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a b s t r a c t 

In this paper we have analyzed scaling properties and cyclical behavior of the three types 

of stock market indexes (SMI) time series: data belonging to stock markets of developed 

economies, emerging economies, and of the underdeveloped or transitional economies. 

We have used two techniques of data analysis to obtain and verify our findings: the 

wavelet transform (WT) spectral analysis to identify cycles in the SMI returns data, and 

the time-dependent detrended moving average (tdDMA) analysis to investigate local be- 

havior around market cycles and trends. We found cyclical behavior in all SMI data sets 

that we have analyzed. Moreover, the positions and the boundaries of cyclical intervals 

that we found seam to be common for all markets in our dataset. We list and illustrate 

the presence of nine such periods in our SMI data. We report on the possibilities to differ- 

entiate between the level of growth of the analyzed markets by way of statistical analysis 

of the properties of wavelet spectra that characterize particular peak behaviors. Our results 

show that measures like the relative WT energy content and the relative WT amplitude of 

the peaks in the small scales region could be used to partially differentiate between mar- 

ket economies. Finally, we propose a way to quantify the level of development of a stock 

market based on estimation of local complexity of market’s SMI series. From the local scal- 

ing exponents calculated for our nine peak regions we have defined what we named the 

Development Index, which proved, at least in the case of our dataset, to be suitable to 

rank the SMI series that we have analyzed in three distinct groups. 

© 2017 Elsevier B.V. All rights reserved. 

 

 

 

 

1. Introduction 

This paper seeks to investigate the appearance of periodic and non-periodic cycles in the time series of stock market

returns, and the contribution of cyclic behavior to the market efficiency and the distribution of stock indexes returns. Cycles

in the economic data have been studied extensively [1] , resulting in a number of stylized facts that characterize some cyclical

or seasonal effects to financial time series [2] . The study of cycles in economic data dates back to the early 1930s [3] . Various
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techniques to measure seasonality have been widely applied, combining ideas from mathematics, physics, economics and

social sciences. These effort s have resulted in research findings of, among other, intraday trading effects [4] , weekend and/or

three-day effects [5] , intramonth effects [6] , quarterly and annual cycles [7] , and various multi-year cyclical variations in

stock market index returns [3,8] . A consensus of opinion on the nature, character, or the importance (to the overall market

data behavior) of cyclic effects, however, has not been reached. 

Financial markets belong to a class of human-made systems exhibiting complex organization and dynamics, and simi-

larity in behavior [9] . Complex systems have a large number of mutually interacting parts that operate simultaneously at

different scales, are often open to their environment, and self-organize their internal structure and dynamics, thus produc-

ing various forms of large-scale collective behaviors. The outputs of such systems, time series of records of their activity,

display co-existence of collectivity and noise [10] ; the complexity of systems is reflected in datasets that exhibit a wealth

of dynamic features, including trends and cycles on various scales [1,3] . The tools to study such systems therefore cannot

be analytical, but rather must be adapted to enable accurate quantification of their long-range order. In this sense, we have

chosen to contribute to the debate about the existence, types, and importance of cycles in stock market data in two ways:

by way of applying wavelet spectral analysis [11] to study market returns data, and through the use of Hurst exponent es-

timation methods [12] to study local behavior around market cycles and trends. The utility of our methods to estimate the

scaling of financial time series has recently been confirmed [13] in an extensive overview of scientific time series data and

analysis methods. 

Firstly, we utilized wavelets to study cyclical consistency in time series of stock market indexes (SMIs). Wavelet analysis

is appropriate for such a task; it was originally introduced to study complex signals [14] . We use wavelet-based spectral

analysis, which estimates the spectral characteristics of a time-series as a function of time [15] , revealing how the different

periodic components of a particular time-series evolve over time. It enables us to compare stock market index time series

wavelet spectra from different economies, and to examine the similarities in contributions of cycles at various characteristic

frequencies to the total energy spectrum. With this tool we can attempt to address the question of whether the complexity

of a financial market is specifically limited to the statistical behavior of each SMI time series or parts of an SMI’s series

complexity can be attributed to the overall world market [16] . 

We use the Hurst exponent estimation formalism, in a form of time-dependent detrended moving average analysis, to

test the local character of cycles at various characteristic frequencies of SMI time series from different economies. In recent

years, the application of the Hurst-exponent-based analyses has led many researchers to conclude that financial time series

possess multi-scaling properties [17–19] . In addition, these methods have allowed for the examination of local scaling around

a given instance of time, so that the complex dynamical properties of various time series can be analyzed locally rather

than globally [20] . In this paper, we aim to compare the local scaling of each cycle across stock markets and to find ways to

classify various markets according to their cyclical behavior. 

We choose to analyze three types of SMI time series: data belonging to stock markets of developed economies, emerging

economies, and of the underdeveloped or transitional economies. Previous and recent work by our group and others has

demonstrated that SMI series exhibit scaling properties connected to the level of growth and/or maturity of the economy

the stock market is embedded in [17,21] . It has also been demonstrated that in emerging or transitional markets stock

indexes do not fully represent the underlying economies [17] , therefore we wanted to tailor our SMI study with this in

mind and differentiate between underdeveloped (transitional) economies, emerging economies, and developed economies. 

Our study is structured as follows. In Section 2 we give a brief overview of the methodological background: the general

framework of the wavelet transform (WT) spectral analysis and an introduction to the detrended moving average (DMA)

method and its time-dependent variation (tdDMA). In Section 3 we present our dataset and the results of the usage of

the WT framework to study the appearance and consistency of cycles across stock markets. In addition, in this section we

present the results of investigation of statistical effects of the observed cyclical behavior on the WT spectral behavior of our

SMI data. In Section 4 we list the results of the use of tdDMA on our SMI data and develop a quantitative indicator (that we

have dubbed the ‘Development Index’), which may help classify the level of development of a particular market according

to the markets’ local cyclical behavior. We end our paper with a list of conclusions and a few suggestions for future work

in Section 5 . 

2. Methodological background 

In this paper we use the wavelet transform power spectrum and the time-dependent detrending moving average ap-

proaches for data analysis. 

The wavelet transform (WT) was introduced [22–24] in order to circumvent the Heisenberg uncertainty principle problem

in classical signal analysis and achieve good signal localization in both time and frequency that a classical Fourier transform

approach lacks. Namely, in WT the window of examination length is adjusted to the frequency analyzed: slow events are

examined with a long window, whilst a shorter window is used for fast events. In this way an adequate time resolution for

high frequencies and a good frequency resolution for low frequencies is achieved in a single transform [11] . 
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The continuous wavelet transform [22,23] of a discrete sequence R ( k ) is defined as the convolution of R ( k ) with wavelet

functions ψ a, b ( k ) in the following way: 

W ( a, b ) = 

N−1 ∑ 

k =0 

R ( k ) ψ 

∗
a,b ( k ) , (1)

with a and b being the scale and translation-in-time (coordinate) parameters, N the total length of the time series studied,

and the asterisk stands for complex conjugate. In order to examine the existence of cycles in SMI data, we used the wavelet

scalegrams (mean wavelet power spectra) E W 

( a ), that are defined by 

E W 

(a ) = 

∫ 
W 

2 (a, b) db. (2)

The scalegram E W 

( a ) can be related [25] to the corresponding Fourier power spectrum E F ( ω) via the formula 

E W 

(a ) = 

∫ 
E F (ω ) | ˆ ψ (aω ) | 2 dω , (3)

where the hat designates the Fourier transform, while E F (ω) = | ̂  R (ω) | 2 . This formula implies that if the two spectra, E W 

( a )

and E F ( ω), exhibit power-law behavior, then they should have the same power-law exponent β . The meaning of the wavelet

scalegram is the same as that of the classical Fourier spectrum - it gives a contribution to the signal energy at a specific

scale parameter a . We are thus able to view and estimate the peaks of wavelet spectra in the same way as one would

approach this problem in Fourier analysis. In this paper, we find it convenient to use the standard set of Morlet wavelet

functions as a wavelet basis for our analysis. The Morlet wavelet [25,26] has proven to possess the optimal joint time-

frequency localization [16,27] , and can thus be used for detecting locations and spatial distribution of singularities in time

series [28] . 

In another approach, we employed the detrended moving average (DMA) technique [29] to study the general statistics

of our SMI data. We use the variation of a standard DMA method that is introduced in [30] . This technique calculates the

centered detrended moving average (cDMA) function [31] of the type 

σcDMA (n ) = 

√ √ √ √ 

1 

N max − n 

N max − n 
2 ∑ 

i = n 2 

( y n (i )) 2 , (4)

where y n ( i ) are fluctuations around the moving average of a time series, calculated on a segment size n ≤ N . 

By increasing the segment length n the function σ cDMA ( n ) ≡ σ ( n ) increases as well. When the analyzed time series

follows a scaling law (i.e. exhibits self-similarity over a range of time scales), the cDMA function is of a power-law type, that

is, σ ( n ) ∝ n H , with 0 ≤ H ≤ 1. Scaling exponent H is usually called the Hurst exponent of the series [32] . In the case of short-

range data correlations (or no correlations at all) σ ( n ) behaves as n 1/2 . For data with power-law long-range autocorrelations

one may expect that H > 0.5, while in the long-range negative autocorrelation case we have H < 0.5. When scaling exists,

the exponent H can be related to the WT power spectrum exponent β through the scaling relation [33] H = (β + 1) / 2 . 

In order to inspect local cyclical behavior of our SMI series, we applied the time-dependent DMA algorithm (tdDMA)

[20] to the subset of data in the intersection of the SMI signal and a sliding window of size N s , which moves along the series

with step δs . The scaling exponent H is calculated for each subset and a sequence of local, time-dependent Hurst exponent

values is obtained. The minimum size of each subset N min is defined by the condition that the scaling law σ ( n ) ∝ n H holds in

the subset, while the accuracy of the technique is achieved with appropriate choice of N min and δmin [34] . We have chosen

windows of up to N s = 10 0 0 , with the step δs = 1 for our tdDMA algorithm. 

3. Data and results 

3.1. Stock market data studied 

In this paper, we investigate data from the following stock markets: the New York Stock Exchange NYSE index, the

Standard & Poor’s 500 (S&P500) index, the UK FTSE 100 index, the Tokyo Stock Exchange NIKKEI 225 index, the French

CAC 40 index, and the German Stock Market DAX index, which we consider developed economies; the Shanghai Stock

Exchange SSE Composite index, the Brazil Stock Market BOVESPA index, The Johannesburg Stock Exchange JSE index, the

Turkey Stock Market XU 100 index, the Budapest Stock Exchange BUX index, and the Croatian CROBEX index, which we

consider emerging economies; the Tehran TEPIX index, the Egyptian Stock Market EGX 30 index, and the indexes of the

developing economies in the Western Balkans - the Belgrade Stock Exchange BELEXline index, the Montenegrin MONTEX

20 index, the SASX 100 index of the market of Bosnia and Herzegovina and the BIRS index of Bosnian entity Republic of

Srpska, representing markets of underdeveloped economies. Table 1 lists general characteristics of the SMI time series which

we have analyzed; depending mainly on the market development level, they are of varying duration. 

The variables studied in our paper are the daily price logarithmic returns that are defined as 

R (t) = logS(t + �t) − logS(t) = log( 
S(t + �t) 

S(t) 
) , (5)
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Table 1 

General characteristics of the SMI time series analyzed in this paper. 

SMI name (economy) Recording period Total days N 

BELEXline (Serbia) October 1, 2004 - December 31, 2014 2584 

SASX 10 (Bosnia and Herzegovina) June 2, 2005 - February 11, 2015 2255 

BIRS (Republic of Srpska) May 15, 2005 - February 10, 2015 2303 

TEPIX (Iran) February 14, 2010 - February 10, 2015 1205 

MONTEX 20 (Montenegro) May 1, 2004 - February 10, 2015 2745 

EGX 30 (Egypt) January 1, 1998 - February 11, 2015 4179 

BOVESPA (Brasil) April 27, 1993 - January 14, 2015 5383 

JSE (South Africa) June 5, 2006 - February 11, 2015 2174 

SSE (China) December 19, 1990 - December 5, 2014 6142 

CROBEX (Croatia) September 2, 1997 - February 10, 2015 4323 

XU 100 (Turkey) June 2, 2003 - February 10, 2015 2922 

BUX (Hungary) April 1, 1997 - February 10, 2015 4465 

FTSE 100 (UK) March 1, 1984 - February 10, 2015 8109 

CAC 40 (France) March 1, 1990 - February 10, 2015 6320 

NIKKEI 225 (Japan) April 1, 1984 - December 18, 2014 7625 

NYSE (USA) March 1, 1966 - February 10, 2015 12365 

DAX (Germany) November 26, 1990 - February 10, 2015 6131 

S&P 500 (USA) March 1, 1950 - February 10, 2015 16383 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where S ( t ) is the closure price of the stock market index at day t , and the lag period �t is a time interval of recording of

index values S ( t ). All of the analyzed time series of prices on the stock markets S ( t ) are publicly available (from the official

web-sites of the markets in question, or from the Yahoo Finance Database), and are given in local currencies. The values of

the SMI data are listed only for trading days – that is, they are recorded according to the market calendar, with all weekends

and holidays removed from datasets. 

3.2. Wavelet spectra of stock market data 

We have calculated WT power spectra for all our SMI series, and for all the periods (durations) these data series were

available to us. We took into consideration only the values of the WT spectra between the minimum time scale of a = 1

and the statistically meaningful maximum time scale [32] of a = N/ 5 , and searched for characteristic peaks (local maxima)

within those limits. In order to be sure that the peaks that we have obtained in such a way are not artefacts of WT method

used, we have additionally performed a test of statistical significance for each peak, using the tool kit described in [35] and

ready-to-use software available online at [36] . In order to assess the significance of each peak, we compared them against

the background global wavelet spectrum that they belong to. We have first calculated the local WT spectra of each SMI series

and have searched for WT coefficients with a 10% significance value. We have then calculated the local WT spectra on the

time scales that show existence of broad WT significance over many periods. The peaks that appeared above global spectrum

were then used as significant for further analysis. Fig. 1 . depicts the way this significance test was done, on an example of

the EGX 30 time series. The choice to use global wavelet spectra as the background against which the significance of peaks

was tested was guided by the fact that the SMI time series are products of a complex system that result from interactions of

many constituents acting on different time scales. The SMI time series are thus mixtures of noise components from different

inputs involved in the process [37] ; this fact renders it implausible to compare peaks from SMI wavelet spectra against any

particular noise background other than the signal itself [38] . 

We found multiple peaks in all SMI series of our dataset. Moreover, the peaks we found show commonality across

the dataset, that is, if they exist peaks appear at relatively similar positions (characteristic times). The following common

characteristic peaks, or rather characteristic cycle periods around characteristic peaks were identified by our analysis: a

working-week cycle (or a 5-day peak), a one-week cycle (or a 7-day peak), a two-week cycle (or a 14-day peak), a monthly

cycle (or a 30-day peak), a quarterly cycle (or a 90-day peak), a 4- to 5-month cycle (or a 150-day peak), a semi-annual cycle

(or a 6- to 7-month peak), an annual cycle (or a 360-day peak), and a bi-annual (or a 600-days) multi-year cycle. The peaks

that we found in each individual SMI series are listed in Table 2 . The dissimilarities between SMI records from different

economies that we observed occur only in the lack of a spectral peak (see Table 2 ), or a slight lack of synchronization of a

particular peak position (that is, we found that peaks are not positioned at exactly the same time instances in all the SMI

series analyzed, which prompted us to introduce the notion of a peak or a cycle interval). In Table 2 the cycles and the cycle

intervals are given in real days (recalculated from trading days that comprise our raw data). 

The examples of detected peaks and subsequently defined peak intervals are given in Figs. 2 and 3 . 

3.3. Statistical characterization of WT spectra of stock market data 

In order to be able to compare and characterize the obtained wavelet spectra of our stock market data, we have calculated

relative energy content and relative amplitude of all the regions (listed in Table 2 ) under characteristic peaks in all our data
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Fig. 1. An example of a significance test for peaks in EGX 30 wavelet power spectrum. (a) Raw data; (b) The local wavelet power spectrum. The contour 

levels are chosen so that 75%, 50%, 25%, and 5% of the wavelet power is above each level, respectively. Black contour is the 10% significance level, using 

the global wavelet as the background spectrum; (c) Comparison of the local wavelet power spectrum, calculated at 1500 points, with the global wavelet 

spectrum for the same sat of data. Significant peaks appear above the global spectrum. 

 

 

 

 

 

 

series. The relative energy content of the i th peak in a WT power spectrum is defined [11] as: 

e Wi (s i 1 , s i 2 ) = 

E i (s i 1 , s i 2 ) 

E total 

, (6)

where E i ( s i 1 , s i 2 ) represents the average energy content of the period surrounding the i th peak: 

E i (s i 1 , s i 2 ) = 

1 

t 

∫ t 

0 

∫ 1 / 2 πs i 1 

1 / 2 πs i 2 

1 

a 2 
| W (a, b) | 2 d ad b, (7)

and E total is the total energy content of the WT spectrum of the stock market series analyzed. The energy content is a

physical quantity behind a WT power spectrum, so it represents it’s natural characteristic. Similarly, the relative amplitude

of the spectral band under the i th peak is defined as: 

a Wi (s i 1 , s i 2 ) = 

A i (s i 1 , s i 2 ) 

A total 

, (8)

with 

A i (s i 1 , s i 2 ) = 

1 

t 

∫ t 

0 

1 

s i 2 − s i 1 

∫ 1 / 2 πs i 1 

1 / 2 πs 

1 

a 2 
W (a, b) d ad b, (9)
i 2 
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Table 2 

An overview of cycles in SMI time series identified by the wavelet spectrum analysis. 

peak interval number I II III IV V VI VII VIII IX 

peak at (days) 5 7 14 30 90 150 210 360 600 

interval length (days) 2–6 6–10 10–25 25–60 60–110 110–190 190–250 250–450 450–900 

BELEXline x x x x x x 

SASX 10 x x x x x x x x 

BIRS x x x x x x 

TEPIX x x x x x x x 

MONEX 20 x x x x x x x x 

EGX 30 x x x x x x x x 

BOVESPA x x x x x x x x 

JSE x x x x x x x 

SSE x x x x x x x 

CROBEX x x x x x x x x x 

XU 100 x x x x x x x 

BUX x x x x x x x x 

FTSE 100 x x x x x x x x 

CAC 40 x x x x x x x 

NIKKEI 225 x x x x x x x 

NYSE x x x x x x x 

DAX x x x x x x x x x 

S&P 500 x x x x x x x x 

Fig. 2. An example of detected peaks in the time series of NYSE SMI data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

its average amplitude, and A total the total amplitude of the WT power spectrum of the stock market series of interest. The

amplitude of the WT power spectrum depends [11] on the variability of the frequency (scale) band analyzed - the more

constant the frequency, the higher the amplitude. 

We calculated the relative energy contents e Wi and the relative amplitudes a Wi for all the obtained peaks in all the

analyzed WT spectra. We then performed statistical analysis of three groups of data - those belonging to the developed

economies, the emerging markets, and the underdeveloped economies. We first performed the Shapiro–Wilk test for nor-

mality of distributions within these three data groups. If normality of distributions existed within our datasets, we per-

formed the one-way ANOVA test to compare our sample means, with the significance level of p < 0.05. If the ANOVA test

confirmed the existence of differences of means, the average means for all three groups of data was compared using the

Bonferroni method. If, however, the Shapiro–Wilk test did not confirm the existence of normality of distributions within our

dataset, we performed the Kruskal–Wallis ANOVA test to compare the means, with the significance level of p < 0.05. If the

Kruskal–Wallis ANOVA test confirmed the existence of differences in the groups’ means, the comparison of average means

for all three groups of data was done using the Wilcoxon Mann–Witney method. 

Table 3 lists the calculated average values of relative energy content e Wi and the relative amplitudes a Wi of all the peaks

for the three SMI groups. The statistically significantly different values between the groups for each of the peaks are marked

in bold - if only one value is bolded, then it differs from the other two market groups in a peak group; if two values are
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Fig. 3. An illustration of positioning of two peak intervals in a time series of TEPIX SMI data. 

Table 3 

Values of relative energy contents and relative amplitudes under WT peaks. The statistically significantly dif- 

ferent values between the groups for each of the peaks are marked in bold. When one value is bolded, then it 

differs from the other two market groups in a peak group. If two values are bolded they differ mutually, and 

if all three values are bolded then all the three market groups’ values differ from each other. 

relative energy content under the peaks 

peak at (days) 5 7 14 30 90 150 210 360 600 

underdeveloped 0.0 0 04 0.0 0 06 0.0028 0.0055 0.012 0.0087 0.024 0.051 0.34 

emerging 0.0017 0.0022 0.0079 0.015 0.017 0.016 0.039 0.09 0.45 

developed 0.0032 0.0033 0.012 0.019 0.023 0.014 0.038 0.057 0.39 

relative amplitudes under the peaks 

peak at (days) 5 7 14 30 90 150 210 360 600 

underdeveloped 0.0 0 09 0.0012 0.0061 0.0098 0.019 0.016 0.037 0.063 0.32 

emerging 0.002 0.0025 0.011 0.017 0.023 0.024 0.046 0.081 0.37 

developed 0.0026 0.003 0.013 0.019 0.026 0.022 0.046 0.066 0.34 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

bolded they differ mutually; and if all three values have been bolded then all the three market groups’ values differ from

each other. 

Our results are also illustrated in Fig. 4 , where average values of the relative energy content e Wi and the relative ampli-

tudes a Wi for all three market groups, and in three peak regions - a small scale region surrounding the peak at 5 days, a

mid-scale region surrounding the peak at 150 days, and a large scale region surrounding the peak at 600 days, are depicted.

Table 3 and Fig. 4 show that in the small scales regions (peaks of up to 90 days) the values of both the relative energy

contents e Wi and the relative amplitudes a Wi under the spectral peaks for the underdeveloped markets are smaller than the

values for the two other groups in a clear, statistically significant manner. Even more so, the values of the relative energy

content e Wi for the small scale peaks at 5 days and at 14 days are statistically different for all three market groups. For the

peaks at lager scales (peaks at 150 days and more), the behavior of underdeveloped markets data does not differ from the

other two groups, except in the case of a large scale region of the peak at 600 days. It seems, therefore, that the transitional

markets do not follow the same behavioral pattern as the markets of emerging or developed economies at short time scales

of days, weeks, and several months. Our results thus show that measures like e Wi and a Wi for the peaks in the small scale

regions could be used for partial differentiation between market economies. 

4. Time dependent analysis of stock market data 

In order to gain another insight into the local complexity of our SMI data, and obtain a possibility to improve our ability

to quantitatively distinguish the three groups of SMI data we use, we have applied the time-dependent detrended moving

average (tdDMA) algorithm to all our SMI series. In Fig. 5 we give an example of the calculated tdDMA values for the

three randomly selected representatives of SMI market groups, in a time interval from year 2008 to year 2011, for a moving

window of N s = 10 0 0 , and the step δs = 1 . 
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Fig. 4. Results of the statistical analysis of differences between average values of: (a) the relative energy content e Wi and (b) the relative amplitudes a Wi 

for all three market groups. Results are depicted for the three peak regions - a small scale region surrounding the peak at 5 days, a mid-scale region 

surrounding the peak at 150 days, and a large scale region surrounding the peak at 600 days. Squares enclose the 75% of the values within the SMI group, 

while the error bars depict the maximum and the minimum value within the same group. 

Fig. 5. An illustration for the calculated tdDMA values (local Hurst scaling exponents) in the case of the BELEXline SMI series (representing the mar- 

kets of underdeveloped economies), the JSE SMI series (representing the emerging markets), and the DAX series (representing the markets of developed 

economies). The calculated tdDMA values are given for a time section from year 2008 to year 2011. Horizontal solid lines mark the values of the average 

(or global) Hurst scaling exponents for the same time period. Here, a moving window of N s = 10 0 0 and the step δs = 1 were used. The error bars are not 

depicted here; for the estimation of errors to local Hurst exponents see [32] . 

 

 

 

 

 

In an attempt to quantify the local behavior of SMI data and ultimately compare the efficiency of our stock markets,

we have constructed the SMI Hurst vectors h α , where each coordinate h α
i 

corresponds to the value of local Hurst exponent

for a selected peak interval (that includes and borders each peak). Our calculations were performed on nine intervals that

separate nine market peaks (listed in Table 2 and illustrated in Figs. 2 and 3 ), marked by index i ( i = 1 . . . 9 ), while α counts

the SMI series. From all these values we have built the Hurst reference SMI vector m , where m ( i ) represents the mean value

of h α
i 

for each coordinate (peak) i across all the SMIs in the dataset. The Hurst reference SMI vector is thus defined as: 

m i = 

1 

n 

n ∑ 

α=1 

h 

α
i , (10) 
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Table 4 

Hurst vectors h α
i 

and the Hurst reference vector m i of stock market time series. Here, index i 

numbers peak areas, while the index α marks stock markets. 

α peak at (days) 

5 7 14 30 90 150 210 360 600 

1 BELEXline 0.36 0.62 0.59 0.67 0.71 1.01 0.90 0.68 0.59 

2 SASX 10 0.38 0.48 0.47 0.60 0.63 0.89 1.01 0.90 0.80 

3 BIRS 0.37 0.54 0.56 0.54 0.57 0.77 1.02 0.78 0.76 

4 TEPIX 0.38 0.63 0.61 0.72 0.71 0.62 0.59 0.69 0.92 

5 MONEX 20 0.37 0.53 0.50 0.56 0.51 0.54 0.70 0.81 0.93 

6 EGX 30 0.38 0.58 0.52 0.49 0.73 0.85 0.77 0.72 0.43 

7 BOVESPA 0.37 0.46 0.39 0.49 0.57 0.72 0.71 0.71 0.69 

8 JSE 0.38 0.51 0.51 0.55 0.36 0.48 0.93 0.98 0.72 

9 SSE 0.34 0.53 0.51 0.55 0.57 0.58 0.44 0.60 0.73 

10 CROBEX 0.36 0.48 0.50 0.57 0.61 0.65 0.52 0.50 0.58 

11 XU 100 0.37 0.52 0.47 0.57 0.49 0.56 0.56 0.70 0.55 

12 BUX 0.37 0.46 0.44 0.47 0.45 0.50 0.56 0.64 0.47 

13 FTSE 100 0.38 0.50 0.44 0.53 0.47 0.49 0.34 0.29 0.22 

14 CAC 40 0.37 0.47 0.42 0.44 0.47 0.53 0.43 0.48 0.68 

15 NIKKEI 225 0.36 0.47 0.43 0.49 0.53 0.58 0.46 0.50 0.56 

16 NYSE 0.39 0.53 0.47 0.49 0.45 0.53 0.50 0.51 0.57 

17 DAX 0.36 0.49 0.44 0.45 0.47 0.55 0.58 0.59 0.56 

18 S& P500 0.38 0.50 0.47 0.49 0.47 0.53 0.52 0.55 0.52 

m i 0.37 0.51 0.49 0.54 0.54 0.62 0.64 0.63 0.61 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

for n = 18 different SMI indexes in our dataset. We have looked into how values of the reference vector m i are changing

with the addition of new SMI data (markets), and in the case of our dataset this change becomes insignificantly small for n

> 15. The values of calculated Hurst vectors and Hurst reference vectors are listed in Table 4 . 

From the two vectors h α and m we have calculated the relative SMI Hurst unit vectors s α that we have defined as: 

s αi = 

h 

α
i 

− m i √ ∑ n 
i =1 (h 

α
i 

− m i ) 2 
. (11)

Defined in such a way, the unit vectors s α give us the information on the direction of difference between the Hurst vector

h α for each market and the Hurst reference vector m . We were hoping that this standard scoring will, to a certain accuracy,

mark the overall financial status (i.e. development) of the markets in the dataset that we use. However, in the case of

our dataset, the distance of representative points s α from the Hurst reference point did not provide us with any relevant

additional information about the market development or efficiency. This can be demonstrated through the use of the cosine

similarity, a scalar Euclidean product of two s α
i 

vectors that can quantify the level of similarity of positions of s α for different

SMI series. Scalar products of s α
i 

are defined as: 

H 

αβ = 

p ∑ 

i =1 

s αi s 
β
i 
, (12)

where α and β count SMI series ( α, β ∈ { 1 , 2 , . . . , 18 } ), while p = 9 numbers peaks (peak regions). We have arranged and

graphically presented values of these scalar products in Fig. 6 for all our data and for three artificially produced time series

with the values of H equal to 0.4, 0.5, and 0.7 in all of the analysed peak regions. These new series were added to serve

as visual guides that separate different kinds of long-range behavior (that is, long-range anticorrelated behavior in the case

H = 0.4, uncorrelated behavior in the case H = 0.5, and long-range correlated behavior for H = 0.7). Fig. 6 displays the existence

of two separate block matrices that differentiate strong similarity within the group of underdeveloped markets (upper left

corner) and within the group of developed markets (lower right corner), and strong dissimilarity inversely. Additionally, in

Fig. 6 the existence of a third market group is visible, that does not belong neither to developed nor to underdeveloped type.

Members of this third group - the emerging markets - are weakly similar to both other two groups and within its own group,

and show random unpredictable strong similarities with some members (markets) in the developed or the underdeveloped

market group. This inability to ‘look alike’ differentiates emerging markets in Fig. 6 , but not in a clear clustering way. 

4.1. The Development Index 

In order to try to find a unique Hurst indicator that would be able to discern all our three categories of market devel-

opment we have decided to define a (prefered) direction of development in markets indexes Hurst space, and then project

unit vectors s α onto that direction. We have decided to define this prefered direction as a direction of development, so that

the projection of unit vectors from our developed markets group onto this direction will always be positive (this is why we

have dubbed projections of unit vectors onto this pre-defined direction the Development Index). We have chosen the unit
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Fig. 6. Graphical representation of similarity, or similarity matrix, of relative Hurst unit vectors s α
i 

. Positive similarities of market’s Hurst unit vectors are 

given in shades of blue (for H 

αβ > 0 ), while negative similarities are depicted in shades of red ( H 

αβ < 0 ). Horizontal and vertical white lines mark, from 

left to right, borders between groups of underdeveloped, emerging, and developed markets. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 

 

 

 

vector of development in the Hurst space in a following way: 

e i = 

�h i − m i √ ∑ p 
i =1 

(�h i − m i ) 2 
, (13) 

with �h i = −I i , where I i stands for the p -vectors made of all unit components. 

In the case of our dataset, the values of this new vector’s components have not significantly changed with the addition

of new SMI data to dataset for n > 15 ( n being the number of markets in the dataset analyzed). The relations in Eq. (13) led

us to the value of e i for our dataset of n = 18 stock market indexes: 

e = (−0 . 19 , −0 . 40 , −0 . 37 , −0 . 45 , −0 . 45 , −0 . 57 , −0 . 60 , −0 . 59 , −0 . 56) , (14)
i 
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Fig. 7. Hurst parameter space represented by p-vectors in two reference spaces: in the general and the ’developed’ (or relative) Hurst reference space 

(depicted by blue and red lines, respectively). The relative Hurst reference space is defined by the Hurst reference vector m i , while the direction of the 

main axes is given by the unit vector of the direction of development e i . The Development index 
e i (s i ) is calculated as a projection of Hurst unit vectors 

s α
i 

onto the e i , which is directed to a portion of Hurst space where representative points of developed markets are grouped. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 5 

Classifications of stock markets into clusters according to their maturity or development. 

underdeveloped markets 

SASX10 BIRS BELEXLine TEPIX MONEX20 


e i (s i ) −1.20 −1.14 −1.14 −0.97 −0.73 

emerging markets 

EGX20 BOVESPA JSE SSE CROBEX XU100 


e i (s i ) −0.68 −0.59 −0.56 0.29 0.56 0.63 

developed markets 

CAC40 FTSE100 NIKKEI NYSE BUX SP500 DAX 


e i (s i ) 1.09 1.18 1.22 1.22 1.24 1.34 1.36 

 

 

 

 

with the error for each component i being δn i = 10 −2 . We have then calculated the Development Index (DI) as a projection

of Hurst unit vectors onto this direction of development: 


e i (s i ) = 

p ∑ 

i 

s i e i . (15)

Graphical illustration of these projections is given in Fig. 7 . 

Values of DI for markets in our dataset are given in Table 5 . It is visible from Table 5 that the three market categories

(underdeveloped, emerging, and developed markets) can be differentiated by this order parameter. We have decided to
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define the borders that separate our three market categories using the following phenomenological arguments: since the

values of the Hurst vectors s α and their similarity that we have calculated point to the existence of two distinct groups

that are well clustered (underdeveloped and developed markets), divided by a group of SMI time series that transitions

between these two groups (the emerging markets), we used the symmetry principle to define a border between the group

of developed and emerging markets at 
c1 = | 
| max / 2 ± 0 . 01 , and a border between the underdeveloped and emerging

markets at 
c2 = −| 
| max / 2 ± 0 . 01 (for our dataset, | 
| max = 1 . 36 ). Based on this criterion, in the case of our dataset, the

Egyptian stock market index EGX30 would be classified as an emerging market, rather than an underdeveloped market as

we initially assumed, while the Hungarian BUX index would classify as developed rather than the emerging market SMI. 

With this procedure we can examine the stock market time series in groups or individually, for any given SMI time

series. 

5. Conclusions 

In this paper we have analyzed spectral properties of time series of stock market indexes (SMIs) of developed, emerging,

and underdeveloped (or transitional) market economies, in order to examine differences and similarities in their cyclical

behavior, and to try to re-classify markets in our dataset according to the character of that behavior. We have used two

different well established techniques of data analysis to obtain and verify our findings: the wavelet transformation (WT)

spectral analysis and the time-dependent detrended moving average analysis (tdDMA). The combined use of these measures

allowed us to identify a range of cycles universal to the SMI behavior across our dataset and to use the cyclic behavior to

differentiate between levels of development of underlying SMI economies. This is the first study (to our knowledge) that

has shown that cyclic behavior of SMI time series can be objectively differentiated for different SMI groups. 

We have found multiple peaks in wavelet spectra of all our SMI time series. Moreover, we have found all the peaks

positioned at roughly the same times (or time intervals) in all our data, a finding that points to the similarity in seasonal

behavior across different market economies in our dataset. We have identified what can be termed a working-week cycle

(or a 5-day peak), a one-week cycle (or a 7-day peak), a two-week cycle (or a 14-day peak), a monthly cycle (or a 30-

day peak), a quarterly cycle (or a 90-day peak), a 4- to 5-month cycle (or a 150-day peak), a semi-annual cycle (or a 6-

to 7-month peak), an annual cycle (or a 360-day peak), and a bi-annual (or a 600-days) multi-year cycle in our dataset.

The dissimilarities between SMI records from the different economies that we have observed occur only in the lack of

a spectral peak in some of the analyzed markets, or a slight lack of synchronization at a particular peak interval (peaks

are not positioned at exactly the same time instances in all the SMI series analyzed). This prompted us to conclude that

the seasonal behavior in different markets is probably a reflection of universality in market behavior, rather than a local

characteristic of a particular economy. Given that financial markets are human-made complex systems, it is plausible to

believe that our findings can be explained by the fact that business cycles are a reflection of common human working

habits and behavior. Some authors find this commonality even desirable for the optimal functioning of a stock market, as

was, for example, shown for the Euro monetary area [15] . Some researchers, on the contrary, claim that these effects are

not significant for the effectiveness of a stock market [39] . 

In order to examine whether the observed seasonal adjustments in the behavior of stock markets could be used as

indicators of the level of development or strength of the economy that underlies the specific market, we have performed

a statistical analysis of the properties of wavelet spectra that characterize particular peak behaviors. We have statistically

compared the relative energy content and the relative amplitude of each peak between the three groups of SMI series that

we have analyzed - those belonging to developed economies, emerging economies and economically underdeveloped (or

transitional) economies. We have found that the underdeveloped markets do not follow the same behavioral pattern as

emerging or developed economies at the short time scales of days, weeks, and several months. Namely, their WT spectra

show, in a statistically significant manner, less pronounced effects of fast (small time scale) cycles on the overall spectral

behavior. In contrast, developed economies appear to even out all the cyclical (peak) effects in their WT spectra, or even

to show a larger influence of the fast (small time scale) peak regions on their overall spectral behavior, while the emerging

markets’ spectra behave somewhere in the middle of these two cases. These observed differences could contribute to the

variations in scaling behavior of markets, which has been reported previously [21,40–42] . Namely, it has been shown that

the economies of underdeveloped countries have WT spectra that show highly correlated long-range behavior, with the

exponent β > 0 ( H > 0.5), opposite to emerging and developed economies, which show uncorrelated or even slightly anti-

correlated spectral behavior, with β ≤ 0 ( H ≤ 0.5). The observed sensitivity of scaling exponents to the level of development

of economies could be related to the findings we present here - to the relative influence of the small scale spectral peaks

on the overall SMI spectral behavior. 

Finally, in this paper we propose a way to quantify the level of development of a stock market, based on the relative

influence (or, in some cases, existence) of WT spectral peak intervals on the overall scaling behavior of SMI time series. In

order to do that we have used the time-dependent Hurst exponent approach in a form of the tdDMA analysis, to calculate

what we named the Development Index, which proved, at least in the case of our dataset, to be suitable to rank the SMI

series in three distinct development groups. Further verification of this method remains open for future studies by us, or by

other groups. 
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