planner has chosen one of these

trategies, he cannot change it in the near future. The rework pro-

ess – like the production process – corresponds to a known and

onstant rework time but is performed on a different machine.

hus, the production and the rework process require different re-

ources. The rework process brings all defective items in a condi-

ion equal to that of perfectly produced products such that they

an be stored in the warehouse as well. The warehouse has to ini-

iate the production of a batch of items with varying lot size peri-

dically to replenish stock. 

The literature includes work on imperfect production systems

here defective products are either scraped or reworked – totally

r partially. Yano and Lee (1995) give a literature overview of dif-

erent problem settings and approaches to solving imperfect pro-

uction environments where yield losses are disposed of. In the

ollowing discussion, we will amplify two different streams of lit-

rature: make-to-stock models under random yield with disposal

f defective items and make-to-order models under random yield

ith rework of defective items. 

The literature on make-to-stock production systems, combining

andom yield settings with inventory control strategies, can be di-

ided into two groups: production time zero or one (e.g., Henig

 Gerchak, 1990 ; Bollapragada & Morton, 1999 ; Huh & Nagara-

an, 2010) and arbitrary positive production times ( Dettenbach &

honemann, 2015; Inderfurth & Kiesmüller, 2015; Inderfurth & Vo-

elgesang, 2013; Sonntag & Kiesmüller, 2017 ). Production times of

ero or one period (called zero production time in the follow-

ng discussion) substantially reduce the complexity of the problem

ince no uncertainties of outstanding orders have to be considered,

hich means that the inventory position used to determine the or-

er quantity is known. For zero production times, Henig and Ger-

hak (1990) and Bollapragada and Morton (1999) focus on the op-

imal order policy whereas Huh and Nagarajan (2010) concentrate

n the optimization of the policy parameters in case of a linear

nflation rule. A linear inflation rule is the commonly used heuris-

ic order policy under random production yield since the optimal

rdering policy is very complex ( Henig & Gerchak, 1990 ). 

Positive production times involve an uncertainty in the in-

entory position which makes the problem far more complex.

herefore, only a few authors have considered positive production

imes (e.g., Inderfurth & Vogelgesang, 2013 ; Dettenbach & Thone-

ann, 2015; Inderfurth & Kiesmüller, 2015 ; Sonntag & Kiesmüller,

017) . Inderfurth and Vogelgesang (2013) present concepts to de-
ermine safety stocks under different types of yield randomness.

ettenbach and Thonemann (2015) take into consideration multi-

tage production systems with the aim of determining the loca-

ion of quality inspections to obtain real-time yield information

hich reduces the required safety stock. They use dynamic pro-

ramming for small and medium-sized problems and two heuris-

ic approaches for larger problems. One of the heuristics is based

n an idea of Ehrhardt and Taube (1987) and can lead to poor re-

ults depending on the parameter setting. The second heuristic is

ased on an idea of Huh and Nagarajan (2010) and leads to very

ood results but requires simulation since “it is difficult to calcu-

ate [...] analytically” ( Dettenbach & Thonemann, 2015 ). Since the

ptimal order policy is difficult to determine and dynamic pro-

ramming as well as simulation might involve high computation

imes, Inderfurth and Kiesmüller (2015) developed a new heuris-

ic solution method. The so-called steady-state approach leads to

ery good results and is easy to implement in a spreadsheet.

hile Inderfurth and Kiesmüller (2015) present a single-stage pro-

uction system, Sonntag and Kiesmüller (2017) extend the ap-

roach to analyze multi-stage production systems with in-between

uality inspections. All these papers have in common that de-

ective items are disposed of and therefore leave the production

ystem. 

Unlike the limited literature on make-to-stock production sys-

ems with random yield and disposal of defectives, there exists

 variety of literature on make-to-order systems where defective

tems are reworked. Most researchers investigate production and

ework processes on the same machine and thus have to solve a

cheduling problem (e.g., So & Tang (1995) ) or a lot-sizing problem

see e.g., Liu & Yang, 1996; Teunter & Flapper, 2003; Inderfurth, Ko-

alyov, Ng, & Werner, 2007; Grosfeld-Nir & Gerchak, 2002; Wein,

992 ). Jaber and Khan (2010) extend the production system with

earning curves for the time to produce and rework items. 

There is only one paper, by Gotzel and Inderfurth (2005) , where

n inventory-control policy in a production environment with ran-

om yield and stochastic demand is studied in which defective

tems are reworked. While Gotzel and Inderfurth (2005) assume

hat defective items can be temporarily stocked before rework, we

onsider a situation where defective items have to be reworked

mmediately. As an example, consider the steel industry where

teel coming out of the furnace is inspected for quality. If it does

ot satisfy the given quality standards it has to be returned to a

urnace. This reworking in a furnace is much faster when the steel

s still hot and has had no time to cool down. In such a situation

ntermediate stock points are not favorable for economic reasons.

ther examples can be found in industries such as the chemical,

harmaceutical or food industries, where items cannot be stored

o wait for rework. Further, it is sometimes the case that there is

o storage space available for items waiting for rework or that the

ompany wants to reduce work in process inventory. 

Allowing only one stockpoint in the system has consequences

or the analysis, because no decision has to be made on the

mount to be reworked. The rework quantity is dependent only

n the production output, and therefore on the order quantity of

 previous period and the realized yield. The number of defec-

ive items increases as the order quantity increases, thus the or-

er quantity in a previous period determines the amount to be

eworked in a later period. If a large number of reworked items

rrive at the warehouse, the order quantity in the actual period

an be reduced. Therefore, the actual order quantity depends on

revious order quantities and thus covariances occur. 

Aside from the fact that our model includes only one stockpoint

e define the inventory position differently from Gotzel and In-

erfurth (2005) and include only information about orders arriving

uring the risk period and thus only relevant information for the

ctual decision. 
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The contribution of this paper is as follows: (1) We show how

to determine the base-stock level in a production environment

where defective products are not disposed of but reworked and

thus stay within the system. The induced covariances cannot be

calculated easily and thus we propose an approximation. In a de-

tailed numerical study we illustrate the excellent performance of

our approximation. (2) We introduce a mathematical model repre-

senting production, quality control, disposal or rework as well as

holding and backorder costs. The model can be used as a decision

support tool for a planner when he or she has to decide if de-

fective items should be disposed of or reworked. We show which

parameters have an influence on this decision and give an idea on

how robust the decision of the planner is regarding changes in the

environment or the cost parameters. With the derived model we

also gain some managerial insights. 

The remainder of the paper is organized as follows: In

Section 2, we describe the multi-stage production system and for-

mulate the model. In Section 3, the steady-state approach is intro-

duced. Since covariances between orders occur, which are not easy

to calculate but cannot be neglected, we present an approxima-

tion and analyze its accuracy in Section 4 . In Section 5 , we present

a mathematical model considering above-mentioned cost parame-

ters, and analyze the effect of changes within the input parameters

of the production system (5.3) and the cost parameters (5.4) on the

decision whether to rework or dispose of defective items. Based on

this analysis, we formulate managerial insights in Section 5.5 . We

conclude with a summary and suggestions for future research in

Section 6 . 

2. Model formulation 

We consider a single-stage production system producing

batches of one single product with a constant production time of

L P periods per batch ( L P > 0). The production time can be indepen-

dent of the batch size in, for example, the chemical industry where

processing times are often independent of the amount being pro-

duced. Further, in the context of an MRP planning system, planned

lead times are assumed to be constant, even though some variabil-

ity exists, in order to enable coordinated decisions. 

Due to deficiencies in the production, not all produced items

are of perfect quality. Since it is not desirable to sell products of

lower quality to the customers, a quality inspection subsequent to

the production process is established. The inspection station checks

the quality properties of all produced items with no time lag. We

would like to note that the time for an inspection can be included

in the production time since all items pass quality control. Thus,

neglecting any delay for the inspection does not reflect a limitation

in the model. 

Items that satisfy the quality requirements are stocked in a

warehouse to serve incoming stochastic customer demand. We as-

sume that the demand across periods is independent and iden-

tically distributed (iid) and backlogged if it cannot be satisfied

directly from stock. Inderfurth and Kiesmüller (2015) as well as

Dettenbach and Thonemann (2015) and Sonntag and Kiesmüller

(2017) analyzed single or multi-stage production systems where

defective items are scrapped. In contrast to these contributions,

we focus on a situation where defective items are reworked. The

reworking process – like the production process – requires a re-

work time of L R time units ( L R > 0) whereas the rework time can

be either smaller, equal to or larger than the production time. Af-

ter rework these products are stocked in a warehouse with the

same quality as items that were perfect when first produced. Note

that the rework process proceeds on a different machine from the

one used in the production process, which means that different re-

sources are required and they do not interfere with each other. 
Fig. 1 illustrates the whole model composed of a production

nd a rework process, a quality-control process and a warehouse

or the final product. The sequence of events in one period is as

ollows: First, the good items of the order placed L P periods before

s well as the reworked items of the order placed L P + L R periods

efore are delivered. Subsequently, a new order is placed and de-

and occurs. At the end of the period, inventory holding and back-

rder costs are charged based on the inventory level. 

We apply a stochastic proportional yield model which is com-

only used to describe random yield due to an imperfect produc-

ion process ( Yano & Lee, 1995 ). In a stochastic proportional yield

odel the output Y ( Q ) of the production process equals a posi-

ive fraction Z of the input Q such that Y (Q ) = Z · Q . In our model,

he input for production is determined by the order quantity Q re-

uested by the warehouse to refill stock and ensure that demand

an be satisfied. Z ∈ [0, 1] is a random variable called the yield fac-

or with mean μZ and variance σ 2 
Z 

and is iid across the periods

nd independent of the demand distribution. 

As already mentioned, at the beginning of each period, after re-

eiving the batch of a prior order, the warehouse has to determine

he required order quantity in order to minimize average holding

nd backorder costs. We consider a periodic review base-stock pol-

cy with a review period of one time unit and a base-stock level

 . Such a policy is used because the optimal ordering policy for

roduction systems with random yield does not possess a simple

tructure, even for production times equal to zero ( Henig & Ger-

hak, 1990 ). In this paper, positive instead of zero production times

re considered, which increases the complexity of the system and

akes it even more difficult to determine the optimal policy struc-

ure. Therefore, we propose a heuristic ordering policy, which is

asy to implement. The periodic review base-stock policy is such

 candidate, and it is also optimal if there is no uncertainty in the

ield. In such a situation the order quantity in period t equals the

ifference between the base-stock level S and the actual inventory

osition IP t ( Tempelmeier, 2006 ): Q t = S − IP t , where the inventory

osition is defined as the physical stock on hand minus backorders

lus the outstanding order quantities. 

In case of random production yield and a positive production

ead time it is not reasonable to include the outstanding order

uantities, because the production output is uncertain. Therefore,

e have to define the inventory position differently and suggest

he use of the expected amount to be delivered instead of the out-

tanding order quantities, as long as we do not have information

bout the realized yield. This means that for all orders in the pro-

uction process the yield is unknown and the expected amount

o be delivered is included in the inventory position, while for all

rders in the rework process realized yield is known and the esti-

ates can be updated. Further, we only include information about

he orders that will be delivered during the risk period (see also

iesmüller, 2003 ). The risk period equals L P + 1 review periods, be-

ause between review periods it is not possible to influence the

mount of incoming items, either from production or from rework.

ltogether, we get the following definition of the inventory posi-

ion IP t at the beginning of period t before ordering: 

 P t = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

I L t−1 + Z t−L P Q t−L P + 

L P −1 ∑ 

l=1 

μZ Q t−l + 

L P + L R −1 ∑ 

l= L P 
(1 −Z t−l ) Q t−l 

+(1 − Z t−L P −L R ) Q t−L P −L R + 

L P −1 ∑ 

l= L R 
(1 − μZ ) Q t−l , L P ≥ L R 

I L t−1 + Z t−L P Q t−L P + 

L P −1 ∑ 

l=1 

μZ Q t−l + 

L P + L R −1 ∑ 

l= L R 
(1 −Z t−l ) Q t−l 

+(1 − Z t−L P −L R ) Q t−L P −L R , L P < L R 

(1)

Note that the realized yield is modeled with a random variable

 Z t ) because all possible values have to be considered. However,
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Fig. 1. A single-stage make-to-stock production system with random yield and rework. 
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f the model is applied in practice the random variables have to

e replaced by the observed realized values. For example, if the

lanner has to decide on the order quantity, he uses the actual

alues for the yield ( z t ), the demand ( d t ) and the outstanding order

uantities ( q t ). 

It is clear that we also have to distinguish between a situation

here the production time is larger than or equal to the rework

ime, and one where the production time is smaller than the

ework time. For the first case ( L P ≥ L R > 0), the inventory posi-

ion equals the inventory level IL t−1 at the end of the previous

eriod plus the sum of the following components: The first term

 t−L P 
Q t−L P 

represents the delivered number of good items of

he order placed in period t − L P , because in the moment when

roduction is finished, the yield Z t−L P 
Q t−L P 

is known. The second

erm 

∑ L P −1 

l=1 
μZ Q t−l represents all orders still in production such

hat the yield is not known and therefore the expected amount

o be delivered after production has to be estimated. The fol-

owing term 

∑ L P + L R −1 

l= L P (1 − Z t−l ) Q t−l equals outstanding quantities

ithin the rework process, where yield is known because the

roduction process for these items has already been completed.

(1 − Z t−L P −L R 
) Q t−L P −L R 

equals the number of delivered reworked

tems of the order placed L P + L R periods before. The last term
 L P −1 

l= L R (1 − μZ ) Q t−l is related to the orders in production and rep-

esents an estimate of the number of units which will not satisfy

he quality requirements and therefore have to be reworked. 

It is important to note that while all outstanding orders within

he production process are included in the inventory position

 

∑ L P −1 

l=1 
μZ Q t−l ), only a part of the outstanding orders in the re-

ork process is taken into account ( 
∑ L P −1 

l= L R (1 − μZ ) Q t−l ), because

e consider only orders that arrive during the risk period. Thus, in

ontrast to Gotzel and Inderfurth (2005) , who include all outstand-

ng orders, we only include orders which will be delivered to the

arehouse during the risk period of L P + 1 periods. 

In cases where the rework time exceeds the production time

 L R > L P > 0), the inventory position consists of the same elements

ith one difference: the last term, the defective quantities thus so

ar unknown, which will enter the rework process in future peri-

ds, does not appear. If the production time is smaller than the

ework time, no order exists where the quantity of defective units

s not yet known but will be delivered during the risk period of

ength L P + 1 . 

We can merge some terms in (1) and reformulate the inventory

osition as 

 P t = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

I L t−1 + 

L P + L R ∑ 

l= L P +1 

(1 − Z t−l ) Q t−l + 

L P ∑ 

l= L R 
Q t−l + 

L R −1 ∑ 

l=1 

μZ Q t−l , L P ≥ L R 

I L t−1 + 

L P + L R ∑ 

l= L R 
(1 − Z t−l ) Q t−l + Z t−L P Q t−L P + 

L P −1 ∑ 

l=1 

μZ Q t−l , L P < L R 

(2) 

with 

∑ b 
i = a x i = 0 for b < a . 
Since the inventory position includes the expected number of

nits to be delivered, the moment when the realized yield is ob-

erved the inventory position has to be updated as follows. 

 P t+1 = I P t − D t − (μZ − Z t+1 −L P ) Q t+1 −L P (3)

t can happen that the realized yield ( Z t+1 −L P 
) is much larger

han expected ( μZ ), which increases the inventory position with-

ut placing an order. In extreme cases, which occur vary rarely, it

s possible that the inventory position before ordering is already

bove the base-stock level. Therefore, the ordering policy in case

f random yield has to be adjusted as follows: 

 t = 

{
S − IP t , IP t < S 
0 , IP t ≥ S 

(4) 

Note that we do not apply a linear inflation policy as often used

n the random yield literature with disposal of defective items, be-

ause all ordered units will arrive. There is only a difference in

he observed lead time, because some of the units have to be re-

orked. Inflation factors are necessary if units not satisfy quality

equirements are disposed of. 

The inventory position in formula (2) is not only used to deter-

ine the order quantity, but it is also used in our model to deter-

ine the inventory level IL t+ L p at the end of period t + L P : 

L t+ L P = IP t −
L P ∑ 

l=0 

D t+ l + μZ Q t − R t −
min { L P ,L R }−1 ∑ 

l=1 

R t−l (5) 

The term 

∑ L P 
l=0 

D t+ l equals the demand that occurs between the

eginning of period t and the end of period t + L P . The second term

eflects the estimated amount to be delivered in period t + L p from

he order, placed in period t , where the yield is unknown when

roduction starts. The next terms are related to the updates of the

nventory position as shown in Eq. (3) which are done in each pe-

iod, when yield is realized. We call the difference between ex-

ected and realized yield for a given order quantity Q t the forecast

rror, which is defined as 

 t = μZ Q t − Z t Q t . (6) 

It is obvious that the inventory level as given in (5) is a func-

ion of the base-stock level S and hence we denote it as IL ( S ) in the

ollowing discussion. The higher the base-stock level S , the higher

he stock-on-hand and the lower the backorder quantities and vice

ersa. Our objective is to determine a base-stock level S , which

inimizes the average holding and backorder cost C ( S ): 

(S) = hE[(IL (S)) + ] + bE[(−IL (S)) + ] (7) 

here h denotes the unit holding and b the unit backorder costs,

nd (M) + is defined as max {0, M }. 

Determining the optimal base-stock level in case of random

ield is not easy in the presence of positive production times, even

ithout reworking defective items. For production systems where

mperfect products are scraped instead of being reworked, previous

pproaches in the literature involve high computation times due
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to the application of Markov chains ( Dettenbach & Thonemann,

2015; Inderfurth & Kiesmüller, 2015 ), simulation ( Dettenbach &

Thonemann, 2015; Inderfurth & Kiesmüller, 2015 ) or stochastic dy-

namic programming ( Gotzel, 2010 ). Therefore, Inderfurth and Kies-

müller (2015) introduced an approximate steady-state approach for

a single-stage production system where defective items are dis-

posed of. The performance of the approach has been shown to be

excellent while it is easy to implement in a spreadsheet. Because

of the excellent performance of the approach and the absence of

efficient solution methods for production systems where defective

items are reworked, we adapt the idea for the production system

described above. 

As a starting point for this approach, formula (7) can be rewrit-

ten as 

(S) = h 

∫ ∞ 

0 

xϕ IL (x ) dx − b 

∫ 0 

−∞ 

xϕ IL (x ) dx (8)

where ϕIL reflects the probability density function of the inventory

level IL defined in (5) . To determine the base-stock level S which

minimizes the average holding and backorder cost, the distribution

of the inventory level IL with the density function ϕIL is required. 

3. Determining the base-stock level 

To calculate the average cost for a given base-stock level,

Inderfurth and Kiesmüller (2015) showed that, for symmetric de-

mand distributions, a normal distribution with mean μIL and

variance σ 2 
IL 

is a suitable approximation of the inventory level.

For asymmetric demand distributions Inderfurth and Kiesmüller

(2015) as well as Sonntag and Kiesmüller (2016) showed that other

distribution functions for modelling the inventory level are suit-

able. In this paper, we will not focus on asymmetric demand dis-

tribution because the analysis and the insights are similar. 

For a normally distributed inventory level, the optimal base-

stock level is given by the following newsboy equation ( Inderfurth

& Kiesmüller, 2015 ): 

P (IL ≥ 0) = 

b 

b + h 

(9)

We will fit a normal distribution on the first two moments of

the inventory level, which means we need to derive expressions

for the moments. The mean inventory level μIL can be determined

directly from (5) and (4) . 

Lemma 1. Under a strictly linear control rule (which means: Q t = S −
IP t ), the mean inventory level μIL in a production system with positive

production and rework times is given as: 

μIL = S − (L P + 1) μD − (1 − μZ ) μQ (10)

where μD and μQ reflect the mean demand and the mean order

quantity, respectively. 

Proof. For the proof see Appendix A. �

In order to derive an expression for the variance of the inven-

tory level, we need the moments of the forecast error as defined in

(6) . While the mean of the forecast error equals zero ( μR = E[ R t ] =
E[ μZ Q t − Z t Q t ] = 0 ), the variance does not. Sonntag and Kiesmüller

(2017) demonstrate that the following equation holds: 

σ 2 
R = (σ 2 

Q + μ2 
Q ) σ

2 
Z (11)

Knowing the first two moments of the forecast error, the sec-

ond central moment of the inventory level – the variance – can be

determined. 

Lemma 2. Under a strictly linear control rule, the variance of the in-

ventory level σ 2 
IL 

in a production system with positive production and

rework times can be calculated as 

σ 2 
IL = (L P + 1) σ 2 

D + L R σ
2 
R + (1 − μZ ) 

2 σ 2 
Q (12)
where σ 2 
D 
, σ 2 

R 
and σ 2 

Q 
reflect the variances of the period demand,

he forecast error and the order quantity. 

roof. For the proof see Appendix B. �

It is clear that the mean and the variance of the order quan-
ity are required to determine the mean and the variance of the
nventory level. The mean order quantity equals the mean demand
 μQ = μD ) since in the long run all demands have to be satisfied.

o determine the variance of the order quantity, σ 2 
Q 
, a recursive

quation for the order quantity can be obtained: 

 t = 

{ 

D t−1 , L P ≥ L R = 1 
D t−1 + (1 − μZ ) Q t−1 − (1 − μZ ) Q t−L R 

, L P ≥ L R > 1 

D t−1 + (1 −μZ ) Q t−1 −(1 −Z t−L R 
) Q t−L R 

+ (μZ −Z t−L P 
) Q t−L P 

, L R > L P > 0 

(13)

For the proof see Appendix C. 

It is clear that for rework times larger than one time unit,

he order quantity Q t in period t depends on the order quanti-

ies in previous periods. To explain this phenomenon, remember

hat yield is random and estimates are included in the inventory

osition for the amount that is delivered L P periods after produc-

ion starts and the quantity delivered after L P + L R periods when

he rework is finished. When yield is realized these estimates are

pdated. If in one period the realized yield of the production pro-

ess is larger than expected, more items than expected arrive in

he warehouse and fewer items have to be reworked. Therefore

he items arrive earlier than expected. This means that the order

uantity in one period depends on the order quantities of previ-

us periods and covariances occur when the variance of the order

uantity has to be determined. 
It is obvious that, if rework time is one period, the variance of

he order quantity equals the variance of the demand: σ 2 
Q = σ 2 

D .

oreover, for larger rework times the variance of the order quan-
ity depends on the covariances of orders as follows. 

AR [ Q t ] = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

VAR [ D t−1 ] + VAR [(1 − μZ ) Q t−1 ] + VAR [(1 − μZ ) Q t−L R 
] 

−2(1 −μZ ) 
2 COV [ Q t−1 , Q t−L R 

] , L P ≥L R > 1

VAR [ D t+1 ] + VAR [(1 − μZ ) Q t−1 ] 

+ VAR [(1 − Z t−L R 
) Q t−LR ] + VAR [(μZ − Z t−L P 

) Q t−L P 
] 

−2 COV [(1 − μZ ) Q t−1 , (1 − Z t−L R 
) Q t−L R 

] 

+2 COV [(1 − μZ ) Q t−1 , (μZ − Z t−L P 
) Q t−L P 

] 

−2 COV [(1 −Z t−L R 
) Q t−LR , (μZ −Z t−L P 

) Q t−L P 
] , L R > L P > 0

(14)

To determine the covariances, we need to know corresponding

oint probability distribution of the two random variables consid-

red. These joint distributions are unknown and therefore the co-

ariances cannot be calculated easily. In the following discussion,

e show how the covariances between order quantities can be ap-

roximated to get a good estimate. The numerical study reveals

hat the performance of the approximation is excellent. 

. Approximation of the covariances between orders 

For all the subsequent analyses we focus on rework times that

re smaller than or equal to the production times (1 < L R ≤ L P ).

evertheless, an analysis similar to the one for production times

xceeding rework times can be adapted for the opposite relation. 

We approximate the covariance between order quantities by

sing the recursive equation of the order quantity as given in

13) . For every L R , the recursive equation of the order quantity is

lugged into the formula for the covariance in (14) . Unfortunately,

e end up with different formulae for the covariances for different

alues of L (for details see Appendix D). 
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Table 1 

Covariance factors. 

L R A L R 

4 [ −(1 − μZ ) 
∞ ∑ 

k =0 

(−(1 − μZ )) 
k 
] 

5 [ −(1 − μZ )] 

6 [ −(1 − μZ ) − (1 − μZ ) 
3 ·

∞ ∑ 

k =0 

(−(1 − μZ )) 
k · f k +1 ] 

7 [ −(1 − μZ ) ·
∞ ∑ 

k =0 

((1 − μZ ) 
2 ) k ] 

8 [ −(1 − μZ ) − (1 − μZ ) 
3 − 2 (1 − μZ ) 

5 + (1 − μZ ) 
6 − 5 (1 − μZ ) 

7 · · · ] 

9 [ −(1 − μZ ) − (1 − μZ ) ·
∞ ∑ 

k =1 

2 k −1 ((1 − μZ ) 
2 ) k ] 

10 [ −(1 − μZ ) − (1 − μZ ) 
3 − 2 (1 − μZ ) 

5 − 5 (1 − μZ ) 
7 · · · ] 

� �
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The covariances, and therefore the variance of the order quan-

ity, can be calculated nearly exactly for rework times of two and

hree periods. For rework times larger than three, the covariances

an be approximated very well by (σ 2 
Q 

− σ 2 
D 
) · A L R 

, whereas A L R 
de-

ends on the mean yield μZ in different ways for each L R (for de-

ails see Appendix E). 

emma 3. Under a strictly linear control rule, the variance of the or-

er quantity σ 2 
Q 

in a production system with positive production and

ework times (L P ≥ L R > 0 ) can be approximated as 

2 
Q ≈

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

σ 2 
D , L R = 1 

σ 2 
D 

1 −2(1 −μZ ) 2 
[ 

1 − 1 
2 −μZ 

] , L R = 2 

σ 2 
D 

1 −2(1 −μZ ) 2 
, L R = 3 

σ 2 
D (1+2(1 −μZ ) 

2 ·A L R 
1 −2(1 −μZ ) 2 +2(1 −μZ ) 2 ·A L R 

, L R > 3 

(15) 

with the factors A L R 
as given in Table 1 and f k denoting the Fi-

onacci numbers starting with f 0 = 0 , f 1 = 1 and f k = f k −1 + f k −2 

 ∀ k ≥ 2 ). 

roof. Formula (15) directly follows from (14) . For details on

able 1 see Appendix E. �

Before we make further use of the above formulae within the

olution approach, it is important to validate the quality of the

pproximation of the variance of the order quantity as given in

q. (15) . 

The aim of this study is to investigate the performance of the

pproximations of the covariances relating to the optimal base-

tock levels and costs. We analyze several instances with respect

o the effect of different production and rework times and dif-

erent coefficients of variation for both demand and yield fac-

or under two different cost ratios b/ (b + h ) . We compare the

esults of the steady-state approach with the optimal solution

etermined by simulation. The parameter setting is presented

n Table 2 : 

The critical ratio b/ (b + h ) equals 0.9 or 0.95. The demand

arameters are similar as in Inderfurth and Kiesmüller (2015) .

emand is normally distributed with a fixed mean ( μD = 20 )

hereas the coefficient of variation varies between 0.1 and 0.3.
Table 2 

Numerical values of the input parameters. 

L P = 5 L P = 10 

b/ (b + h ) {0.9; 0.95} 

μD 20 

ρD {0.1; 0.2; 0.3} 

μZ {0.5}; {0.8;0.9} 

ρZ {0.1; 0.2; 0.3; 0.4; 0.5}; {0.1;0.2;0.3} 

L R {1; 3; 4; 5} {1; 5; 9; 10} 

b  

f  

t  

a  

e

 

t  

a  

a  

s  

m  
f higher coefficients of variation for the demand are requested,

 gamma distribution is suitable which is not considered in

he following discussion. Furthermore, we assume a symmetric

 μZ = 0 . 5 ) as well as an asymmetric ( μZ = { 0 . 8 ; 0 . 9 } ) beta dis-

ributed yield factor. Using these mean yields we are able to

odel productions where on average half of all products are

efective, as in the Samsung example in the introduction, or

ituations where fewer yield losses occur (e.g., Intel’s microchip

roduction Foremski, 2012 ). In the symmetric case, we allow for

alues for the coefficient of variation of the yield between 0.1 and

.5 whereas for the asymmetric case, the coefficient of variation

aries between 0.1 and 0.3. 

We distinguish between a production time L P of five and ten

eriods. Depending on the production length, we consider a sys-

em, where the rework time is very short ( L R = 1 ), half of the

ength of the production time ( L R = 3 for L P = 5 and L R = 5 for

 P = 10 ), just one period smaller ( L R = 4 for L P = 5 and L R = 9 for

 P = 10 ) or of equal length as the production time ( L R = L P = 5 and

 P = L R = 10 ). In total we analyze 240 instances of symmetric yield

nd 288 instances of asymmetric yield. 

For the steady-state approach the base-stock levels were calcu-

ated solving formula (8) with respect to S , whereas the base-stock

evel was rounded up to the next integer. Therefore, only discrete

alues occur for S . We compare the base-stock levels with the op-

imal solution determined via simulation by increasing S stepwise

y one unit until the minimum costs are reached. This procedure

s possible because the cost function is convex in S ( Huh & Na-

arajan, 2010 ). Each simulation run represented 50 0 0 periods with

 10 0 0-period warm-up phase. To guarantee high accuracy, a se-

uential sampling procedure was used where the number of sim-

lation runs was determined such that the half width of the 95%

onfidence interval of the average cost per period was smaller than

.5% of the corresponding sample average. The simulation-based

ptimal base-stock level is the one minimizing the simulated cost

ased on formula (8) . 

Tables 3 and 4 show the results for symmetric and asymmetric

ield. The first column gives the number of instances within

he full factorial design in which the base-stock level of the

teady-state approach is equal to the optimum S Sim 

determined

ia simulation. The second column ( S Sim 

+ / − 1 ) indicates that

he base-stock level is one unit below or above the optimum. The

hird column reveals that the deviation from optimum is larger

han one unit. 

For symmetric yields in Table 3 the approach leads to excellent

esults independent of the production time L P . We would like to

ention that in only six instances the base-stock level is underes-

imated, which is worse than overestimating it because one unit

ackordered is more expensive than one unit of additional inven-

ory. 

For asymmetric yields in Table 4 , the results are similar even

hough the number of instances with a deviation from the simu-

ated solution increased. It is obvious that, for a cost ratio b/ (b + h )

f 0.9, the approach leads to very good results for short as well

s for long production times – independent of all other parame-

er settings. For a cost ratio of 0.95, deviations from optimum can

e greater than one unit with a maximum of four. The results dif-

er only slightly for increased production time. Nevertheless, since

he base-stock level increases for longer production times, a higher

bsolute variation from the optimal solution has only small effects,

specially when it comes to cost. 

Therefore, after showing the effect of the approximations on

he base-stock level, we analyzed the effect on the corresponding

verage inventory holding and backorder costs. We simulated the

verage cost C ∗ for the base-stock levels S SS calculated with the

teady-state approach and compared the results with the mini-

um average cost C ∗ obtained by simulation. The percentage

Sim 
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Table 3 

Quality of base-stock level under symmetric yield. 

L P = 5 L P = 10 

S Sim S Sim + / − 1 Larger S Sim S Sim + / − 1 Larger 

L R 1 19 11 0 17 13 0 1 L R 
3 19 11 0 20 10 0 5 

4 17 13 0 24 6 0 9 

5 17 13 0 12 16 2 10 

ρD 0.1 22 18 0 28 12 0 0.1 ρD 

0.2 24 16 0 26 14 0 0.2 

0.3 26 14 0 19 19 2 0.3 

b/ (b + h ) 0.90 32 28 0 33 26 1 0.90 b/ (b + h ) 

0.95 40 20 0 40 19 1 0.95 

ρZ 0.1 14 10 0 16 8 0 0.1 ρZ 

0.2 19 5 0 16 8 0 0.2 

0.3 12 12 0 12 11 1 0.3 

0.4 13 11 0 14 9 1 0.4 

0.5 14 10 0 15 9 0 0.5 

Table 4 

Quality of base-stock level under asymmetric yield. 

L P = 5 L P = 10 

S Sim S Sim + / − 1 Larger S Sim S Sim + / − 1 Larger 

L R 1 19 16 1 21 15 0 1 L R 
3 21 13 2 23 10 3 5 

4 22 12 2 18 14 4 9 

5 17 15 4 20 13 3 10 

ρD 0.1 29 14 5 27 16 5 0.1 ρD 

0.2 24 21 3 27 18 3 0.2 

0.3 26 21 1 28 18 2 0.3 

b/ (b + h ) 0.90 45 27 0 47 25 0 0.90 b/ (b + h ) 

0.95 34 29 9 35 27 10 0.95 

μZ 0.8 38 33 1 39 32 1 0.8 μZ 

0.9 41 23 8 43 20 9 0.9 

ρZ 0.1 21 27 0 27 21 0 0.1 ρZ 

0.2 33 15 0 32 15 1 0.2 

0.3 25 14 9 23 16 9 0.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

Average and maximum percentage deviation from optimal costs for L P = 5 

and L P = 10 . 

L P = 5 L P = 10 

δ̄ δmax δ̄ δmax 

L R 1 0.08 0.64 0.08 0.58 1 L R 
3 0.10 0.72 0.04 0.30 5 

4 0.16 1.22 0.02 0.18 9 

5 0.09 0.60 0.06 0.34 10 

ρD 0.1 0.21 1.22 0.06 0.58 0.1 ρD 

0.2 0.07 0.45 0.03 0.36 0.2 

0.3 0.04 0.24 0.06 0.34 0.3 

b/ (b + h ) 0.90 0.12 1.22 0.05 0.58 0.90 b/ (b + h ) 

0.95 0.09 1.12 0.05 0.42 0.95 

ρZ 0.1 0.17 1.22 0.09 0.42 0.1 ρZ 

0.2 0.04 0.45 0.02 0.18 0.2 

0.3 0.15 0.72 0.07 0.39 0.3 

0.4 0.10 0.45 0.05 0.58 0.4 

0.5 0.07 0.64 0.02 0.12 0.5 

(  

o

5

 

w  

s  
cost difference of instance i was then calculated as 

δi = 

C ∗(S SS ) − C ∗
Sim 

C ∗
Sim 

· 100% (16)

and the maximum relative difference of N instances was computed

as 

δmax = max i =1 , ... ,N δi (17)

and the average relative difference of N instances as 

δ̄ = 

1 

N 

N ∑ 

i =1 

δi . (18)

Table 5 shows the average and maximum percentage cost devi-

ation from the optimal solution for a production time of five and

ten periods under symmetric yield ( μZ = 0 . 5 ). 

The calculations reveal that the approximation of the covari-

ance and the variance as given in (15) shows excellent performs

especially for high production time. The results for an asymmet-

ric yield are similar when it comes to an optimal solution with an

average percentage cost deviation of 0.15% for a production time

of five periods and 0.09% for a production time of ten periods,

the maximum deviation over all instances equalling 2.5% and 1.4%,

respectively. 

Due to the satisfying results, formula (15) can be used to ap-

proximate the variance although the covariances are unknown.

Note that the higher the mean yield the lower the influence of the

covariances because they are multiplied with the term (1 − μ ) 2 
Z 
compare formula (14) ) and the approximation itself also consists

f several such terms. 

. Disposal versus rework 

Since we are able to compute the optimal base-stock policy,

e can compare two strategies for defective products. The first

trategy results in the disposal of all defective items whereas the
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Table 6 

Formulae for rework or disposal. 

With rework ( i = wR ) With disposal ( i = nR ) 

μQ , i μD μD / μZ 

σ 2 
Q,i 

σ 2 
D , L R = 1 (ρ2 

Z μ
2 
D + σ 2 

D ) / (μ
2 
Z − σ 2 

Z ) 

σ 2 
D 

1 −2(1 −μZ ) 2 
[ 

1 − 1 
2 −μZ 

] , L R = 2 

σ 2 
D 

1 −2(1 −μZ ) 2 
, L R = 3 

σ 2 
D (1+2(1 −μZ ) 

2 ·A L R 
1 −2(1 −μZ ) 2 +2(1 −μZ ) 2 ·A L R 

, L R > 1 

σ 2 
R,i 

(σ 2 
Q,wR + μ2 

Q,wR ) σ
2 
Z (σ 2 

Q,nR + μ2 
Q,nR ) σ

2 
Z 

σ 2 
IL,i 

(L P + 1) σ 2 
D + L R σ 2 

R,wR + (1 − μZ ) 
2 σ 2 

Q,wR (L P + 1) σ 2 
D + L P σ 2 

R,nR 

S i (L P + 1) μD + (1 − μZ ) μQ,wR �
−1 (b/ (b + h )) σIL,wR (L P + 1) μD + �−1 (b/ (b + h )) σIL,nR 

μIL , i S wR − (L P + 1) μD − (1 − μZ ) μQ,wR S nR − (L P + 1) μD 

s  

N  

a  

w  

f

 

t  

d  

c  

t  

s  

d

 

o  

f  

d  

n  

a  

s  

u
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t  

&  

s  
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r  

f
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a  

(  
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a  
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w  
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p
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0 −∞ 
econd strategy considers that all defective items are reworked.

ote that whether to dispose of or rework imperfect products is

 one-time decision. Once the planner has made a decision as to

hich strategy to choose, this decision cannot be changed, e.g.,

rom batch to batch. 

First, we focus on the differences in the model and therefore in

he formulae depending on what has been decided about what to

o with imperfect products. Afterwards a mathematical model in-

orporating different cost parameters, e.g., production and inspec-

ion cost, is presented. This model is used in the numerical analy-

is in Section 5.2 to examine how sensitive the decision concerning

isposal or rework is to various input and cost parameters. 

In a production system where defective products are disposed

f, not all ordered items arrive at the warehouse. Unlike the model

or rework, in the case of disposal, defective items leave the pro-

uction system. Therefore, an ordering policy as presented in (4) is

ot suitable because in every period fewer products than required

re received. Therefore, a linear inflation policy, which has been

hown to perform very well ( Huh & Nagarajan, 2010 ), is commonly

sed. The order quantity in this case equals: 

 t = 

{
F (S − IP t ) , IP t < S 

0 , IP t ≥ S 
(19) 

F is called the linear inflation factor and is often defined as

he reciprocal of the mean yield: F = 1 / μZ (see e.g., Bollapragada

 Morton, 1999; Huh & Nagarajan, 2010; Inderfurth & Vogelge-

ang, 2013; Inderfurth & Kiesmüller, 2015 ). The yield inflation fac-

or takes into account that defective items are disposed of, which

educes the output of the production process. It compensates for

ewer items with better quality. 

Using the definition of the order quantity in (19) , the steady-

tate formulae for the case with disposal rather than rework

re required, which were derived by Inderfurth and Kiesmüller

2015) and Sonntag and Kiesmüller (2017) . In Table 6 , we sum-

arize the formulae for the cases with rework ( wR ) and with no

ework ( nR ). 

These formulae show, that the variance of the order quantity

iffers a lot. Since the variance of the order quantity influences the

ariance of the forecast error as well as the variance of the inven-

ory level, it has a large effect on the base-stock level S . 

As already mentioned, we approximate the inventory level with

 normal distribution. For a normally distributed inventory level,

he average inventory holding and backorder cost can be calculated

s in Sonntag and Kiesmüller (2017) : 

(S i , i ) = (h + b) 

[
σIL,i · ϕ 

(
−μIL,i 

σIL,i 

)
+ μIL,i ·

(
1 −Φ

(
−μIL,i 

σIL,i 

))]
− b · μIL,i , i ∈ { wR, nR } (20) 
ith the corresponding mean and variance of the inventory level

s presented in Table 6 . 

.1. Mathematical model 

To support the decision on whether a rework station should

e integrated or defective items should be scrapped, a cost model

onsidering production and quality control costs, possible rework

r disposal costs as well as holding and backorder costs is intro-

uced to calculate the average cost per period. For simplicity, we

ntroduce the binary variable X , which indicates whether defective

roducts are reworked or disposed of: 

 = 

{
1 , rework 

0 , disposal 
(21) 

We consider variable production costs P per period, charged

ith p for every produced item ( p ≥ 0). On average, the produc-

ion volume equals the mean order quantity (μQ,i ) i ∈{ wR,nR } in each

eriod. Thus, we get 

 (i ) = p · L P · μQ,i , i ∈ { wR, nR } . (22) 

We do not consider fixed production costs because only a sin-

le product is produced and thus no set-up costs are required to

nitialize the machine in advance of each production run. Concern-

ng quality control costs, we neglect fixed costs for implementing

uch a control station because these costs are not relevant for the

ecision as to whether products should be scrapped or reworked.

 quality control process exists in both cases. Variable quality con-

rol costs A are charged with parameter a for each item produced

 a ≥ 0): 

 (i ) = a · μQ,i , i ∈ { wR, nR } (23) 

If defective products are reworked, variable costs R ( i ) occur

ith parameter r ( r ≥ 0)for every defective item ( (1 − μZ ) μQ,wR ): 

 (i ) = X · r · L R · (1 − μZ ) μQ,i , i = wR (24) 

Instead, if defective products are scrapped, disposal costs g

 g ≥ 0) are charged for each defective and thus disposed of item

 (1 − μZ ) μQ,nR ): 

 (i ) = (1 − X ) · g · (1 − μZ ) μQ,i , i = nR (25) 

Finally, inventory holding and backorder costs H are charged as

n formula (20) with h ≥ 0 and b ≥ 0: 

(S i , i ) = h 

∫ ∞ 

xϕ IL,i dx − b 

∫ 0 

xϕ IL,i dx, i ∈ { wR, nR } (26) 
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Fig. 2. Effect of input parameter variations ( ρD and b/ (b + h ) ) on total cost. 
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Summarizing all the different cost terms, we get the following

cost function for i ∈ { wR, nR } : 
T C(S i , i ) = P (i ) + A (i ) + R (wR ) + G (nR ) + H(S i , i ) 

= p · L P · μQ,i 

+ a · μQ,i 

+ X · r · L R · (1 − μZ ) μQ,wR (27)

+(1 − X ) · g · (1 − μZ ) μQ,nR 

+ h 

∫ ∞ 

0 

xϕ IL,i dx − b 

∫ 0 

−∞ 

xϕ IL,i dx 

In the next section, we analyze different production systems

where all defective products are either scrapped or reworked. 

5.2. Numerical analysis 

To analyze the effect of different input parameters on the

decision concerning whether defective items should be scrapped

or reworked, we use one example as a benchmark and change

one parameter after another. This analysis indicates which input

parameters are critical and therefore should be accorded greater

attention. As a benchmark we consider a production system with a

production time L P of ten periods and a rework time L R which can

vary between one and ten periods. The mean demand μD and the

corresponding coefficient of variation are 20 and 0.2, respectively.

The cost ratio b/ (b + h ) is set to 0.95. The mean yield μZ equals

0.8 with a coefficient of variation ρZ of 0.3, which indicates that

yield losses are not negligible but improvable. 

The setting for the cost parameters is as follows: variable pro-

duction cost p are charged with one unit for each produced item,

quality control cost a equal the production cost. If defective items

are disposed of, cost g of two units per item occur. Instead, if de-

fective products are reworked, variable cost r of three units per

item are charged. Thus, we get a rework to disposal cost ratio of

1.5 and a production to rework cost ratio of 1/3. 
In the following section, we run a sensitivity analysis to illus-

rate which parameters are critical and should therefore receive

ore attention than others. 

.3. Variations in the input of the production environment 

First, we change the values of the coefficients of variation of

he demand, ρD , as well as the mean μZ and the coefficients

f variation ρ2 
Z of the yield. Additionally, we look at the effect

f changes in the cost ratio b/ (b + h ) , which follows from ser-

ice level agreements with the customers. Note that while one

f the parameters is changed, all the other parameters are fixed.

bviously, changes in demand can occur over time due to the ad-

ition of new customers or varying demand quantities of existing

ustomers. Changes in the yield arise from an improved production

ystem, producing less defective items. The service level is agreed

y contract with the customer. There are situations conceivable

here a customers willingness to pay for high service increases

nd therefore he signs a contract, which guarantees a higher ser-

ice level. 

The considered scenarios are as follows: ρD ∈ {0.1, 0.2, 0.3},

/ (b + h ) ∈ { 0 . 90 , 0 . 95 , 0 . 98 } , μZ ∈ {0.7, 0.8, 0.9} and ρZ ∈ {0.1, 0.3,

.5}. Thus, we analyze the effect of single parameter changes – ei-

her a decrease or an increase – compared with the benchmark

cenario. To make the results comparable, we calculated the total

verage cost per period relative to the cost of the production sys-

em without rework in the benchmark scenario. 

Fig. 2 shows the results for a variation of the demand variabil-

ty and the cost ratio b/ (b + h ) . It can be seen that demand varia-

ions as well as variations in the cost ratio b/ (b + h ) have almost

o effect on the decision whether to dispose of or rework defec-

ive products. The point of indifference between both strategies al-

ays lies between a rework time of six and seven periods and thus

epends entirely on the length of rework times. Because of the

lope of the cost when reworking defectives, the decision whether

o rework or scrap defective items becomes even more important
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Fig. 3. Effect of input parameter variations ( μZ and ρZ ) on total cost. 
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ecause a wrong decision leads to a high amount of additional

ost. 

Fig. 3 shows the results for a variation of the mean and the

oefficient of variation of the yield. 

If the results are compared with the results in Fig. 2 , it is obvi-

us that the yield parameters have a greater impact. On one hand,

n increasing mean yield goes in line with decreasing yield losses,

hich reduces total cost. On the other hand, the higher the mean

ield, the less valuable is a costly rework process, represented by a

ecreasing slope. In other words, the greater the yield, the smaller

he difference between the cost of reworking and of disposing of

efective items. 

As well as the mean yield, the coefficient of variation of the

ield also has a large effect. We can see that, compared with the

ther parameters where the decision whether to rework or not was

ndependent of the parameter setting, the variation of the yield

orces the decision of a planner. For a coefficient of variation of

he yield of 0.1, the point of indifference lies between a rework

ime of five and six periods: for a coefficient of variation of 0.2,

etween a rework time of six and seven periods; and for a coeffi-

ient of variation of 0.3, between a rework time of seven and eight

eriods. Thus, with higher yield variability reworking remains the

est strategy even for larger rework times. High yield variability

akes it difficult to estimate the yield losses. Thus, the probability

f stock-outs during the risk period increases. The shorter the re-

ork time, the earlier initially imperfect items arrive in the ware-

ouse, reducing the probability that customer demand cannot be

ulfilled. 

The analysis illustrates the fact that the demand variability as

ell as the target cost ratio b/ (b + h ) should not affect the deci-

ion of a planner on whether to scrap or rework defective items. In

ther words, the model is robust against variations in the demand

nd changes in the required cost ratio. Changes in these parame-

ers affect only total cost. The planner should instead decide based

n the mean and the variance of the yield whether it is worth-
hile to rework defective items or not. While the point where the

lanner is undecided between rework and disposal is not affected

y the demand parameters, the cost ratio or the mean yield, this

oint changes for different coefficients of variation of the yield. In

his case, the decision on how to handle imperfect items depends

eavily on the ratio between production time and rework time. 

.4. Variations in costs 

We now focus on the robustness of the decision whether to re-

ork or not if cost parameters change. Specifically, we change the

atio of rework and disposal cost r / g , the ratio of production and

ework cost p / r and quality control cost a . The cost parameters may

ncrease if the products become more and more complex over time

ue to new functionality. On the other hand, the cost parameters

ay decrease due to learning effects and improvements in the pro-

uction, rework or quality control processes. 

For all three cost parameters we analyze three scenarios as in

he previous section: 

r / g ∈ {1.25, 1.5, 1.75}, p / r ∈ {1/6, 1/3, 1/2} and a ∈ {0.5 · p , p ,

.5 · p }. Fig. 4 shows the results. 

Of course, the cost ratio of rework and disposal has no effect on

otal cost for the model where defective products are disposed of.

owever, with increasing cost ratio the slope of the total cost func-

ion increases if the products are reworked. The decision whether

o dispose of or rework defective items is also affected by the re-

ork cost parameter. The higher the rework cost per item and pe-

iod relative to the disposal cost, the lower the rework time L R has

o be to make rework profitable. The longer the rework times, the

igher the cost during the reworking process for bringing imper-

ect products to a condition equivalent to that of items that were

roduced correctly in the first place. 

If we look at the production to rework cost ratio, reworking be-

omes more favorable with increasing production costs even if the

ework time equals the production time. The reason for this is that
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Fig. 4. Effect of cost parameter variations on total cost. 
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if all defective items are scrapped, these products have to be pro-

duced again, which becomes more expensive with increasing pro-

duction costs. If production becomes expensive, the length of the

rework time becomes more and more negligible to a point where

reworking is always cheaper than producing defective items again.

Next, a change in quality control cost is analyzed. It is obvious

that this parameter has only small effects. Only the total costs in-

crease because of the higher cost parameter. The small effect arises

due to small changes in the cost parameter. For larger variations

an effect is recognizable in such a way that reworking becomes

more and more favorable with an increasing quality control cost

per item. This effect results from the assumption that reworked

products are of perfect quality without any further inspection. 

With these results in mind, a planner should focus mainly on

production and rework costs when he has to decide whether to

scrap or rework defective items. The higher the production cost

relative to rework cost, the more profitable is rework. 

5.5. Managerial insights 

Whether to dispose or rework defective items is a difficult de-

cision for a planner due to lots of different influencing parameters.
t is obvious that reworking becomes more favorable for shorter

ework times and lower corresponding costs compared to produc-

ion and disposal. Nevertheless, a planner should not only focus

n these effects but should be aware that the decision between

ework and disposal has wide-ranging consequences especially re-

arding the required safety stock. Reducing the safety stock is im-

ortant especially in situations where limited storage capacity is

vailable. Although rework is in some situations more costly than

isposal, the safety stock level under rework is always below the

afety stock level under disposal. The reason for this is that under

ework former defective items enter the warehouse after rework at

 certain time wherefore these quantities – different from disposal

do not have to be reordered. 

Even though the safety stock level is lower under rework, the

ifference com pared to disposal of defectives highly depends on

he parameter setting. As an example consider the demand vari-

bility, which has no effect on the question whether disposal or

ework is favorable, but a high effect on the safety stock level. The

ifference in safety stock between rework and disposal decreases

ith increasing demand variability, which means rework is even

ore favorable for low demand variability. This is not intuitive at

he first moment, because one would expect that rework becomes
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ore favorable for increasing uncertainty in the system. The effect

an be explained in two ways: First, under low demand variability

he uncertainty due to random yield is dominant. This uncertainty

s lower if defective items are reworked and therefore do not leave

he system and do not have to be reordered. Second, under low

emand variability less safety stock is available to hedge against

emand uncertainty. Thus, there is less stock available which can

lso be used to hedge against yield uncertainty. Indeed, there is a

ooling effect which reduces the safety stock level under high de-

and and yield uncertainty. 

. Summary and Outlook 

We studied a single-stage production system with stochastic

roportional yield, which results in random yield losses in each

eriod. Since only items of perfect quality are stored in the ware-

ouse to satisfy stochastic customer demand, defective products

re either disposed of or reworked. We assumed that the rework-

ng process converts all defective items into products that satisfy

he required quality standards. 

Our contribution was (1) to show how to determine the base-

tock level minimizing average inventory holding and backorder

ost in a production environment where defective products are

ot disposed of but reworked, and (2) to develop a mathemati-

al model to be used as a decision-making support for the planner

hen it comes to the question of whether defective items should

e disposed of or reworked. 

The results are as follows: (1) the adaptation of the steady-

tate approach to a situation where defective products are not

isposed of but reworked is not easy. The reworking process re-

ults in covariances between orders, which are difficult to calcu-

ate exactly because the joint distribution is unknown. We pre-

ented an approximation of the covariances depending on the re-

orking times. A numerical study confirmed that the approxima-

ion works very well. In 319 of 528 instances the approximation

eads to the optimal solution as determined by the simulation. For

ll other 209 instances the average deviation equals approximately

.10%. Over all 528 instances we get an average deviation from

ptimum of 0.10% with a standard deviation of 0.23%, which is

xcellent. 

(2) We introduced a mathematical model addressing produc-

ion, quality control, rework and inventory holding, and backo-

der cost. Based on this model, we analyzed the effect of vary-

ng parameter settings. The results show that the demand vari-

tion as well as the cost ratio b/ (b + h ) has nearly no effect on

ost and on the decision whether to dispose of or rework de-

ective items. Thus, the model is robust for these parameters.

n the other hand, the mean and the coefficient of variation of

he yield have an enormous effect. The higher the mean yield,

he less valuable is reworking because only a few items are of

mperfect quality. The higher the coefficient of variation of the

ield, the more valuable is a rework. Concerning a change in the

ost parameters, the ratio of production and rework cost is the

ain determiner of whether to dispose of or rework a defective

tem. 

Future research should focus on production systems where

he planner can decide in each period if he or she wants to

ework defective items or dispose of them. A mixture of both

trategies is conceivable, where some products are scrapped and

ome are reworked. Furthermore, the reworking process like the

roduction process might be imperfect, which means that ei-

her good products would be classified as defective or imperfect

roducts would stay in the system by mistake. In such situa-

ions it might be necessary to place several inspection stations in

andem. 
upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at 10.1016/j.ejor.2017.11.019 
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