
Contents lists available at ScienceDirect

Swarm and Evolutionary Computation

journal homepage: www.elsevier.com/locate/swevo

Global-best brain storm optimization algorithm

Mohammed El-Abd

Electrical and Computer Engineering Department, American University of Kuwait, P.O. Box 3323, Safat 13034, Kuwait

A R T I C L E I N F O

Keywords:
Brain storm optimization
Global-best
Per-variable updates
Re-initialization
Fitness-based grouping
Unconstrained optimization

A B S T R A C T

Brain storm optimization (BSO) is a population-based metaheuristic algorithm that was recently developed to
mimic the brainstorming process in humans. It has been successfully applied to many real-world engineering
applications involving non-linear continuous optimization. In this work, we propose improving the performance
of BSO by introducing a global-best version combined with per-variable updates and fitness-based grouping. In
addition, the proposed algorithm incorporates a re-initialization scheme that is triggered by the current state of
the population. The introduced Global-best BSO (GBSO) is compared against other BSO variants on a wide
range of benchmark functions. Comparisons are based on final solutions and convergence characteristics. In
addition, GBSO is compared against global-best versions of other meta-heuristics on recent benchmark
libraries. Results prove that the proposed GBSO outperform previous BSO variants on a wide range of classical
functions and different problem sizes. Moreover, GBSO outperforms other global-best meta-heuristic
algorithms on the well-known CEC05 and CEC14 benchmarks.

1. Introduction

One class of algorithms used to solve non-linear continuous and/or
discrete optimization problems is Population-based algorithms.
Population-based algorithms maintain a population of individuals
(solutions) and update them over a number of iterations (generations)
until some stopping criterion is met. Population-based algorithms
could be further categorized based on the inspiration behind their
population update mechanism. The first category is evolutionary
algorithms, in which the update process is inspired by the biological
evolution process. These algorithms include Genetic Algorithms (GAs),
Genetic Programming (GP), Evolutionary Strategies (ES), and
Evolutionary Programming (EP). The second category includes swarm
intelligence algorithms, in which the update process is inspired by
some behavior of some living organism. A number of swarm intelli-
gence algorithms are referred to as foraging algorithms as they mimic
the foraging behavior of animals and/or insects. Examples of foraging
algorithms include Particle Swarm Optimization (PSO) [1,2], Ant
Colony Optimization [3], Artificial Bee Colony [4], and many more.
Other swarm intelligence algorithms are inspired by different kinds of
behaviors including for example the egg laying behavior of cuckoos in
Cuckoo Search (CS) [5] and the echolocation behavior of bats in the Bat
Algorithm (BA) [6].

The brain storm optimization (BSO) algorithm [7,8] is a popula-
tion-based algorithm proposed to mimic brainstorming sessions held
by humans. A typical brainstorming session involves gathering a group

of experts having different backgrounds, expertise, and abilities in
order to develop a solution for a problem at hand. Following such a
process helps in successfully solving the tackled problem. The first
version of the developed BSO algorithm had a number of disadvantages
including the need to provide the number of clusters before hand, the
computational complexity of the clustering stage, the lack of a re-
initialization step, and the fixed schedule for updating the step size.
Some of these disadvantages have already been addressed in the
literature by either improving the clustering step [9–11], provide a
better update method [9,12,13], or introduce a re-initialization me-
chanism [14–16]. However, to the best of our knowledge, a global-best
version of BSO has not been proposed before.

In this paper we propose multiple modifications to improve the
performance of BSO. These modifications include adopting a fitness-
based grouping mechanism, using the global-best idea information for
updating the population, and applying the update scheme on every
problem variable separately. The proposed Global-best BSO (GBSO) is
compared against three recent variants of BSO using a suite of 20 well-
known benchmark functions. Moreover, GBSO is compared against the
2011 version of Standard PSO (SPSO) [17], Global-best guided ABC
(GABC) [18] and the Improved Global-best Harmony Search (IGHS)
[19] on the CEC05 [20] and the CEC14 [21] benchmarks for increased
problem sizes.

The rest of the paper is organized as follows: Section 2 gives details
about the BSO algorithm. Different improvements proposed in the
literature to improve BSO are covered in Section 3. The proposed
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GBSO is fully detailed in Section 4. Section 5 presents the experimental
study and the reached results. Finally, the paper is concluded in Section
6.

2. Brain storm optimization

In BSO, a population is defined as a collection of ideas. A single
idea represents a solution to the problem. In each iteration, a
population of ideas (solutions) is updated. Initially, ideas are randomly
scattered in the search space. In a single iteration, each idea ideai is
updated as follows:

• First, k-means clustering is used to group similar ideas and the best
idea in each cluster is saved as the cluster center,

• Second, BSO generates a new idea nideai by setting it equal to one of
the following:
– A probabilistically selected cluster center,
– A randomly selected idea from a probabilistically selected cluster,
– The random combination of two probabilistically selected cluster

centers, or
– The random combination of two randomly selected ideas from

two probabilistically selected clusters.
One of these four operations is randomly selected based on a
number of parameters pone−cluster, pone−center, and ptwo−centers.
Moreover, a cluster is probabilistically selected according to its size
(i.e. the number of ideas in the cluster),

• Third, the generated nideai is perturbed using a step-size parameter
ξ and Gaussian distribution,

• Finally, nideai replaces the current ideai if it has a better fitness.
Otherwise, it will be discarded.

The BSO algorithm is shown in Fig. 1.

Algorithm 1. The BSO algorithm.

Require MaxIterations, n, m, pone−cluster,pone−center, and ptwo−centers

1: Randomly initialize n ideas
2: Evaluate the n ideas
3: iter=1
4: while iter MaxIterations≤ do
5: Cluster n ideas into m clusters using k-means
6: Rank ideas in each cluster and select cluster centers
7: foreach idea i do
8: if rand P< one cluster− then
9: Probabilistically select a cluster cr
10: if rand P< one center− then
11: nidea center=i

cr

12: else
13: Randomly select an idea j in cluster cr
14: nidea idea=i

c
j
r

15: end if
16: else
17: Probabilistically select two clusters cr1 and cr2
18: Randomly select two ideas cr

j
1 and cr

k
2

19: r=rand
20: if rand P< two centers− then
21: nidea r center r center= × + (1 − ) ×i

c cr r1 2

22: else
23: nidea r idea r idea= × + (1 − ) ×i

c
j

c
k

r r1 2

24: end if
25: end if
26: ξ rand logsig= × ( )Max Iterations Current Iteration

k
0.5 × −

27: nidea nidea ξ N= + × (0, 1)i i

28: iffitness(nideai) > fitness(ideai) then
29: ideai=nideai

30: end if
31: end for
32: end while
33: returnbest idea

Note that n is the population size, m is the number of clusters,
N(0, 1) represents a Gaussian distribution with mean 0 and a standard
deviation of 1. rand is a uniformly distributed random number
between 0 and 1. Finally, ξ is a dynamically updated step-size and k
is for changing the slope of the logsig function. For more on BSO,
interested readers can refer to [22].

3. Previous BSO improvements

A number of improvements have been proposed in the literature to
improve the performance of BSO by addressing some of its disadvan-
tages.

3.1. The clustering process

To overcome the burden of the clustering process, the authors in [9]
used a Simple Grouping Strategy (SGM) instead of k-means clustering.
In their approach, m seeds are selected randomly at each iteration, and
then each one of the n ideas in the current population are assigned to
the group of the nearest seed. In addition, perturbing the newly
generated idea was done using an idea difference approach. Their
method replaced the ξ parameter with a different factor pr that controls
injecting the open minded element, represented by randomly gener-
ated problem variables, into the idea creation process. Although their
grouping strategy reduced the computational burden of k-means, it still
requires a lot of distance calculations in the search space in order to
assign different ideas to the different groups. Moreover, their grouping
strategy has slightly sacrificed the performance on multi-modal func-
tions. The proposed algorithm provided better results over PSO, DE,
and BSO on a small set of classical functions.

Another attempt to overcome the burden of the clustering process
was reported in [10]. The work introduced the idea of random grouping
to minimize the clustering overhead. This is done by dividing the
population into randomly constructed m clusters choosing the fittest
idea in each group as its center. Although their grouping strategy aimed
at mimicking random discussions between human individuals, it does
not provide any ground basis or similarity measures for clustering. In
other words, the random grouping strategy could be regarded as the
exact opposite of k-means while the SGM previously explained lies
somewhere in the middle.

To overcome the challenge of successfully presetting an appropriate
number of clusters, the authors in [23] proposed to dynamically set the
number of clusters using Affinity Propagation (AP) clustering. AP
continuously changes the number of clusters according to their
structure information. Although AP clustering still requires some
computational effort as similarities need to be calculated between
every two data points, the authors did not comment on the computa-
tional cost of their algorithm in comparison to using k-means. In
addition, no information was given about how the preference for AP
clustering was set although it has a direct effect on the generated
number of clusters. Authors provided experiments showing how their
algorithm provides good deployment of a Wireless Sensor Network.

Yet another approach to improve the clustering stage in BSO was
recently proposed in [11]. The authors used Agglomerative
Hierarchical Clustering (AHC) as it does not require pre-specifying
the number of clusters. Moreover, the probability of creating new ideas
using a single or multiple (two or three) clusters is adapted according to
the quality of solutions generated. However, the authors did not
provide details on how these individuals are generated. The developed
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Table 1
Classical Functions – I.

Function Definition Range

Sphere f x x( ) = ∑i
D

i1 =1
2 [−100,100]

Griewank f x x( ) = ∑ − ∏ cos + 1i
D

i i
D xi

i2
1

4000 =1
2

=1
[−600, 600]

Ackley ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟f x e x πx( ) = 20 + − 20 exp −0.2 ∑ + exp ∑ cos 2

D i
D

i D i
D

i3
1

=1
2 1

=1
[−32.768, 32.768]

Rastrigin f x x πx( ) = ∑ [ − 10cos(2 ) + 10]i
D

i i4 =1
[−5.12,5.12]

Rosenbrock
f x x x x( ) = ∑ (100( − ) + (1 − ) )i

D

i i i5 =1
2

2 2 −1
2 2

2 −1
2 [−2.048,2.048]

Schwefel 2.20 f x x( ) = − ∑i
D

i6 =1
[−100, 100]

Schwefel 2.21 f x x( ) = max i D i7 1< < [−100, 100]

Schwefel 2.22 f x x x( ) = ∑ + ∏i
D

i i
D

i8 =1 =1
[−100, 100]

Schwefel 2.23 f x x( ) = ∑i
D

i9 =1
10 [−10, 10]

Schwefel 2.25 f x x x x( ) = ∑ (( − 1) + ( − ) )i
D

i i10 =2
2

1
2 2 [0,10]

Schwefel 2.26 f x D x x( ) = 418.893 × − ∑ sin( )
D i

D
i i11

1
=1

[−500, 500]

Table 2
Classical Functions – II.

Function Definition Range

Powel-Sum f x x( ) = ∑i
D

i
i

12 =1
+1 [−1, 1]

Levy f x πw w πw w πw( ) = sin ( ) + ∑ ( − 1) [1 + 10sin ( + 1)] + ( − 1) [1 + sin (2 )]i
D

i i D D13
2

1 =1
−1 2 2 2 2 [−10, 10]

Alpine 1 f x x x x( ) = ∑ sin( ) + 0.1i
D

i i i14 =1
[−10, 10]

Alpine 2 f x x x( ) = ∏ sin( )i
D

i i15 =1
[0,10]

Pathological
f x( ) = ∑ (0.5 + )i

D xi xi
xi xixi xi

16 =1
−1 sin2( 100 2 + +1

2 ) − 0.5

1 + 0.001( 2 − 2 +1 + +1
2 )2

[−100, 100]

Schaffer
f x( ) = ∑ 0.5 +i

D xi xi
xi xi

17 =1
sin2( 2 + +1

2 ) − 0.5

[1 + 0.001( 2 + +1
2 )]2

[−100, 100]

Step 2 f x x( ) = ∑ (⌊ + 0.5⌋)i
D

i18 =1
2 [−100, 100]

Sum Squares f x ix( ) = ∑i
D

i19 =1
2 [−10, 10]

Stretched V-Sine f x x x x x( ) = ∑ ( + ) [sin (50( + ) ) + 0.1]i
D

i i i i20 =1
−1 2

+1
2 0.25 2 2

+1
2 0.1 [−10, 10]

Table 3
Individual Components Effect on Classical Functions – Results of 10D.

Bench. BSO FBG Re-Init Gbest Per-Variable

Func. Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

1 9.69e−19 3.86e−18 6.58e−19 2.06e−18 9.79e−19 1.99e−18 8.42e−21 1.51e−20 4.49e−07 9.64e−07
2 1.74e+01 7.53e+00 1.88e+01 6.35e+00 9.94e−01 4.20e−01 1.39e+01 6.12e+00 2.57e+00 2.71e+00
3 1.00e−09 1.77e−09 4.12e−10 3.09e−10 6.76e−10 9.70e−10 6.32e−11 8.87e−11 3.92e−04 6.11e−04
4 5.87e+00 2.21e+00 4.97e+00 1.97e+00 8.52e+00 3.67e+00 6.47e+00 3.02e+00 7.30e−01 6.88e−01
5 3.71e+00 6.34e−01 3.35e+00 5.74e−01 3.26e+00 7.40e−01 4.17e+00 4.70e−01 6.56e+00 4.13e−01
6 1.91e−08 2.92e−08 3.19e−09 3.62e−09 2.08e−08 2.93e−08 1.26e−09 3.48e−09 3.18e−03 5.45e−03
7 2.57e−08 4.68e−08 3.85e−09 3.78e−09 3.46e−08 3.49e−08 4.51e−09 7.76e−09 1.35e−03 5.58e−03
8 1.09e+02 8.41e+01 2.47e+02 8.74e+01 1.55e+01 4.79e+01 1.20e+02 9.30e+01 6.69e−03 4.55e−03
9 1.95e−77 7.46e−77 7.39e−83 2.62e−82 4.22e−73 2.31e−72 6.68e−86 3.26e−85 9.06e−35 4.57e−34
10 5.43e−18 1.53e−17 1.23e−18 2.39e−18 1.08e−18 2.00e−18 8.39e−21 3.37e−20 4.81e−09 1.98e−08
11 1.71e+03 4.27e+02 1.71e+03 3.91e+02 1.50e+03 3.68e+02 1.65e+03 3.29e+02 5.55e+02 2.60e+02
12 1.99e−10 2.62e−10 1.12e−09 1.13e−09 4.22e−09 3.96e−09 2.53e−10 4.05e−10 2.03e−11 4.04e−11
13 1.32e+00 1.63e+00 3.50e+00 2.85e+00 1.88e−01 7.15e−01 8.02e−01 1.41e+00 2.09e−07 8.38e−07
14 5.88e−03 7.04e−03 3.46e−03 3.92e−03 1.88e−03 3.01e−03 3.74e−03 3.55e−03 4.03e−04 3.57e−04
15 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
16 1.22e+00 3.57e−01 1.89e+00 3.66e−01 9.76e−01 4.19e−01 1.28e+00 4.23e−01 6.94e−01 3.46e−01
17 2.55e+00 4.16e−01 3.53e+00 4.53e−01 2.09e+00 4.38e−01 2.33e+00 4.66e−01 9.40e−01 4.32e−01
18 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
19 1.82e−14 4.93e−14 1.79e−15 6.28e−15 1.50e−13 5.06e−13 8.28e−17 3.60e−16 5.18e−06 2.29e−05
20 1.14e+00 3.52e−01 1.20e+00 4.76e−01 7.88e−01 3.03e−01 1.05e+00 3.44e−01 3.78e−01 1.83e−01
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Table 4
Individual Components Effect on Classical Functions – Results of 30D.

Bench. BSO FBG Re-Init Gbest Per-Variable

Func. Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

1 5.49e−18 1.01e−17 1.42e−18 1.81e−18 4.94e−18 5.10e−18 1.58e−20 2.45e−20 1.52e+02 4.81e+02
2 1.19e−02 1.19e−02 1.30e−02 1.25e−02 1.40e−02 1.70e−02 1.08e−02 9.93e−03 2.75e+01 1.73e+01
3 1.27e−09 9.59e−10 6.88e−10 3.66e−10 1.53e−09 6.77e−10 7.12e−11 3.88e−11 6.73e−01 7.50e−01
4 4.07e+01 1.17e+01 3.66e+01 8.46e+00 5.00e+01 1.38e+01 4.46e+01 1.03e+01 1.43e+01 4.73e+00
5 2.61e+01 6.16e−01 2.55e+01 1.28e+00 2.40e+01 2.23e+00 2.55e+01 8.21e−01 2.74e+01 1.47e+00
6 1.19e−05 2.69e−05 1.02e−07 1.61e−07 4.97e−06 7.14e−06 1.77e−07 4.42e−07 7.32e+01 4.83e+01
7 1.46e−05 1.60e−05 5.44e−07 4.87e−07 1.30e−05 9.73e−06 2.30e−06 1.40e−06 8.22e+00 7.51e+00
8 5.43e+02 1.24e+02 7.17e+02 1.91e+02 1.16e+02 1.74e+02 5.46e+02 1.19e+02 1.30e+02 9.80e+01
9 3.86e−64 2.01e−63 1.51e−74 4.10e−74 1.44e−64 5.58e−64 8.13e−74 4.33e−73 3.28e−05 9.70e−05
10 1.31e−17 1.48e−17 3.44e−18 1.03e−17 8.10e−18 1.28e−17 9.15e−21 1.98e−20 3.36e−02 6.94e−02
11 5.81e+03 8.97e+02 5.40e+03 7.10e+02 5.63e+03 8.71e+02 5.73e+03 8.88e+02 3.22e+03 4.40e+02
12 3.41e−10 2.76e−10 1.66e−09 9.54e−10 6.37e−09 3.57e−09 6.28e−10 7.27e−10 2.37e−10 3.60e−10
13 1.70e+01 8.28e+00 1.94e+01 9.47e+00 5.59e+00 4.36e+00 1.40e+01 6.76e+00 1.58e+00 1.77e+00
14 1.49e−01 1.03e−01 5.99e−02 4.00e−02 4.27e−02 3.26e−02 9.59e−02 6.39e−02 5.42e−02 5.14e−02
15 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
16 5.54e+00 7.68e−01 7.05e+00 9.03e−01 4.78e+00 2.63e+00 5.24e+00 9.00e−01 4.25e+00 7.01e−01
17 1.08e+01 9.91e−01 1.17e+01 9.13e−01 8.98e+00 1.43e+00 1.02e+01 9.88e−01 6.47e+00 1.05e+00
18 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 1.24e+02 2.97e+02
19 4.49e−08 6.07e−08 2.15e−08 2.88e−08 2.08e−08 3.34e−08 7.77e−09 7.87e−09 9.17e−01 2.80e+00
20 4.54e+00 6.73e−01 4.79e+00 9.14e−01 4.37e+00 6.18e−01 4.50e+00 6.88e−01 3.57e+00 1.04e+00

Table 5
Individual Components Effect on CEC05 Functions – Results of 10D.

Bench. BSO FBG Re-Init Gbest Per-Variable

Func. Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

1 2.65e−14 2.88e−14 0.00e+00 0.00e+00 2.84e−14 2.89e−14 3.79e−15 1.44e−14 6.53e−06 2.93e−05
2 2.31e−11 3.27e−11 5.29e−12 1.02e−11 1.15e−10 2.38e−10 7.24e−12 1.02e−11 1.82e+02 4.47e+02
3 4.78e+04 3.66e+04 4.98e+04 4.19e+04 3.05e+04 2.64e+04 5.40e+04 3.65e+04 7.04e+05 7.08e+05
4 6.67e+03 5.12e+03 7.04e+03 6.29e+03 8.87e+00 3.88e+01 5.23e+03 4.05e+03 2.05e+03 1.36e+03
5 8.54e−07 1.29e−06 5.81e−07 1.91e−06 1.93e−06 4.59e−06 6.43e−07 1.34e−06 2.01e+03 1.57e+03
6 1.02e+01 2.84e+01 8.59e+01 1.99e+02 3.23e+00 3.44e+00 6.45e+00 8.10e+00 2.28e+02 7.07e+02
7 1.30e+03 2.02e+01 4.46e+02 1.50e+02 1.85e+02 8.08e+01 1.65e+02 7.62e+01 1.52e+03 1.56e+02
9 6.40e+00 2.82e+00 5.44e+00 2.05e+00 9.49e+00 3.70e+00 7.00e+00 2.97e+00 8.30e−01 7.43e−01
10 7.23e+00 3.06e+00 5.67e+00 1.59e+00 1.03e+01 3.45e+00 7.86e+00 2.98e+00 1.90e+01 8.87e+00
11 2.01e+00 1.05e+00 2.45e+00 1.32e+00 9.55e−01 8.85e−01 2.55e+00 1.14e+00 8.79e+00 1.03e+00
12 1.72e+02 3.84e+02 1.86e+02 4.62e+02 1.06e+02 3.27e+02 4.82e+02 6.70e+02 2.91e+02 5.09e+02
13 6.22e−01 1.82e−01 7.21e−01 2.07e−01 1.03e+00 3.09e−01 6.64e−01 2.21e−01 4.82e−01 1.31e−01
14 3.94e+00 3.15e−01 4.20e+00 2.68e−01 3.46e+00 2.70e−01 3.91e+00 2.49e−01 3.08e+00 4.10e−01

Table 6
Individual Components Effect on CEC05 Functions – Results of 30D.

Bench. BSO FBG Re-Init Gbest Per-Variable

Func. Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

1 1.44e−13 3.25e−14 6.44e−14 1.97e−14 1.21e−13 3.87e−14 8.72e−14 2.88e−14 9.37e+02 1.72e+03
2 5.48e−06 5.81e−06 1.81e−06 1.53e−06 2.48e−06 1.97e−06 1.17e−06 1.07e−06 1.94e+04 7.80e+03
3 4.84e+05 1.54e+05 4.88e+05 2.00e+05 2.74e+05 1.33e+05 5.45e+05 1.97e+05 4.06e+07 2.37e+07
4 2.29e+04 9.01e+03 3.34e+04 1.36e+04 1.48e+03 1.68e+03 1.67e+04 6.48e+03 2.67e+04 1.03e+04
5 2.99e+03 6.95e+02 2.21e+03 5.89e+02 1.17e+03 3.86e+02 3.02e+03 7.52e+02 1.12e+04 2.25e+03
6 5.09e+02 3.44e+02 5.16e+02 1.27e+03 3.96e+02 3.88e+02 4.10e+02 3.96e+02 5.00e+06 1.67e+07
7 4.80e+03 3.02e+01 4.42e+02 7.71e+01 1.09e+02 3.12e+01 1.65e−01 5.77e−01 6.83e+03 5.68e+02
9 5.09e+01 1.33e+01 3.50e+01 9.92e+00 6.32e+01 2.15e+01 5.20e+01 1.34e+01 1.47e+01 6.19e+00
10 3.79e+01 1.07e+01 3.15e+01 7.99e+00 6.64e+01 1.91e+01 4.62e+01 9.17e+00 1.83e+02 1.67e+01
11 1.19e+01 2.62e+00 8.67e+00 2.90e+00 7.76e+00 2.52e+00 1.24e+01 1.91e+00 3.96e+01 1.09e+00
12 3.80e+03 4.62e+03 4.21e+03 4.24e+03 1.67e+03 2.30e+03 4.09e+03 3.19e+03 6.46e+03 7.61e+03
13 3.30e+00 9.23e−01 3.27e+00 6.31e−01 3.95e+00 1.09e+00 3.15e+00 8.06e−01 2.91e+00 8.76e−01
14 1.34e+01 3.98e−01 1.37e+01 3.42e−01 1.26e+01 4.13e−01 1.31e+01 3.59e−01 1.26e+01 3.77e−01
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algorithm improved the results over BSO on a number of classical
functions.

3.2. Fixed step size

In addition to introducing the concept of random grouping, the
authors in [10] have also modified the ξ update schedule as follows:

ξ rand e= ×
Max Iterations

Max Iterations Current Iteration1− − +1 (1)

This modification was proposed as the authors indicated that the
change of ξ in the old formula only takes effect for a very short interval.

However, the new formula does not take the actual search space size
into account.

A different approach to better adapt the fixed schedule for updating
ξ, was proposed in [12] to update it using the dynamic range of ideas in
each dimension. The authors used to different parameters ξi

center and
ξi
individual as the first one was used when generating an individual based

on cluster center(s) while the second one was used when a new
individual is generated based on a randomly selected individual. The
authors introduced new parameters k1 and k2 for controlling the step
size but provided no guidelines on how to set these parameters. The
authors provided experiments illustrating how the step sizes ξi

center and
ξi
individual oscillate during the search in comparison to the rapid

Fig. 1. Population diversity for individual components for a sample of the cec05 benchmark functions; 10 dimensions.

Table 7
Sensitivity to Cmin and Cmax on Classical Functions – Results of 10D.

Benchmark [0.1,0.9] [0.2,0.8] [0.3,0.7]

Function Mean Std. Mean Std. Mean Std.

1 1.94e−21 3.29e−21 8.42e−21 1.51e−20 9.25e−21 1.75e−20
2 1.27e+01 6.43e+00 1.39e+01 6.12e+00 1.14e+01 6.26e+00
3 3.33e−11 9.90e−11 6.32e−11 8.87e−11 5.89e−11 7.47e−11
4 6.80e+00 2.69e+00 6.47e+00 3.02e+00 6.47e+00 2.76e+00
5 4.28e+00 5.49e−01 4.17e+00 4.70e−01 4.06e+00 6.98e−01
6 4.62e−10 1.02e−09 1.26e−09 3.48e−09 1.99e−09 4.83e−09
7 4.09e−09 6.46e−09 4.51e−09 7.76e−09 8.32e−09 1.20e−08
8 7.01e+01 8.88e+01 1.20e+02 9.30e+01 6.23e+01 8.41e+01
9 1.11e−87 6.04e−87 6.68e−86 3.26e−85 2.33e−88 1.22e−87
10 2.33e−21 8.09e−21 8.39e−21 3.37e−20 7.97e−21 1.82e−20
11 1.50e+03 3.21e+02 1.65e+03 3.29e+02 1.72e+03 3.34e+02
12 3.46e−10 5.68e−10 2.53e−10 4.05e−10 3.37e−10 4.05e−10
13 1.36e+00 1.71e+00 8.02e−01 1.41e+00 7.18e−01 1.77e+00
14 6.56e−03 1.14e−02 3.74e−03 3.55e−03 5.28e−03 4.92e−03
15 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
16 1.35e+00 3.29e−01 1.28e+00 4.23e−01 1.19e+00 2.90e−01
17 2.27e+00 4.47e−01 2.33e+00 4.66e−01 2.31e+00 4.35e−01
18 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
19 1.98e−17 5.39e−17 8.28e−17 3.60e−16 4.27e−17 1.23e−16
20 1.13e+00 3.01e−01 1.05e+00 3.44e−01 1.13e+00 3.70e−01
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decrease of the original step size.
The work in [16] modified Eq. (1) by multiplying it with a

parameter α that is proportional to width of the search domain.

ξ rand e α= × ×
Max Iterations

Max Iterations Current Iteration1− − +1 (2)

3.3. The update process

In addition to dynamically updating the step size, the work in [12]
modified the update process as well. In their approach, n3 new ideas
were created in each iteration. n ideas were created based on n

randomly selected cluster centers using the step size ξi
center, n ideas

were generated using the combination of n2 randomly selected cluster
centers using the step size ξi

center, and n ideas were generated using the
combination of n2 randomly selected individuals using the step size
ξi
individual. The update process started by randomly grouping a total of
n4 ideas (the old n ideas and the new n3 ideas) into n groups of 4 ideas
each. Finally, the best idea in each group was copied to the next
generation. Evaluating new ideas and replacing old ideas was imple-
mented in batch mode. The developed algorithm improved the results
over BSO on a number of classical functions.

To improve the update process, the authors in [13] introduced a

Table 8
Sensitivity to Cmin and Cmax on CEC05 Functions – Results of 10D.

Benchmark [0.1,0.9] [0.2,0.8] [0.3,0.7]

Function Mean Std. Mean Std. Mean Std.

1 1.89e−15 1.04e−14 3.79e−15 1.44e−14 5.68e−15 1.73e−14
2 7.59e−12 1.16e−11 7.24e−12 1.02e−11 1.74e−11 4.16e−11
3 4.56e+04 3.77e+04 5.40e+04 3.65e+04 4.92e+04 3.37e+04
4 5.81e+03 3.28e+03 5.23e+03 4.05e+03 5.87e+03 3.82e+03
5 4.40e−07 1.05e−06 6.43e−07 1.34e−06 1.29e−06 3.27e−06
6 1.88e+01 5.98e+01 6.45e+00 8.10e+00 4.28e+00 2.16e+00
7 1.70e+02 6.21e+01 1.65e+02 7.62e+01 1.67e+02 7.25e+01
9 8.06e+00 3.47e+00 7.00e+00 2.97e+00 6.63e+00 2.68e+00
10 6.83e+00 2.29e+00 7.86e+00 2.98e+00 6.10e+00 2.29e+00
11 2.21e+00 1.05e+00 2.55e+00 1.14e+00 2.08e+00 1.12e+00
12 4.38e+02 5.95e+02 4.82e+02 6.70e+02 2.85e+02 5.75e+02
13 7.87e−01 2.01e−01 6.64e−01 2.21e−01 7.63e−01 2.05e−01
14 3.85e+00 2.64e−01 3.91e+00 2.49e−01 3.86e+00 2.97e−01

Table 9
Different Gbest Application Techniques on CEC05 Functions – Results of 10D.

Benchmark 0.75 1.5 [0.2,0.8]

Function Mean Std. Mean Std. Mean Std.

1 0.00e+00 0.00e+00 7.58e−15 1.97e−14 3.79e−15 1.44e−14
2 4.20e−12 5.72e−12 1.63e−12 3.11e−12 7.24e−12 1.02e−11
3 3.86e+04 2.32e+04 8.04e+04 6.60e+04 5.40e+04 3.65e+04
4 5.00e+03 2.91e+03 4.71e−02 2.58e−01 5.23e+03 4.05e+03
5 1.27e−07 1.95e−07 8.13e−07 3.89e−06 6.43e−07 1.34e−06
6 1.37e+02 6.51e+02 1.55e+01 4.87e+01 6.45e+00 8.10e+00
7 8.65e+01 3.45e+01 1.82e+01 1.21e+01 1.65e+02 7.62e+01
9 8.60e+00 4.08e+00 1.06e+01 5.49e+00 7.00e+00 2.97e+00
10 1.03e+01 4.90e+00 1.35e+01 7.36e+00 7.86e+00 2.98e+00
11 2.46e+00 1.40e+00 3.50e+00 1.66e+00 2.55e+00 1.14e+00
12 7.34e+02 1.19e+03 8.91e+02 2.80e+03 4.82e+02 6.70e+02
13 8.59e−01 3.49e−01 9.69e−01 3.23e−01 6.64e−01 2.21e−01
14 3.79e+00 3.56e−01 3.52e+00 2.85e−01 3.91e+00 2.49e−01

Table 10
Different Gbest Application Techniques on CEC05 Functions – Results of 30D.

Benchmark 0.75 1.5 [0.2,0.8]

Function Mean Std. Mean Std. Mean Std.

1 5.68e−14 2.57e−29 8.53e−14 3.25e−14 8.72e−14 2.88e−14
2 2.39e−06 1.80e−06 1.03e−06 1.16e−06 1.17e−06 1.07e−06
3 4.78e+05 1.58e+05 5.43e+05 2.25e+05 5.45e+05 1.97e+05
4 2.73e+04 1.02e+04 1.47e+04 6.01e+03 1.67e+04 6.48e+03
5 3.40e+03 6.00e+02 3.87e+03 1.04e+03 3.02e+03 7.52e+02
6 4.11e+02 3.69e+02 4.10e+02 4.39e+02 4.10e+02 3.96e+02
7 4.93e+01 2.33e+01 2.39e−02 1.73e−02 1.65e−01 5.77e−01
9 6.17e+01 2.11e+01 8.07e+01 2.85e+01 5.20e+01 1.34e+01
10 5.00e+01 1.83e+01 8.74e+01 2.84e+01 4.62e+01 9.17e+00
11 1.18e+01 3.09e+00 1.50e+01 4.47e+00 1.24e+01 1.91e+00
12 3.35e+03 4.14e+03 4.14e+03 4.12e+03 4.09e+03 3.19e+03
13 3.20e+00 9.28e−01 5.03e+00 1.63e+00 3.15e+00 8.06e−01
14 1.33e+01 4.10e−01 1.31e+01 4.29e−01 1.31e+01 3.59e−01
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new idea generation mechanism borrowed from differential evolution
while also using the step-size schedule proposed in [10]. In their work,
if the newly created idea was to follow a randomly selected idea from a
randomly selected cluster cr, this operator (referred to as intra-cluster
operator) was modified as follows (where F is the mutation scaling
factor while r1 and r2 are mutually exclusive integers randomly chosen
in the selected cluster):

nidea center F idea idea= + × ( − )i
cr cr

r
cr
r1 2 (3)

And if the generated idea was to follow a combination of two
randomly selected ideas j and k from two randomly selected clusters cr1
and cr2, this operator (referred to as inter-cluster operator) was
modified as follows (where F is defined as above while GlobalIdea is
the best idea in the population):

nidea GlobalIdea F idea idea= + × ( − )i
cr
j

cr
k

1 2 (4)

Their approach improved the performance over BSO while having a
faster speed of convergence. It also had comparable performance with
PSO, CoDE [24], and SaDE [25] on the CEC05 benchmarks [20].

3.4. Lack of a re-initialization behavior

The authors in [14,15] proposed enhancing the population diversity
of BSO by re-initializing a small part of the population every a
predetermined number of iterations. The authors conducted a number
of experiments to study the effect of changing the percentage of ideas
being re-initialized by re-initializing a fixed percentage of the popula-
tion, an increasing percentage, and a decreasing percentage. In general,
the performance of BSO was improved and the population diversity

Fig. 2. Population diversity for individual components for a sample of the cec05 benchmark functions; 10 dimensions.

Table 11
Performance of BSO Variants on Classical Functions – Results of 10D.

Benchmark BSODE RGBSO IRGBSO GBSO

Function Mean Std. Mean Std. Mean Std. Mean Std.

1 5.49e−18 1.40e−17 2.06e−18 5.22e−18 7.20e−18 1.01e−17 8.35e−17 3.90e−17
2 1.05e−01 4.42e−02 2.09e+01 7.17e+00 4.17e−02 2.98e−02 6.21e−02 3.48e−02
3 2.64e−09 2.53e−09 8.25e−10 8.58e−10 1.13e−09 1.46e−09 3.24e−09 8.56e−10
4 6.81e+00 3.09e+00 4.54e+00 1.91e+00 5.33e+00 2.93e+00 0.00e+00 0.00e+00
5 3.50e+00 8.88e−01 3.29e+00 7.96e−01 1.48e−01 5.19e−02 7.83e−01 2.44e−01
6 8.86e−08 1.99e−07 4.74e−09 5.42e−09 1.13e−08 1.33e−08 1.81e−08 4.38e−09
7 1.61e−07 3.23e−07 6.35e−09 6.17e−09 1.76e−08 2.08e−08 5.82e−09 1.85e−09
8 1.10e+01 2.55e+01 2.28e+02 1.41e+02 1.10e−08 1.31e−08 1.31e−08 2.84e−09
9 1.04e−72 5.20e−72 1.44e−82 4.74e−82 1.28e−87 5.98e−87 2.45e−92 3.78e−92
10 9.89e−18 1.91e−17 1.82e−18 3.35e−18 1.09e−16 1.31e−16 2.91e−18 1.20e−18
11 1.54e+03 3.74e+02 1.86e+03 3.48e+02 1.05e+03 2.53e+02 1.27e−04 0.00e+00
12 1.83e−09 2.67e−09 9.19e−10 1.20e−09 4.72e−10 4.20e−10 3.93e−12 9.06e−12
13 1.26e−12 4.20e−12 3.16e+00 2.87e+00 1.45e+00 1.92e+00 6.68e−19 7.43e−19
14 6.78e−05 2.49e−04 4.88e−03 4.43e−03 6.57e−04 1.50e−03 2.08e−10 3.52e−11
15 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
16 1.21e+00 3.34e−01 1.81e+00 4.65e−01 9.52e−01 5.17e−01 3.85e−01 2.01e−01
17 1.94e+00 6.50e−01 3.51e+00 3.39e−01 1.41e+00 5.50e−01 1.38e−01 6.26e−02
18 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
19 1.13e−13 2.91e−13 2.95e−15 6.46e−15 3.52e−16 5.33e−16 5.09e−18 3.12e−18
20 1.03e+00 2.00e−01 1.28e+00 4.50e−01 3.68e−01 3.33e−01 2.24e−01 1.21e−01

M. El-Abd Swarm and Evolutionary Computation xxx (xxxx) xxx–xxx

7



was increased by their proposed strategy. However, their re-initializa-
tion mechanism was not triggered by the current state of the popula-
tion as it was applied at fixed intervals. At the same time, a fixed
number of ideas were being re-initialized even if some them did not
converge. The authors provided experiments showing how the diversity
of their proposed algorithm is higher than the diversity of the
population in the original BSO. In addition, their algorithm provided
better results over BSO on a set of classical functions.

Another attempt to address the lack of a re-initialization process in
BSO was reported in [16]. The work introduced the use of a re-
initialization scheme borrowed from the Artificial Bee Colony (ABC)
algorithm [26]. A re-initialization process is carried out when a certain
idea has not been improved for a specified number of iterations,
Threshold. In addition, the idea could be either re-initialized using
uniform distribution or by using a differential approach as follows
(where F is defined as above while r1, r2 and r3 are mutually exclusive
integers randomly chosen between 1 and n):

nidea idea F idea idea= + × ( − )i r r r1 2 3 (5)

The proposed algorithm provided better results over the works in
[10,13] on the CEC15 benchmarks [27]. However, no experiments
were provided on the performance of the individual re-initialization
and step size update components.

4. Proposed Global-best BSO (GBSO)

In this section we explain the rationale behind several algorithmic
design decisions taken to enhance the performance of BSO. Note that
we use the same re-initialization stage and the step-size updating
scheme used in [16].

• Fitness-based grouping: During the grouping stage, the ideas are
ranked according to their fitness and grouping is done to ensure that
good and bad ideas are equally distributed among the different

Table 12
Performance of BSO Variants on Classical Functions – Results of 30D.

Benchmark BSODE RGBSO IRGBSO GBSO

Function Mean Std. Mean Std. Mean Std. Mean Std.

1 3.05e−17 6.57e−17 2.23e−18 2.90e−18 2.32e−17 2.59e−17 1.57e−16 4.03e−17
2 9.16e−03 8.87e−03 1.24e−02 1.30e−02 5.02e−03 8.07e−03 4.83e−03 7.34e−03
3 2.43e−09 1.74e−09 9.91e−10 5.39e−10 8.55e−10 3.58e−10 2.93e−09 3.65e−10
4 3.69e+01 7.89e+00 3.70e+01 8.86e+00 3.96e+01 1.12e+01 4.98e−04 2.33e−03
5 2.52e+01 1.03e+00 2.54e+01 5.90e−01 2.00e+01 9.08e−01 2.21e+01 1.08e+00
6 1.72e−05 2.48e−05 2.34e−07 2.95e−07 5.72e−07 8.92e−07 4.94e−08 5.81e−09
7 9.74e−05 1.14e−04 7.00e−07 5.95e−07 1.47e−06 9.69e−07 7.43e−08 6.88e−08
8 2.38e+02 1.81e+02 7.62e+02 1.64e+02 3.62e−07 4.51e−07 5.11e−08 7.16e−09
9 2.04e−61 4.16e−61 8.72e−70 4.31e−69 2.24e−73 1.12e−72 3.41e−91 4.29e−91
10 3.25e−17 4.69e−17 8.29e−18 1.12e−17 1.28e−15 1.22e−15 6.81e−18 1.52e−18
11 5.39e+03 5.86e+02 5.35e+03 7.24e+02 3.12e+03 3.38e+02 3.82e−04 2.21e−19
12 3.81e−09 3.45e−09 8.54e−10 6.66e−10 9.12e−10 4.09e−10 1.32e−13 2.02e−13
13 1.82e−02 9.09e−02 1.91e+01 7.05e+00 1.00e+01 5.84e+00 3.82e−18 4.38e−18
14 1.71e−02 1.29e−02 6.20e−02 3.38e−02 5.79e−03 7.40e−03 7.18e−10 8.62e−10
15 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
16 6.47e+00 1.23e+00 6.99e+00 1.04e+00 6.05e+00 1.94e+00 2.29e+00 5.24e−01
17 8.78e+00 8.53e−01 1.20e+01 1.07e+00 8.49e+00 8.09e−01 1.23e+00 3.93e−01
18 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
19 6.89e−07 1.05e−06 2.90e−08 5.39e−08 9.21e−10 1.69e−09 6.30e−12 1.82e−11
20 4.43e+00 8.64e−01 4.70e+00 9.92e−01 1.53e+00 4.33e−01 1.34e+00 4.15e−01

Table 13
Performance of BSO Variants on Classical Functions – Results of 50D.

Benchmark BSODE RGBSO IRGBSO GBSO

Function Mean Std. Mean Std. Mean Std. Mean Std.

1 3.18e−17 4.02e−17 4.92e−17 5.97e−17 2.94e−17 2.52e−17 1.58e−16 2.68e−17
2 1.97e−03 3.63e−03 1.18e−03 3.27e−03 5.92e−04 2.05e−03 4.83e−03 6.69e−03
3 3.68e−09 2.79e−09 3.20e−09 1.79e−09 1.17e−09 5.17e−10 2.32e−09 2.55e−10
4 6.64e+01 1.12e+01 6.34e+01 1.62e+01 8.36e+01 1.76e+01 4.09e−01 5.44e−01
5 4.56e+01 1.30e+00 4.62e+01 1.36e+00 4.07e+01 9.59e−01 4.25e+01 6.34e−01
6 1.39e−03 3.89e−03 4.53e−03 1.13e−02 7.26e−06 1.05e−05 7.44e−08 7.84e−09
7 2.17e−03 1.25e−03 2.81e−03 1.89e−03 1.63e−05 1.08e−05 3.64e−05 3.60e−05
8 5.92e+02 2.88e+02 6.41e+02 2.27e+02 9.98e−06 1.39e−05 9.12e−08 1.14e−08
9 1.06e−54 3.36e−54 2.78e−54 1.18e−53 3.56e−71 1.69e−70 2.20e−89 7.92e−89
10 9.29e−17 9.02e−17 9.00e−17 8.98e−17 3.15e−15 2.62e−15 5.67e−18 1.83e−18
11 9.45e+03 1.07e+03 9.43e+03 9.10e+02 4.76e+03 5.72e+02 9.11e−01 4.35e+00
12 2.85e−09 2.23e−09 2.30e−09 1.79e−09 6.84e−10 2.86e−10 3.34e−14 5.54e−14
13 7.63e−02 1.69e−01 7.24e−02 1.59e−01 1.29e+01 6.67e+00 1.01e−17 2.28e−17
14 8.92e−02 6.53e−02 9.55e−02 6.73e−02 1.20e−02 1.47e−02 4.13e−05 2.06e−04
15 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
16 1.30e+01 1.84e+00 1.36e+01 1.44e+00 1.15e+01 2.92e+00 4.17e+00 7.37e−01
17 1.56e+01 1.36e+00 1.58e+01 1.48e+00 1.65e+01 1.13e+00 2.75e+00 7.11e−01
18 8.00e−02 2.77e−01 2.40e−01 4.36e−01 0.00e+00 0.00e+00 0.00e+00 0.00e+00
19 3.27e−04 5.26e−04 2.97e−04 4.20e−04 1.36e−06 1.71e−06 3.12e−08 3.25e−08
20 7.85e+00 1.17e+00 8.56e+00 1.16e+00 4.84e+00 1.41e+00 3.16e+00 3.85e−01
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groups. As stated earlier, k-means is at one end of the spectrum with
maximum computational cost and distance-based clustering while
random grouping is at the other end with minimum computational
cost and no similarity measure at all. Fitness-based grouping will lie
somewhere in the middle as it provides less computational complex-
ity than k-means and a better distribution of ideas among the
different groups when compared to random grouping. Fitness-based
grouping would also provide less computational cost than AP or
AHC. Moreover, identifying the center of each cluster becomes very
simple as the center would be the first idea in the cluster. Fitness-
based grouping is shown in Fig. 2 where % is the remainder
operator.

Algorithm 2. Fitness-based grouping.

Require n, m
1: Rank ideas according to fitness in descending order
2: foreach idea i do
3: g i m= ( − 1)% + 1
4: Add idea i to group g
5: end for

• Per-variable updates: In the original BSO and all of its sub-
sequent variants, new ideas are generated by updating all problem
variables in one step. In this work, we propose generating new ideas
one problem variable at a time. This means that the first problem
variable could be updated using the center of one randomly selected
cluster, while the next problem variable is updated using the
combination of two randomly selected ideas from two randomly
selected clusters, and so on. In the original BSO, only one idea

contributes to the generation of a new idea, with a probability
pone−cluster, or at most two ideas, with a probability p1 − one cluster− .
While in the proposed approach, multiple ideas contribute in
generating the new idea allowing for more cooperation among the
population individuals.

• The global-best update: Here we borrow the global-best gui-
dance concept originally proposed in PSO and subsequently applied
in many algorithms. The incorporation of the global-best informa-
tion in the update equation has improved the performance of many
meta-heuristic algorithms. The influence of the best idea in the
population is added after the new idea is generated as follows:

nidea nidea rand DimSize C GlobalBest nidea= + (1, ) × × ( − )i i i

(6)

However, in the original BSO, the best m positions already con-
tribute to the update process. This probability is equal to
p p p p× + (1 − ) ×one cluster one center one cluster two centers− − − − . When adopting
the parameter settings used in most BSO literature, this probability
is equal to 0.42. That is why the influence of the global-best update
equation in our version is gradually increased though the search
process. This is done by updating C according to the following
equation:

C C CurrentIteration
MaxIterations

C C= + × ( − )min max min (7)

• The re-initialization step: The same re-initialization scheme
previously proposed in [16] is still employed in this version of the
algorithm. Not only it will help in increasing the population diversity
and prevent premature convergence, it also serves the principle of

Fig. 3. Convergence behavior of all the algorithms for a sample of the classical benchmark functions; 10 dimensions.
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injecting open minded elements as proposed in [9] but for the entire
idea instead of randomly selected problem variables.

• Population update: The population is updated once at the end.
The update mechanism is still the same where each newly generated
idea nideai replaces the old one ideai if it has a better fitness. The
population update is carried after all new ideas are generated to
minimize the computational complexity of the algorithm as calculat-
ing the objective function for the whole population in MATLAB
would be faster than calculating the objective function for a single
individual at a time.

The full GBSO algorithm is shown in Fig. 3.

Algorithm 3. The GBSO algorithm.

Require MaxIterations, n, m, pone−cluster,pone−center, and ptwo−centers,
Step, Cmin, Cmax

1: Randomly initialize n ideas
2: Evaluate the n ideas
3: iter=1
4: while iter MaxIterations≤ do
5: Perform fitness-based grouping
6: foreach idea i do
7: foreach problem variable j do
8: if rand P< one cluster− then
9: Probabilistically select a cluster cr
10: if rand P< one center− then
11: nidea center=ij

c
j
r

12: else

13: Randomly select an idea k in cluster cr
14: nidea idea=ij

c
kj
r

15: end if
16: else
17: Randomly select two clusters cr1 and cr2
18: Randomly select two ideas cr

k
1
1 and cr

k
2
2

19: r=rand
20: if rand P< two centers− then
21: nidea r center r center= × + (1 − ) ×ij

c
j

c
j

r r1 2

22: else
23: nidea r idea r idea= × + (1 − ) ×ij

c
k j

c
k j

r r1
1

2
2

24: end if
25: end if
26: end for
27: C C C C= + × ( − )min

Current Iteration
Max Iterations max min

− 1

28: if C rand< then
29: nidea nidea rand DimSize C GlobalBest nidea= + (1, ) × × ( − )i i i

30: end if
31: ξ rand e Step= × ×1− Max Iterations

Max Iterations Current Iteration− +1

32: nidea nidea ξ N μ= + × ( , 0)i i

33: end for
34: Update population
35: end while
36: returnbest idea

Fig. 4. Convergence behavior of all the algorithms for a sample of the classical benchmark functions; 30 dimensions.
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5. Experimental results

5.1. Experimental procedure and parameters settings

To fully evaluate the performance of the proposed GBSO, the
following set of experiments are conducted:

• In the first set of experiments, the effect of the different proposed
components is identified using a set of 20 classical benchmark
functions shown in Tables 1, 2 as well as the CEC05 benchmarks,

• In the second set of experiments, GBSO is compared against BSODE
[13], RGBSO [10] and IRGBSO [16] using the classical functions,

Fig. 5. Convergence behavior of all the algorithms for a sample of the classical benchmark functions; 50 dimensions.

Table 14
Statistical Tests Results For The BSO Variants.

Algorithm Friedman Ranking Holm p-value Finner p-value

RGBSO 3.06 0 0
BSODE 3.03 0 0
IRGBSO 2.23 0.0196 0.0196
GBSO 1.7 – –

Table 15
Performance of Global-best Algorithms on CEC05 Functions – Results of 10D.

Benchmark GABC SPSO IGHS GBSO

Function Mean Std. Mean Std. Mean Std. Mean Std.

1 0.00e+00 0.00e+00 0.00e+00 0.00e+00 8.18e−09 2.21e−09 0.00e+00 0.00e+00
2 6.71e+00 6.30e+00 9.47e−15 2.15e−14 1.13e−08 3.67e−09 9.39e−11 2.42e−10
3 6.23e+05 3.08e+05 3.85e+04 2.91e+04 7.54e+04 5.81e+04 4.97e+04 3.81e+04
4 6.64e+02 4.14e+02 1.71e−14 2.65e−14 1.34e−08 4.39e−09 2.97e−09 8.06e−09
5 2.03e+00 1.56e+00 0.00e+00 0.00e+00 2.75e−03 1.00e−03 1.42e−06 1.00e−06
6 7.63e−02 9.26e−02 4.11e+01 9.71e+01 3.19e+01 5.40e+01 6.21e+00 2.60e+00
7 7.95e−02 5.09e−02 9.46e−02 1.10e−01 1.64e−01 7.69e−02 8.46e−02 5.13e−02
9 0.00e+00 0.00e+00 5.24e+00 2.10e+00 1.63e−06 3.50e−07 0.00e+00 0.00e+00
10 1.35e+01 3.25e+00 4.57e+00 2.09e+00 9.68e+00 3.98e+00 4.61e+00 2.34e+00
11 5.23e+00 9.11e−01 3.27e+00 1.65e+00 9.92e−01 9.34e−01 2.57e−01 5.35e−01
12 1.96e+02 1.05e+02 2.00e+04 9.50e+03 1.78e+02 4.63e+02 5.44e+02 7.14e+02
13 1.36e−01 1.18e−01 7.93e−01 1.68e−01 4.39e−01 1.19e−01 4.84e−01 1.12e−01
14 3.21e+00 1.75e−01 2.30e+00 5.10e−01 3.28e+00 6.37e−01 1.94e+00 5.35e−01
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• In the third and fourth set of experiments, GBSO is compared
against the 2011 version of Standard PSO (SPSO) [17], Global-best
guided ABC (GABC) [18] and the Improved Global-best Harmony
Search (IGHS) [19] on the CEC05 and the CEC14 [21] benchmarks,

• Finally, GBSO is compared to some state-of-the-art algorithms on
the CEC05 and CEC14 benchmarks.

For all BSO variants tested, we use the same parameters settings
employed in the literature having the population size n=25, the number
of clusters m=5, p = 0.8one cluster− , p = 0.4one center− , and p = 0.5two centers− .
For both GBSO and IRGBSO, we use the same parameter settings in
[16] having Threshold=10, F=0.5, and α UB LB= 0.05 × ( − ), where LB
and UB are the lower and upper bounds of the search space. For GBSO,
the values C = 0.2min and C = 0.8max are used. All experiments are
conducted on dimensions D=10, D=30, and D=50 for a maximum of

D10000 × function evaluations. In all tables, best results are high-
lighted in bold based on the non-parametric Wilcoxon-ranksum test
with a 5% confidence interval.

5.2. Individual components effect

Results of the first set of experiments are provided in Tables 3 and 4 for
the classical functions and Tables 5 and 6 for the CEC05 benchmarks.

Table 16
Performance of Global-best Algorithms on CEC05 Functions – Results of 30D.

Benchmark GABC SPSO IGHS GBSO

Function Mean Std. Mean Std. Mean Std. Mean Std.

1 6.82e−14 2.31e−14 5.49e−14 1.04e−14 8.87e−08 1.25e−08 5.49e−14 1.04e−14
2 1.38e+03 8.51e+02 3.35e−13 1.07e−13 6.51e−07 1.68e−07 3.15e−04 2.10e−04
3 6.22e+06 3.21e+06 2.80e+05 1.37e+05 4.78e+05 2.36e+05 1.06e+06 3.61e+05
4 3.29e+04 5.04e+03 5.03e+01 3.27e+01 9.59e−03 1.89e−02 1.83e−01 1.66e−01
5 7.62e+03 1.46e+03 4.73e+03 7.93e+02 1.18e+03 5.32e+02 8.90e+01 7.94e+01
6 1.53e+01 2.67e+01 5.04e+02 1.06e+03 1.61e+02 1.71e+02 8.80e+01 1.47e+02
7 2.77e−02 1.84e−02 2.94e−02 2.43e−02 8.70e−03 1.06e−02 7.72e−03 7.91e−03
9 5.68e−14 2.57e−29 5.77e+01 2.71e+01 1.69e−05 1.70e−06 3.60e−01 6.30e−01
10 1.70e+02 2.45e+01 5.52e+01 1.31e+01 4.98e+01 1.41e+01 2.52e+01 7.85e+00
11 2.69e+01 1.50e+00 2.66e+01 4.48e+00 5.60e+00 2.25e+00 1.35e+00 1.74e+00
12 6.54e+03 2.60e+03 1.04e+06 1.51e+05 1.59e+03 1.74e+03 4.44e+03 5.34e+03
13 8.07e−01 1.56e−01 5.98e+00 3.30e+00 1.23e+00 2.43e−01 1.73e+00 2.73e−01
14 1.27e+01 2.36e−01 1.20e+01 6.68e−01 1.19e+01 5.73e−01 1.01e+01 8.59e−01

Table 17
Performance of Global-best Algorithms on CEC05 Functions – Results of 50D.

Benchmark GABC SPSO IGHS GBSO

Function Mean Std. Mean Std. Mean Std. Mean Std.

1 1.65e−13 2.73e−14 9.47e−14 2.73e−14 2.74e−07 2.87e−08 1.00e−13 2.45e−14
2 1.39e+04 6.08e+03 1.38e−11 1.64e−11 9.63e−06 1.92e−06 1.07e−01 4.10e−02
3 1.18e+07 3.69e+06 4.33e+05 1.44e+05 9.07e+05 3.72e+05 2.09e+06 7.49e+05
4 9.28e+04 1.10e+04 3.92e+03 1.02e+03 3.18e+03 2.03e+03 8.46e+01 4.50e+01
5 2.13e+04 1.97e+03 1.24e+04 1.87e+03 3.29e+03 7.67e+02 6.61e+02 3.23e+02
6 3.32e+01 4.35e+01 6.77e+02 1.73e+03 1.45e+02 1.70e+02 1.44e+03 2.42e+03
7 1.02e−02 1.66e−02 1.12e−02 1.48e−02 1.07e−03 2.80e−03 1.48e−03 3.01e−03
9 1.04e−13 2.15e−14 1.31e+02 2.78e+01 5.12e−05 4.33e−06 2.85e+00 1.19e+00
10 5.25e+02 6.61e+01 1.52e+02 3.02e+01 8.94e+01 2.13e+01 5.13e+01 1.24e+01
11 5.33e+01 2.90e+00 5.72e+01 4.13e+00 1.20e+01 3.35e+00 3.56e+00 2.43e+00
12 2.96e+04 1.15e+04 5.16e+06 7.99e+05 1.22e+04 1.04e+04 1.79e+04 1.37e+04
13 1.45e+00 2.45e−01 1.38e+01 8.27e+00 2.01e+00 2.83e−01 3.19e+00 5.29e−01
14 2.24e+01 2.46e−01 2.16e+01 6.81e−01 2.11e+01 7.82e−01 2.11e+01 9.18e−01

Table 18
Statistical Tests Results For The Global-best Algorithms – CEC05 Functions.

Algorithm Friedman Ranking Holm p-value Finner p-value

GABC 2.88 0.0064 0.0064
SPSO 2.81 0.0100 0.0075
IGHS 2.32 0.2542 0.2542
GBSO 1.99 – –

Table 19
Number of Successful Runs For The Global-best Algorithms – CEC05 Functions.

Benchmark Problem GABC SPSO IGHS GBSO

Function Size

1 10 30 30 30 30
2 0 30 30 30
4 0 30 30 30
5 0 30 0 10
6 8 0 0 0
7 0 2 0 0
9 30 0 30 30
10 0 0 0 1
11 0 0 0 19
12 0 0 3 0
13 6 0 0 0

1 30 30 30 30 30
2 0 30 28 0
6 2 0 0 0
7 9 12 21 20
9 30 0 30 19

1 50 30 30 30 30
2 0 30 0 0
7 21 19 30 30
9 30 0 30 1
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Inspecting the performance on the classical functions shows that
the per-variable update and Gbest components provide the best
performance on a large number of functions. On the other hand, the
re-initialization component provides the best performance on the
CEC05 benchmarks. This illustrates that there is no single component
emerges as the obvious winner and that the performance of the
different components varies on different benchmarks. Another impor-
tant observation is that the adoption of each individual component by
itself can outperform the original BSO algorithm.

When the second best local optima is far in the search space from
the global optima, FBG could be very much similar to the distance-
based k-means clustering as both of these optima will be classified in
different clusters. That is why the performance when adopting this
component is very similar to the performance of the original BSO on

the Schwefel 2.26 (f11) classical function and its shifted version (f12)
in the CEC05 benchmarks.

Fig. 1 shows how the diversity of the population evolves over the
entire search process for the original BSO, the per-variable update
component, the Gbest component, and the Re initilaization− compo-
nent. The population diversity is measured according to the following
formula:

∑ ∑Diveristy
n

x x= 1 −
i

n

j

D

ij j
=1 =1

2 2

(8)

where x is the mean position of the population.
The figure shows again that different components have different

effects on the population. While the Gbest component does not have a
big effect on diversity, the re-initialization component helps in
increasing the diversity of the population by discarding stagnate ideas.
Such an increase in diversity becomes essential for difficult bench-
marks (involving shifting and rotation) as the CEC05. As for the per-
variable update component, the level of cooperation induced by this
component seems to have a negative effect on diversity for uni-modal
functions. For functions f1 and f5, the diversity quickly decreases and
remains very low till the end. On the other hand, for multi-modal
functions f9 and f12, the diversity is maintained at a high level for a big
part of the search process and gradually decreases towards the end.

Tables 7 and 8 present results of experiments carried to test the
Gbest component sensitivity to the values of Cmin and Cmax. Rows with
no bold entries mean that all results are statistically equivalent
according to the non-parametric Wilcoxon-ranksum statistical test.
Results show that the algorithm's performance is insensitive to the
tested values of these parameters and that the choice of our setting to
[0.2, 0.8] is suitable.

Moreover, Tables 9 and 10 present a comparison between our
proposed Gbest mechanism and the use of a global-best Eq. (6), with
different values for C, without having the increasing effect presented in

Table 20
Performance Rates For The Global-best Algorithms – CEC05 Functions.

Benchmark Problem GABC SPSO IGHS GBSO

Function Size

1 10 1.00 1.24 15.2 17.9
2 – 1.00 5.66 6.64
4 – 1.00 4.23 4.92
5 – 1.00 10.7 11.4
9 1.00 – 7.95 11.8

1 30 1.13 1.00 16.7 17.6
2 – 1.00 2.62 –

7 4.54 1.00 1.60 2.89
9 1.00 – 6.93 15.5

1 50 1.18 1.00 17.2 17.4
7 2.55 1.00 2.12 3.53
9 1.00 – 6.22 253.00

Table 21
Performance of Global-best Algorithms on CEC14 Functions – Results of 10D.

Benchmark GABC SPSO IGHS GBSO

Function Mean Std. Mean Std. Mean Std. Mean Std.

1 9.84e+04 7.41e+04 2.04e+04 1.08e+04 2.84e+04 1.63e+04 4.75e+04 4.85e+04
2 6.91e+01 1.32e+02 9.51e+02 1.06e+03 4.61e+03 3.88e+03 2.23e+03 2.15e+03
3 1.05e+02 1.08e+02 1.24e+03 7.08e+02 3.16e+02 6.85e+02 4.70e+02 7.70e+02
4 3.13e−03 4.18e−03 2.36e+01 1.61e+01 2.83e+01 1.33e+01 2.61e+01 1.49e+01
5 1.68e+01 7.35e+00 1.88e+01 5.11e+00 2.00e+01 9.79e−04 1.57e+01 8.32e+00
6 8.96e−01 4.99e−01 3.18e−01 6.19e−01 1.80e+00 1.43e+00 4.50e−01 8.71e−01
7 4.81e−03 6.78e−03 2.13e−02 1.76e−02 1.49e−01 6.88e−02 5.59e−02 2.93e−02
8 0.00e+00 0.00e+00 5.21e+00 2.32e+00 4.21e−09 1.25e−09 3.48e−02 1.61e−01
9 4.09e+00 1.37e+00 4.44e+00 2.10e+00 9.98e+00 4.69e+00 2.95e+00 1.21e+00
10 3.31e−02 3.46e−02 3.57e+02 1.81e+02 2.04e−01 8.82e−02 1.97e+00 2.40e+00
11 1.58e+02 1.06e+02 4.28e+02 2.76e+02 3.92e+02 1.98e+02 1.04e+02 8.01e+01
12 2.15e−01 6.48e−02 5.39e−01 1.59e−01 2.00e−02 3.33e−02 8.37e−03 1.37e−02
13 1.09e−01 1.83e−02 6.16e−02 2.72e−02 7.92e−02 2.53e−02 5.05e−02 2.12e−02
14 9.71e−02 2.42e−02 1.13e−01 5.30e−02 1.16e−01 5.35e−02 1.31e−01 6.04e−02
15 6.22e−01 1.25e−01 9.33e−01 1.97e−01 7.80e−01 3.17e−01 8.03e−01 2.54e−01
16 1.72e+00 3.48e−01 1.84e+00 4.35e−01 2.25e+00 5.91e−01 1.20e+00 5.79e−01
17 1.22e+05 1.02e+05 1.51e+03 1.51e+03 2.53e+03 2.13e+03 1.39e+03 1.66e+03
18 5.88e+02 5.42e+02 1.66e+03 2.63e+03 1.31e+04 1.09e+04 8.18e+03 6.48e+03
19 1.52e−01 6.33e−02 2.24e+00 5.71e−01 1.36e+00 7.27e−01 8.63e−01 3.31e−01
20 3.80e+02 5.84e+02 1.84e+02 2.48e+02 2.38e+03 2.76e+03 3.53e+02 8.12e+02
21 5.91e+03 5.89e+03 1.03e+03 1.06e+03 2.72e+03 3.00e+03 2.93e+02 3.18e+02
22 1.87e−01 1.18e−01 2.86e+01 7.29e+00 5.56e+01 7.22e+01 2.63e+01 4.49e+01
23 2.70e+02 1.22e+02 3.29e+02 0.00e+00 3.29e+02 0.00e+00 3.29e+02 2.30e−13
24 1.13e+02 2.71e+00 1.12e+02 4.32e+00 1.21e+02 1.68e+01 1.07e+02 3.99e+00
25 1.25e+02 4.75e+00 1.81e+02 2.74e+01 1.78e+02 3.41e+01 1.78e+02 3.17e+01
26 9.73e+01 1.56e+01 1.00e+02 2.56e−02 1.10e+02 3.05e+01 1.00e+02 1.97e−02
27 9.85e+01 1.58e+02 2.61e+02 1.49e+02 3.53e+02 8.17e+01 2.49e+02 1.14e+02
28 3.62e+02 5.84e+00 3.96e+02 5.39e+01 4.41e+02 1.08e+02 4.30e+02 6.51e+01
29 2.97e+02 4.02e+01 4.91e+02 1.39e+02 6.58e+05 8.83e+05 1.21e+05 4.11e+05
30 5.27e+02 6.75e+01 7.75e+02 3.02e+02 8.50e+02 2.88e+02 5.76e+02 1.16e+02
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Table 22
Performance of Global-best Algorithms on CEC14 Functions – Results of 30D.

Benchmark GABC SPSO IGHS GBSO

Function Mean Std. Mean Std. Mean Std. Mean Std.

1 4.95e+06 3.93e+06 2.74e+05 1.55e+05 2.70e+05 1.22e+05 8.38e+05 4.94e+05
2 4.70e+01 7.18e+01 7.48e+03 5.10e+03 1.45e+04 1.20e+04 8.55e+03 7.48e+03
3 5.61e+02 5.04e+02 4.51e+03 1.54e+03 8.27e−01 9.30e−01 2.22e+02 2.96e+02
4 3.94e+01 3.15e+01 2.39e+01 3.27e+01 6.50e+00 2.57e+01 6.15e+01 1.83e+01
5 2.02e+01 5.89e−02 2.07e+01 9.98e−02 2.00e+01 1.53e−03 2.03e+01 3.33e−01
6 1.30e+01 1.79e+00 1.21e+01 2.50e+00 4.87e+00 2.21e+00 9.84e−01 1.18e+00
7 1.81e−08 4.73e−08 1.06e−02 1.28e−02 9.03e−03 8.64e−03 9.17e−03 9.68e−03
8 1.14e−13 1.03e−28 4.35e+01 1.04e+01 4.35e−08 5.59e−09 1.70e−01 4.16e−01
9 5.38e+01 9.20e+00 4.66e+01 1.28e+01 4.13e+01 1.02e+01 2.31e+01 6.82e+00
10 8.86e−01 1.57e+00 2.68e+03 5.63e+02 2.31e−01 5.53e−02 3.80e+00 2.27e+00
11 1.70e+03 2.68e+02 3.59e+03 6.74e+02 1.89e+03 5.12e+02 4.37e+02 2.56e+02
12 1.90e−01 5.71e−02 1.39e+00 2.93e−01 2.92e−02 1.70e−02 1.86e−02 2.07e−02
13 2.08e−01 2.62e−02 1.88e−01 4.04e−02 2.70e−01 5.24e−02 1.57e−01 4.36e−02
14 1.82e−01 1.58e−02 2.21e−01 4.08e−02 3.06e−01 2.20e−01 2.21e−01 4.03e−02
15 4.69e+00 9.99e−01 6.92e+00 2.69e+00 2.94e+00 5.85e−01 3.38e+00 7.13e−01
16 9.16e+00 4.43e−01 1.10e+01 4.66e−01 9.81e+00 8.51e−01 8.66e+00 7.46e−01
17 2.03e+06 1.34e+06 2.12e+04 1.47e+04 2.50e+04 2.11e+04 7.28e+04 4.65e+04
18 5.24e+03 5.75e+03 1.44e+03 1.55e+03 4.84e+03 7.14e+03 2.39e+03 3.24e+03
19 7.09e+00 9.24e−01 1.36e+01 2.53e+00 7.04e+00 1.96e+00 4.72e+00 1.02e+00
20 5.56e+03 2.13e+03 8.33e+02 4.31e+02 7.52e+01 3.24e+01 8.80e+01 3.10e+01
21 2.44e+05 1.75e+05 2.01e+04 1.58e+04 1.28e+04 1.10e+04 2.32e+04 1.53e+04
22 2.39e+02 1.15e+02 2.79e+02 9.59e+01 3.78e+02 1.69e+02 2.24e+02 9.10e+01
23 3.16e+02 6.50e−01 3.15e+02 6.39e−05 3.15e+02 5.78e−14 3.15e+02 1.55e−04
24 2.19e+02 1.74e+01 2.34e+02 7.04e+00 2.12e+02 1.55e+01 2.00e+02 5.98e−02
25 2.08e+02 1.36e+00 2.14e+02 2.47e+00 2.05e+02 1.47e+00 2.03e+02 3.05e−01
26 1.00e+02 5.86e−02 1.27e+02 4.49e+01 1.51e+02 6.59e+01 1.00e+02 3.90e−02
27 4.08e+02 2.88e+00 6.09e+02 1.24e+02 4.99e+02 9.23e+01 3.96e+02 7.11e+01
28 8.40e+02 3.39e+01 1.23e+03 2.82e+02 8.99e+02 1.09e+02 7.94e+02 7.80e+01
29 1.18e+03 2.25e+02 3.08e+06 6.24e+06 2.01e+06 3.70e+06 1.71e+05 1.21e+06
30 3.02e+03 8.46e+02 5.84e+03 1.79e+03 2.48e+03 9.09e+02 2.03e+03 6.51e+02

Table 23
Performance of Global-best Algorithms on CEC14 Functions – Results of 50D.

Benchmark GABC SPSO IGHS GBSO

Function Mean Std. Mean Std. Mean Std. Mean Std.

1 1.10e+07 3.89e+06 7.92e+05 2.51e+05 9.04e+05 3.73e+05 2.22e+06 7.45e+05
2 6.74e+03 8.87e+03 7.77e+03 7.89e+03 7.75e+03 9.27e+03 9.26e+03 8.21e+03
3 6.72e+03 2.82e+03 1.17e+03 3.34e+02 3.61e−02 5.41e−02 1.59e+03 8.57e+02
4 6.34e+01 2.98e+01 7.76e+01 3.35e+01 9.35e+01 8.77e+00 9.66e+01 2.90e+00
5 2.01e+01 7.40e−02 2.09e+01 9.24e−02 2.00e+01 8.46e−03 2.09e+01 3.73e−01
6 2.74e+01 2.10e+00 3.06e+01 3.13e+00 1.05e+01 3.54e+00 2.08e+00 1.65e+00
7 2.56e−04 8.99e−04 6.55e−03 1.31e−02 4.77e−03 5.33e−03 3.04e−03 4.34e−03
8 2.20e−13 2.88e−14 1.14e+02 2.23e+01 1.16e−07 1.64e−08 1.47e+00 1.30e+00
9 1.23e+02 1.43e+01 1.28e+02 2.53e+01 9.26e+01 1.92e+01 4.76e+01 1.06e+01
10 9.62e−01 1.25e+00 5.92e+03 9.42e+02 2.24e−01 4.37e−02 6.76e+00 6.01e+00
11 3.98e+03 4.50e+02 6.95e+03 1.09e+03 3.37e+03 6.70e+02 1.58e+03 5.25e+02
12 1.84e−01 3.90e−02 2.15e+00 3.93e−01 2.64e−02 1.40e−02 1.80e−02 1.30e−02
13 2.65e−01 3.86e−02 3.48e−01 7.08e−02 3.88e−01 5.82e−02 2.56e−01 4.56e−02
14 2.19e−01 1.40e−02 2.87e−01 3.33e−02 4.46e−01 3.24e−01 2.36e−01 6.71e−02
15 1.22e+01 1.79e+00 2.56e+01 7.36e+00 6.55e+00 1.46e+00 6.36e+00 1.25e+00
16 1.73e+01 5.65e−01 2.04e+01 5.29e−01 1.75e+01 1.06e+00 1.71e+01 8.47e−01
17 3.11e+06 1.59e+06 3.72e+04 2.02e+04 5.99e+04 2.89e+04 1.89e+05 1.51e+05
18 2.19e+03 1.45e+03 1.86e+03 1.06e+03 2.58e+03 1.70e+03 1.51e+03 1.45e+03
19 1.84e+01 2.56e+00 5.51e+01 1.94e+01 1.67e+01 2.55e+00 1.15e+01 1.37e+00
20 2.71e+04 6.94e+03 8.25e+02 2.55e+02 1.80e+02 7.05e+01 1.84e+02 4.61e+01
21 1.84e+06 8.64e+05 4.64e+04 2.22e+04 5.32e+04 3.62e+04 1.44e+05 7.87e+04
22 6.80e+02 1.98e+02 7.57e+02 2.50e+02 6.11e+02 1.96e+02 2.74e+02 1.40e+02
23 3.46e+02 2.28e+00 3.44e+02 3.59e−02 3.44e+02 6.35e−05 3.44e+02 1.60e−03
24 2.59e+02 2.49e+00 2.88e+02 6.81e+00 2.62e+02 5.42e+00 2.56e+02 2.51e+00
25 2.15e+02 1.64e+00 2.31e+02 4.46e+00 2.11e+02 2.80e+00 2.07e+02 8.45e−01
26 1.00e+02 7.85e−02 1.63e+02 4.89e+01 1.47e+02 5.06e+01 1.32e+02 4.68e+01
27 1.07e+03 1.83e+02 1.15e+03 1.22e+02 6.93e+02 1.27e+02 4.35e+02 5.76e+01
28 1.35e+03 1.33e+02 2.87e+03 7.01e+02 1.38e+03 2.85e+02 1.07e+03 7.14e+01
29 2.00e+03 6.43e+02 4.79e+07 7.40e+07 2.39e+06 9.07e+06 2.46e+03 6.22e+02
30 9.92e+03 7.28e+02 2.71e+04 5.73e+03 1.04e+04 1.76e+03 9.11e+03 6.40e+02
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Eq. (7). Results show that when D=10, having the proposed increased
influence of the global-best factor provides better results on multi-
modal functions. For D=30, the results of having the increased Gbest
effect improved on uni-modal functions while having the same
competitive performance on multi-modal functions.

As for the effect on diversity, Fig. 2 illustrates the diversity of the
population when adopting the increased Gbest mechanism versus the
fixed application of the Gbest equation with C=0.75. The figure shows
that our proposed approach maintains a higher level of diversity
through the entire search.

5.3. GBSO vs. previous BSO variants

For the second set of experiments, results of all algorithms are
provided in Tables 11–13. Results illustrate the superior performance
of GBSO over previous BSO variants as it provides an improvement of
several orders of magnitude on multiple benchmark functions.

Convergence curves of all algorithms for a sample of the functions
across all problem sizes are presented in Figs. 3, 4 and 5. The curves
show that GBSO has a desirable property as it continues to improve
during the entire search process for a number of functions in different
dimensions.

Based on suggestions provided in [28], further assessment of the
performance of GBSO is performed using the Friedman test, to provide
the ranking, and the post hoc procedures (Holm and Finner), to
compare all algorithms against the best one. The tests are run using
the software available at [29] and results are shown in Table 14 where
the best (lowest) rank is highlighted in bold. For the Holm and Finner
procedures, adjusted p-values are reported with significant differences
at a 0.05 level of significance. The results confirm the superior
performance of the proposed GBSO algorithm when compared to
BSODE, RGBSO and IRGBSO.

5.4. GBSO vs. other global-best algorithms

For the third set of experiments, results of all algorithms are

provided in Tables 15–17. Results for GBSO are provided in italic if it's
the second best performer. Average rankings and p-values provided by
the post hoc procedures (Holm and Finner) are given in Table 18. Note
that function f8 was excluded from the comparisons as it has the global
optimum near the bounds and it acts as the needle-in-hay-stack
problem. All algorithms applied to this function practically reach the
same solution.

Results show that for all problem sizes, SPSO is the best performer
for uni-modal functions and is closely followed by GBSO. However,
GBSO and GABC are the best performers on multi-modal functions.
The 2007 version of SPSO was also proven to be very powerful on uni-
modal functions while the original ABC was proven to be the best on
multi-modal functions compared to many other algorithms in [30].
This illustrates that GBSO can match the global-best versions of
powerful algorithms on functions with varying characteristics. Results
of the post hoc experiments show that GBSO is the best performer
overall for the CEC05 benchmarks.

Finally, comparing the results of GBSO to the results of its
individual components in Tables 5 and 6 above shows that GBSO
provides better results than any of its components on 8 functions out of
13 for D=10 and 10 functions out of 13 in D=30.

The number of successful runs for all algorithms is given in
Table 19. A successful run is defined as a run in which the algorithm
has reached the threshold of 10−6 for uni-modal functions and 10−2 for
multi-modal functions as was set in [20]. For D=10, SPSO and GBSO
are the most successful in uni-modal functions. For multi-modal
functions, GBSO has a competitive performance being the only
algorithm able to solve functions f10 and f11. For D=30 and D=50,
SPSO is still the best performer on uni-modal functions. As for multi-
modal functions, GBSO and IGHS are the most successful on function
f7 while GABC and IGHS are the most successful on function f9.

Performance rates for all algorithms are provided in Table 20. The
performance rate is defined as:

PerformanceRate
FES TotalRuns

SuccessfulRuns
=

×avg

(9)

where FESavg is the average number of function evaluations needed to
reach the predetermined threshold taken over the successful runs only.

Results show that SPSO is usually the algorithm with the highest
speed of convergence. SPSO is usually followed by either GABC or
IGHS. In most functions, GBSO has the slowest speed of convergence.
The slow speed of convergence of GBSO is due to its re-initialization
scheme (not in SPSO or IGHS) in addition to the gradual use of the
Gbest information (not in SPSO or GABC).

For the fourth set of experiments, results of all algorithms are
provided in Tables 21–23. Average rankings and p-values provided by

Table 24
Statistical Tests Results For The Global-best Algorithms – CEC14 Functions.

Algorithm Friedman Ranking Holm p-value Finner p-value

SPSO 3.05 0 0
IGHS 2.64 0.0016 0.0012
GABC 2.32 0.0941 0.0941
GBSO 1.99 – –

Table 25
Comparison with CMA-ES on CEC05 Functions – Results of 10D and 50D.

Benchmark D=10 D=50

CMA-ES GBSO CMA-ES GBSO

Function Mean Std. Mean Std. Mean Std. Mean Std.

1 5.20e−09 1.994e−09 0.00e+00 0.00e+00 5.87e−09 8.59e−10 1.00e−13 2.45e−14
2 4.70e−09 1.56e−09 9.39e−11 2.42e−10 7.86e−09 7.24e−10 1.07e−01 4.10e−02
3 5.60e−09 1.93e−09 4.97e+04 3.81e+04 6.14e−09 6.86e−10 2.09e+06 7.49e+05
4 5.02e−09 1.71e−09 2.97e−09 8.06e−09 4.68e+05 3.11e+05 8.46e+01 4.50e+01
5 6.58e−09 2.17e−09 1.42e−06 1.00e−06 2.85e+00 4.32e+00 6.61e+02 3.23e+02
6 4.87e−09 1.66e−09 6.21e+00 2.60e+00 7.13e−09 1.11e−09 1.44e+03 2.42e+03
7 3.31e−09 2.02e−09 5.46e−02 5.13e−02 7.22e−09 1.03e−09 1.48e−03 3.01e−03
9 2.39e−01 4.34e−01 0.00e+00 0.00e+00 1.39e+00 1.11e+00 2.85e+00 1.19e+00
10 7.96e−02 2.75e−01 4.61e+00 2.34e+00 1.72e+00 1.42e+00 5.13e+01 1.24e+01
11 9.34e−01 9.00e−01 2.57e−01 5.35e−01 1.17e+01 3.14e+00 3.56e+00 2.43e+00
12 2.93e+01 1.42e+02 5.44e+02 7.14e+02 2.27e+05 1.11e+06 1.79e+04 1.37e+04
13 6.96e−01 1.50e−01 4.84e−01 1.12e−01 4.59e+00 5.15e−01 3.19e+00 5.29e−01
14 3.01e+00 3.49e−01 1.94e+00 5.35e−01 2.29e+01 5.78e−01 2.11e+01 9.18e−01
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the post hoc procedures (Holm and Finner) are given in Table 24.
Results show that GBSO has the best performance on the simple

multi-modal functions (f4–f16), which is closely followed by GABC.
And although GABC is the best performer on the hybrid functions
(f17–f22) and the composition functions (f23–f30) for D=10, the
performance of GBSO on these functions is highly improved for larger
problem sizes becoming the best performer in D=30 and D=50. In
addition, results of the post hoc experiments show that GBSO is the
best performer overall for the CEC14 benchmarks.

5.5. Comparison with the state-of-the-art algorithms

Table 25 presents a comparison between the proposed GBSO
against CMA-ES [31] on the CEC05 benchmarks for D=10 and
D=50. Table 26 adds CoDE, SaDE, and Ranked FIPS [32] to the

comparison for D=30. Results of CoDE and SaDE are extracted from
[13], results of Ranked FIPS are extracted from [32], and results of
CMA-ES are extracted from [31]. All algorithms are run for D10000 ×
function evaluations. Note that in [32], Ranked FIPS was not applied to
f4 and its entry in Table 26 is shown as ’-’.

Results show that GBSO has a very competitive performance with
CMA-ES across the different problem sizes providing a better solution
for almost half of the functions under study. For D=30, GBSO provides
the best solution on five out of the 13 tested functions as well as being
the second best performer, shown in italic, on another five functions
when compared against all other algorithms.

Table 27 presents a comparison between the proposed GBSO
against LSHADE [33] on the CEC14 benchmarks for D=10. Tables
28, 29 add BLPSO [34] to the comparison for D=30 and D=50. BLPSO
(Biogeography-based Learning PSO) is a recently proposed PSO variant
that was shown to be better than FIPSO (The Fully Informed PSO)
[35], CLPSO (Comprehensive Learning PSO) [36], and DMSPSO
(Dynamic Multi-Swarm PSO) [37] as well as CMA-ES on the CEC14
benchmarks. Results of LSHADE and BLPSO are extracted from their
respective references where all algorithms were run for D10000 ×
function evaluations. For each function, the best result is shown in bold
while the second best result is shown in italic.

Results show that LSHADE is the best performer overall specially
on the uni-modal functions (f1-f3) and the hybrid functions (f17-f22).
GBSO offers some competitive results on the simple multi-modal
functions (f4-f16) and the composition functions (f23-f30). In addition,
results of the post hoc experiments, shown in Table 30, show that
GBSO, although outperformed by LSHADE, is a better performer than
BLPSO for the CEC14 benchmarks.

It's quite understandable that no algorithm will outperform all
other competitors on all benchmark. And although GBSO is extremely
competitive, with the state-of-the-art, on the CEC05 benchmarks and
outperforms the recent BLPSO on the CEC14 benchmarks, it is still
outperformed by LSHADE. It is worth noting that LSHADE uses some
advanced mechanisms that are not adopted by GBSO including the
success-history based adaptation of its parameters, the use of an
external archive, and the linear reduction of the population size. All
of these techniques are promising future directions for enhancing the
performance of GBSO.

6. Conclusions

In this paper we introduced a Global-best BSO (GBSO) algorithm.
The performance of BSO was improved using a combination of a
fitness-based grouping approach, per-variable updates, following the
global-best idea, and a re-initialization mechanism. The effect of each
of these components on the original BSO algorithm was analyzed based

Table 26
Comparison with CoDE, SaDE, Ranked FIPS, and CMA-ES on CEC05 Functions – Results of 30D.

Bench. CoDE SaDE Ranked FIPS CMA-ES GBSO

Func. Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

1 0.00+e00 0.00+e00 0.00+e00 0.00+e00 0.00+e00 0.00+e00 5.43e−09 9.80e−10 5.49e−14 1.04e−14
2 9.11e−06 1.11e−05 5.55e−10 6.99e−10 0.00+e00 0.00+e00 6.22e−09 8.95e−10 3.15e−04 2.10e−04
3 3.65e+05 1.60e+05 3.67e+05 1.82e+05 4.64e+05 1.29e+04 5.55e−09 1.09e−09 1.06e+06 3.61e+05
4 2.01e+01 5.61e+01 4.42e+01 1.25e+02 – – 1.11e+04 3.02e+04 1.83e−01 1.66e−01
5 2.93e+04 2.21e−04 2.93e+04 1.09e+02 2.94e+03 2.90e+01 9.62e−09 8.53e−09 8.90e+01 7.94e+01
6 3.45e+00 3.67e+00 3.07e+01 3.24e+01 1.75e+01 1.68e−01 5.90e−09 1.61e−09 8.80e+01 1.47e+02
7 4.70e+03 1.03e−12 4.70e+03 4.15e−13 1.21e−02 7.70e−04 5.31e−09 1.44e−09 7.72e−03 7.91e−03
9 1.34e−12 3.35e−12 1.95e+00 1.27e+00 2.54e+01 6.61e−01 9.38e−01 1.18e+00 3.60e−01 6.30e−01
10 3.98e+01 1.55e+01 4.75e+01 1.13e+01 2.89e+01 5.65e−01 1.65e+00 1.35e+00 2.52e+01 7.85e+00
11 1.05e+01 4.09e+00 1.65e+01 2.85e+00 1.13e+01 2.87e−01 5.38e+00 3.13e+00 1.35e+00 1.74e+00
12 1.31e+05 2.54e+04 9.67e+04 1.47e+04 4.52e+03 4.53e+02 4.43e+04 2.15e+05 4.44e+03 5.34e+03
13 4.02e+00 1.22e+00 2.76e+00 3.60e−01 2.98e+00 7.1e−02 2.49e+00 5.13e−01 1.73e+00 2.73e−01
14 1.25e+01 3.82e−01 1.27e+01 1.83e−01 1.16e+01 3.7e−02 1.29e+01 4.19e−01 1.01e+01 8.59e−01

Table 27
Comparison with LSHADE on CEC14 Functions – Results of 10D.

Benchmark LSHADE GBSO

Function Mean Std. Mean Std.

1 0.00e+00 0.00e+00 4.75e+04 4.85e+04
2 0.00e+00 0.00e+00 2.23e+03 2.15e+03
3 0.00e+00 0.00e+00 4.70e+02 7.70e+02
4 2.94e+01 1.26e+01 2.61e+01 1.49e+01
5 1.41e+01 8.76e+00 1.57e+01 8.32e+00
6 1.75e−02 1.25e−01 4.50e−01 8.71e−01
7 3.04e−03 6.51e−03 5.59e−02 2.93e−02
8 0.00e+00 0.00e+00 3.48e−02 1.61e−01
9 2.34e+00 8.40e−01 2.95e+00 1.21e+00
10 8.57e−03 2.17e−02 1.97e+00 2.40e+00
11 3.21e+01 3.83e+01 1.04e+02 8.01e+01
12 6.82e−02 1.92e−02 8.37e−03 1.37e−02
13 5.16e−02 1.51e−02 5.05e−02 2.12e−02
14 8.14e−02 2.55e−02 1.31e−01 6.04e−02
15 3.66e−01 6.92e−02 8.03e−01 2.54e−01
16 1.24e+00 3.03e−01 1.20e+00 5.79e−01
17 9.77e−01 1.08e+00 1.39e+03 1.66e+03
18 2.44e−01 3.14e−01 8.18e+03 6.48e+03
19 7.73e−02 6.40e−02 8.63e−01 3.31e−01
20 1.85e−01 1.80e−01 3.53e+02 8.12e+02
21 4.08e−01 3.09e−01 2.93e+02 3.18e+02
22 4.41e−02 2.82e−02 2.63e+01 4.49e+01
23 3.29e+02 2.87e−13 3.29e+02 2.30e−13
24 1.07e+02 2.28e+00 1.07e+02 3.99e+00
25 1.33e+02 4.04e+01 1.78e+02 3.17e+01
26 1.00e+02 1.63e−02 1.00e+02 1.97e−02
27 5.81e+01 1.34e+02 2.49e+02 1.14e+02
28 3.81e+02 3.17e+01 4.30e+02 6.51e+01
29 2.22e+02 4.63e−01 1.21e+05 4.11e+05
30 4.65e+02 1.33e+01 5.76e+02 1.16e+02
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Table 28
Comparison with LSHADE and BLPSO on CEC14 Functions – Results of 30D.

Benchmark LSHADE BLPSO GBSO

Function Mean Std. Mean Std. Mean Std.

1 0.00e+00 0.00e+00 2.99e+06 1.10e+06 8.38e+05 4.94e+05
2 0.00e+00 0.00e+00 5.09e+03 4.25e+03 8.55e+03 7.48e+03
3 0.00e+00 0.00e+00 3.67e+00 1.16e+01 2.22e+02 2.96e+02
4 0.00e+00 0.00e+00 2.68e+01 3.47e+01 6.15e+01 1.83e+01
5 2.01e+01 3.68e−02 2.08e+01 7.01e−02 2.03e+01 3.33e−01
6 1.38e−07 9.89e−07 9.37e−06 3.20e−05 9.84e−01 1.18e+00
7 0.00e+00 0.00e+00 9.47e−14 4.31e−14 9.17e−03 9.68e−03
8 0.00e+00 0.00e+00 2.32e−01 5.65e−01 1.70e−01 4.16e−01
9 6.78e+00 1.48e+00 3.54e+01 6.93e+00 2.31e+01 6.82e+00
10 1.63e−02 1.58e−02 8.83e+01 6.48e+01 3.80e+00 2.27e+00
11 1.23e+03 1.83e+02 2.08e+03 3.82e+02 4.37e+02 2.56e+02
12 1.61e−01 2.29e−02 8.83e−01 1.49e−01 1.86e−02 2.07e−02
13 1.24e−01 1.75e−22 2.21e−01 2.85e−02 1.57e−01 4.36e−02
14 2.42e−01 2.98e−02 2.14e−01 2.88e−02 2.21e−01 4.03e−02
15 2.15e+00 2.51e−01 7.41e+00 8.49e−01 3.38e+00 7.13e−01
16 8.50e+00 4.58e−01 9.67e+00 4.92e−01 8.66e+00 7.46e−01
17 1.88e+02 7.50e+01 1.86e+05 1.11e+05 7.28e+04 4.65e+04
18 5.91e+00 2.89e+00 9.05e+02 1.20e+03 2.39e+03 3.24e+03
19 3.68e+00 6.80e−01 3.74e+00 6.12e−01 4.72e+00 1.02e+00
20 3.08e+00 1.47e+00 3.12e+02 3.48e+02 8.80e+01 3.10e+01
21 8.68e+01 8.99e+01 3.85e+04 3.19e+04 2.32e+04 1.53e+04
22 2.76e+01 1.79e+01 1.16e+02 6.86e+01 2.24e+02 9.10e+01
23 3.15e+02 4.02e−13 3.15e+02 6.11e−13 3.15e+02 1.55e−04
24 2.24e+02 1.06e+00 2.22e+02 7.39e−01 2.00e+02 5.98e−02
25 2.03e+02 4.96e−02 2.05e+02 4.41e−01 2.03e+02 3.05e−01
26 1.00e+02 1.55e−02 1.04e+02 1.82e+01 1.00e+02 3.90e−02
27 3.00e+02 2.40e−13 3.08e+02 2.94e+01 3.96e+02 7.11e+01
28 8.40e+02 1.40e+01 7.87e+02 5.22e+01 7.94e+02 7.80e+01
29 7.17e+02 5.13e+00 1.39e+03 1.39e+02 1.71e+05 1.21e+06
30 1.25e+03 6.20e+02 1.19e+03 2.49e+02 2.03e+03 6.51e+02

Table 29
Comparison with LSHADE and BLPSO on CEC14 Functions – Results of 50D.

Benchmark LSHADE BLPSO GBSO

Function Mean Std. Mean Std. Mean Std.

1 1.24e+03 1.52e+03 5.10e+06 1.28e+06 2.22e+06 7.45e+05
2 0.00e+00 0.00e+00 3.44e+03 2.35e+03 9.26e+03 8.21e+03
3 0.00e+00 0.00e+00 4.23e+01 8.97e+01 1.59e+03 8.57e+02
4 5.89e+01 4.56e+01 8.64e+01 5.04e+00 9.66e+01 2.90e+00
5 2.02e+01 4.59e−02 2.09e+01 5.07e−02 2.09e+01 3.73e−01
6 2.64e−01 5.23e−01 9.22e−02 3.21e−01 2.08e+00 1.65e+00
7 0.00e+00 0.00e+00 2.92e−13 6.46e−14 3.04e−03 4.34e−03
8 2.58e−09 7.48e−09 4.97e−01 8.16e−01 1.47e+00 1.30e+00
9 1.14e+01 2.13e+00 7.10e+01 9.02e+00 4.76e+01 1.06e+01
10 1.22e−01 4.13e−02 3.63e+02 1.81e+02 6.76e+00 6.01e+00
11 3.22e+03 3.30e+02 4.46e+03 4.77e+02 1.58e+03 5.25e+02
12 2.19e−01 2.82e−02 8.77e−01 1.18e−01 1.80e−02 1.30e−02
13 1.60e−01 1.83e−02 2.86e−01 3.72e−02 2.56e−01 4.56e−02
14 2.97e−01 2.47e−02 2.65e−01 2.42e−02 2.36e−01 6.71e−02
15 5.15e+00 5.08e−01 1.48e+01 1.33e+00 6.36e+00 1.25e+00
16 1.69e+01 4.81e−01 1.82e+01 4.73e−01 1.71e+01 8.47e−01
17 1.40e+03 5.13e+02 5.97e+05 2.10e+05 1.89e+05 1.51e+05
18 9.73e+01 1.38e+01 3.73e+02 3.68e+02 1.51e+03 1.45e+03
19 8.30e+00 1.81e+00 2.16e+01 9.78e+00 1.15e+01 1.37e+00
20 1.39e+01 4.56e+00 2.57e+02 1.41e+02 1.84e+02 4.61e+01
21 5.15e+02 1.49e+02 3.80e+05 1.44e+05 1.44e+05 7.87e+04
22 1.14e+02 7.50e+01 2.64e+02 1.30e+02 2.74e+02 1.40e+02
23 3.44e+02 4.44e−13 3.44e+02 2.56e−13 3.44e+02 1.60e−03
24 2.75e+02 6.62e−01 2.58e+02 4.07e+00 2.56e+02 2.51e+00
25 2.05e+02 3.65e−01 2.10e+02 7.36e−01 2.07e+02 8.45e−01
26 1.00e+02 7.85e−02 1.47e+02 5.08e+01 1.32e+02 4.68e+01
27 3.33e+02 3.03e+01 3.24e+02 2.85e+01 4.35e+02 5.76e+01
28 1.11e+03 2.91e+01 1.14e+03 4.20e+01 1.07e+03 7.14e+01
29 7.95e+02 2.40e+01 1.36e+03 1.82e+02 2.46e+03 6.22e+02
30 8.66e+03 4.13e+02 9.09e+03 3.05e+02 9.11e+03 6.40e+02
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on the final solution reached and the maintained population's diversity.
In addition, experiments were conducted to assess the algorithm's
sensitivity to its global-best parameters. Moreover, the performance of
GBSO was compared against three BSO variants as well as the global-
best versions of other nature-inspired algorithms on a wide range of
benchmark libraries.

Experiments proved the superior performance of GBSO compared
to previous BSO improved algorithms. Further experiments demon-
strated the highly competitive performance against other popular
global-best heuristic algorithms. Although GBSO had the slowest speed
of convergence on the CEC05 benchmarks, it was proved to be the best
performer overall. In addition, it showed a very desirable property by
having an improved performance with higher dimensions on the hybrid
and composition functions of the CEC14 benchmarks. Finally, GBSO
was shown to have a very competitive performance with a number of
the state-of-the-art algorithms on the CEC05 benchmarks. On the
CEC14 benchmarks, GBSO produced better results than a recent PSO
algorithm but is still outperformed by LSHADE.

Future research directions involve proposing a mechanism to adapt
the algorithm's parameters, experimenting with different re-initializa-
tion schemes, applying GBSO in several engineering optimization
problems, using GBSO within a cooperative co-evolutionary frame-
work, and developing a discrete GBSO version.
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Statistical Tests Results For LSHADE, BLPSO, and GBSO – CEC14 Functions.

Algorithm Friedman Ranking Holm p-value Finner p-value

BLPSO 2.41 0.025 0.025
GBSO 2.23 0.05 0.05
LSHADE 1.37 – –
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