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Abstract

This paper presents a concurrent topology optimization method to simultaneously achieve the optimum structure and material micro-
structure for minimum system compliance. Microstructure is assumed to be uniform in macro-scale to meet manufacturing requirements.
Design variables for structure and material microstructure are independently defined and then integrated into one system with the help of
homogenization theory. Penalization approaches are adopted in both scales to ensure clear topologies, i.e. SIMP (Solid Isotropic Mate-
rial with Penalization) in micro-scale and PAMP (Porous Anisotropic Material with Penalization) in macro-scale. Numerical experi-
ments for two examples validate the proposed method and also demonstrate the superiority of truss-like materials.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Proposed in the late 20th century, ultra-light materials
mostly refer to porous and structured materials including
foam [1], truss-like material [2] and linear cellular material
[3,4]. These kinds of materials are widespread in natural
world and very promising in practical applications because
of their relatively high stiffness/strength – weight ratios and
tremendous opportunity for multifunctional applications.
And compared with traditional advanced materials such
as fiber-reinforced and particle-reinforced composites, they
are superior in being free from interface problem and high
anisotropy.

The ultra-light materials can be divided into two groups.
The first one is represented by foam material that has
intrinsic microscopic randomness in microstructures.
Another group, including truss-like material [10] and linear
cellular material as shown in Fig. 1, differentiates itself by
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microstructures distributed periodically in space. The latter
ones also have two additional strengths, namely their per-
fect periodicity and high designability. The increasing rec-
ognition of this designability, along with the rapid
developments in fabrication techniques [5–7], has made it
particularly meaningful and applicable to design structures
made of porous anisotropic materials.

Ultra-light structure is always a hot topic in automobile,
aerospace and aircraft industries which is able to reduce
structural weight and energy consumption, and thereby
greatly improve the quality of products. In the meantime,
ultra-light materials are desirable in designing ultra-light
structures due to their superior properties and multifunc-
tional capability. The present paper is, therefore, an
attempt to design ultra-light structures composed of
ultra-light materials for minimum compliance, and topol-
ogy optimization is utilized as a key tool.

Structural topology optimization aims at finding opti-
mum topology to minimize structural weight or maximize
structural performance for a given set of constraints. In
comparison with size and shape optimization, topology
optimization results in more efficient design and may gen-
erate the optimum conception/configuration required in
the stage of initial design. The pioneering work of modern
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Fig. 1. Two representations of ultra-light materials.
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structural topology optimization can be traced back to
1981, when Cheng and Olhoff [8] introduced the concept
of microstructure to structural optimization in studying
the optimum thickness design of a solid elastic plate for
minimum compliance. In 1988, Bendsoe and Kikuchi [9]
implemented the topology optimization via a homogeniza-
tion method. In their work, design domain is assumed to be
porous material consisting of infinite number of cells. Each
cell contains solid material plus an internal cavity, which is
commonly assumed to be some specific configurations
parameterized by one or more variables chosen as design
variables. Then by size optimization, material is redistrib-
uted in the design domain. Cells with large cavities (and
hence low material density) will be treated as void while
those with small cavities (and large material density)
denote solid part and form the structure.

An alternative, but conceptually similar approach to
implement structural topology optimization is the so-called
SIMP (Solid Isotropic Material with Penalization) method
[11]. Densities of elements are set as design variables for
interpolating between solid material and void. Region with
high density is identified as solid while region with low value
is interpreted as void. Relationship between the design var-
iable and the material properties is established based on a
power law, which is simple and artificial but pretty effective.

Application of the above two approaches often leads to
structural design containing gray area, which is neither
solid nor void. In the homogenization-based approach,
gray area consists of cells with cavities of intermediate size.
They do resemble certain composite materials with micro-
structures, but the material microstructures vary pointwise,
which can be hardly manufactured. In SIMP approach, the
gray area has material density between zero and one. Cer-
tain microstructures were proposed to match those materi-
als with intermediate densities in the sense of effective
elastic properties [12].

To achieve clear ‘‘black–white” topology, researchers
have developed various penalty methods [12] to avoid gen-
eration of gray elements, or presence of material with com-
plicated microstructures. This design concept is being
challenged when ultra-light materials are increasingly
applied in engineering, for which, macro relative density
is no longer 1 but an intermediate value between 0 and 1.
Rodrigues et al. [13] in 2002 proposed a hieratical design
of structure and material. The work strongly underlines
optimization of material microstructures and some reason-
ably good results have been achieved. However, micro-
structural configuration varies considerably from point to
point in macro-scale, which results in a ‘‘varying gray”

look of the structural design. Such results may give rise
to an insurmountable manufacturing difficulty.

The present work is an attempt to achieve ultra-light
structures composed of ultra-light materials by utilizing
topology optimization in both structural and material
scales. To improve the possibility of practical applications,
manufacturing factors are strongly underlined by assuming
the uniformity of material microstructures in macro-scale.

The design of material microstructure is independently
defined in our work and concurrently performed with the
structural design. In topology optimization implemented
by homogenization, however, microstructure is involved
in the design process but the design in micro-scale is merely
limited to the scope of size optimization with the ultimate
objective of structural topology optimization. And in
SIMP, microstructure is introduced merely for validating
the material interpolation model, but not integrated into
the design process.

The concurrent design confers a great advantage in tak-
ing into account the interaction of both scales, which
makes it distinct from those independent designs of mate-
rial microstructures [14–18] aimed at developing materials
with prescribed or extreme properties. Optimum material
microstructure obtained by independent design is merely
optimum in terms of equivalent properties, not ensured
to be efficient when applied to constructing structures, since
both structural configuration and boundary conditions are
varied in practical use. In concurrent design of structures
and materials, however, optimum structure and optimum
material microstructure can simultaneously be obtained.
That is to say, the resulting material microstructure is opti-
mum for the optimum structure and the resulting structure
is optimum for the optimum material microstructure. Sys-
tem performance, therefore, can be expected the best.

The organization of the rest of this paper is as follows.
Mathematical model is given in Section 2, where two class
design variables, i.e. macro density and micro density are
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independently defined. Section 3 presents the penalization
and numerical treatments aimed at obtaining clear topolo-
gies in both scales. Section 4 deals with the structural anal-
ysis and sensitivity analysis required for numerical
optimization algorithms. And Section 5, finally, outlines
two numerical examples in order to validate the proposed
method and to discuss all the parameters involved in the
formulation.

2. Problem statement

Fig. 2 illustrates a structure composed of a porous
anisotropic material with uniform microstructures. There
are two materials involved in our study, the base material
and the porous anisotropic material. The base material
could be any type of solid materials such as aluminum
and alloy. Porous anisotropic material, sometimes merely
called ‘material’ for short in the following discussions, is
assumed to be made of the base material and to have peri-
odic microstructure free from any restrictions (e.g. the cav-
ities in linear cellular materials and ranked laminates are
usually regularly shaped).

In this paper, we are trying to obtain neither ‘‘black–
white” design nor ‘‘varying gray” design. Our objective is
to find a ‘‘gray–white” design as shown in Fig. 2 with max-
imized system performance by emphasizing the uniformity
of the ‘‘grey level”, i.e. material relative density, in macro-
scale. Here arise two basic problems:

1. Micro-scale: How to interpret the ‘‘gray” material? As
stated before, porous material can be characterized by
certain periodic microstructure. So one of the major
objectives is to design the material over its smallest rep-
resentative unit, i.e. a unit cell (or base cell) Y.

2. Macro-scale: How to arrange the ‘‘gray” material? Prob-
lem in this scale lies in the optimum distribution of the
porous material with optimized microstructure.

Both problems can be dealt with as classical layout
designs, for which topology optimization is a powerful tool.
Two classes of design variables are independently defined,
i.e. macro density P(X) in structural design domain and
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Fig. 2. A structure composed of porous anisotropic material.
micro density q(Y) in a unit cell, both ranging from 0 to
1. Assuming optimum structural design is imbedded in the
design domain X and is subject to external load F, the min-
imum compliance design can therefore be formulated as

Minimize : C ¼
Z

X
F � U dX ð1Þ

Constraint I : 1 ¼
qPAM �

R
X P dX

V MA
6 1 ð2Þ

Constraint II : qPAM ¼
R

Y qdY

V MI
¼ 1MI ð3Þ

Constraint III : 0 < d 6 P 6 1; 0 < d 6 q 6 1 ð4Þ

where C denotes structural compliance and U represents
structural deformation dependent on the densities in both
scales.

Constraint I sets an upper bound on the total available
base material by defining relative volume B smaller than a
prescribed value �1. VMA is the area of macro design domain
X. Due to the use of porous material, the definition of B is
somewhat different form that in general formulation of sin-
gle-scaled topology optimization. qPAM, relative density of
the porous anisotropic material, is included here. But in
single-scaled topology optimization, the relative density
should equal to 1.

Constraint II makes qPAM equal to a given value 1MI,
which should be between 0.2 and 0.6 according to practical
fabrication techniques. By defining this equality constraint,
the material is ensured to be porous with a given relative
density.

By virtue of Constraints (2) and (3), the consumption of
porous anisotropic material in macro-scale can thereby be
predicted as follows:

1
qPAM

¼
R

X P dX

V MA
6

1

1MI
ð5Þ

where B and qPAM denote the volume fraction filled with the
base material in total and in the micro design domains,
respectively. Therefore, their ratio in the left hand side of
the inequality can be interpreted as the volume fraction
occupied by the porous anisotropic material in the macro
design domain, i.e. the consumption of the designed mate-
rial in macro scale, on which the right hand side value im-
poses an upper bound. Given a constant �1, bigger 1MI, i.e.
more base material consumed in micro-scale design, will def-
initely lead to a stricter constraint for macro-scale design.

Constraint III sets bounds for density variables in two
scales, where d is a small predetermined value that is rather
close to zero.

3. Penalization and numerical treatments

To numerically solve the mathematical problem via FEM
(Finite Element Method), computational domains in both
scales should be first meshed into a number of elements.
As shown in Fig. 3, domain X is meshed into N elements
and domain Y is meshed into n elements. Each element is
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then assigned a unique density value varying between 0 and
1, e.g. Pi for the ith (i = 1,2, . . . ,N) element in macro-scale
and qj (j = 1,2, . . . ,n) for the jth element in micro-scale.

In order to achieve clear topologies in both scales, penal-
ization methods are adopted. In micro-scale, it is natural to
utilize SIMP (Solid Isotropic Material with Penalization), a
method commonly used in some previous work of struc-
tural topology optimization. Assuming modulus matrix
of the base material is DB, the modulus matrix at a point
with density value q can be expressed as

DMI ¼ qa �DB ð6Þ

where a denotes the exponent of penalization.
In macro-scale, however, it seems no longer appropriate

to use SIMP because the material here is not guaranteed to
be solid isotropic. In fact, since the design of microstruc-
ture follows topology optimization procedure and no
restriction is ever imposed, the chance of getting porous
anisotropic material is considerably high. As a result, we
would like to name the macro-scale penalization as PAMP
(Porous Anisotropic Material with Penalization), although
the implementing process is remarkably similar to that of
SIMP. Given any porous anisotropic material with modu-
lus matrix DH, a point with density P has the modulus
matrix DMA as expressed by

DMA ¼ P a �DH ð7Þ

As will be indicated by numerical examples, only penal-
ization is not enough for micro-scale design. Resulting
microstructural topology can be very fuzzy if no further
treatment is adopted. To limit the complexity of the admis-
sible designs and to suppress the checkerboard pattern, a
number of methods have been proposed such as: enforcing
an upper bound on the perimeter of the structure [19],
introducing a filtering function [16] and imposing con-
straints on the slope of the parameters defining the geome-
try [20]. In this paper, a variant perimeter constraint [21]
will be utilized in micro-scale as the fourth constraint for
the optimization problem.

Constraint IV : c ¼
Xm

k¼1

lk � ðqk1 � qk2Þ
2
6 �c ð8Þ
where m denotes the number of element and lk denotes the
length of the kth interface between elements k1 and k2. c is
a predetermined upper bound. We will numerically discuss
this parameter in Section 5.
4. Structural analysis and sensitivity analysis

It is a key step in numerical optimization to establish the
relationship between objective function and design vari-
ables. According to Eq. (1), the designing objective, i.e. sys-
tem compliance C in the present study, cannot be evaluated
before the structural deformation U is solved. Finite ele-
ment analysis is therefore formulated in macro-scale to
obtain U as follows:

K �U ¼ F ð9Þ

K ¼
Z

X
BT �DMA � BdX ð10Þ

Here, K is stiffness matrix of the structure and B is the
strain/displacement matrix. U and F are nodal values of
U and F. DMA is defined in Eq. (7) as a function of DH,
which is to be determined by the following analysis.

DH serves as a crucial link between the two scales: on
one hand it is a representation of effective material proper-
ties depending on microstructural configuration, and on
the other it is also involved in macrostructural analysis as
defined above. The computation of DH could follow the
classical homogenization procedures by implementing the
following two steps: Firstly, analyze the unit cell subjected
to periodic boundary conditions and outer forces corre-
sponding to uniform strain fields

k � u ¼
Z

Y
bT �DMI dY ð11Þ

k ¼
Z

Y
bT �DMI � bdY ð12Þ

where k is stiffness matrix of the microstructure, u is the
microstructural deformation, b is the strain/displacement
matrix and DMI is defined in Eq. (6).

Secondly, compute the effective modulus matrix by per-
forming integration over the domain of a unit cell

DH ¼ 1

jY j

Z
Y

DMI � ðI� b � uÞdY ð13Þ

where I (3 � 3) is a unit matrix in two-dimensional case and
jYj is the area of a unit cell.

By virtue of Eqs. (6)–(13), we have completed the struc-
tural analysis in two scales and got the structural deforma-
tion U. Following this procedure, one is able to evaluate
the objective function C for any values of design variables.

A typical procedure of numerical optimization generally
contains two major parts: the first one is ANALYSIS and
another OPTIMUM SEARCH. For the latter one, a num-
ber of numerical methods are already available. In apply-
ing some derivative-based mathematical programming
algorithms such as SLP (Sequential Linear Programming)
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Table 1
Results for varying �c

�1 1MI �c Compliance Microstructural topology

0.12 0.4 2 7515

0.12 0.4 3 5675

0.12 0.4 4 5676
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and SQP (Sequential Quadratic Programming), explicit
expression of sensitivity is important to enhance the effi-
ciency of the algorithm. By using all the above equations,
it is readily to obtain the following two derivatives (see
Appendix for details):

oC
oP i
¼ � a � Ci

P i
ð14Þ

oC
oqj
¼ �

XN

r¼1

P a
r �U

T
r �

Z
Xr

BT � oDH

oqj
� BdX

 !
�Ur ð15Þ

where the derivative of DH with respect to qj can be com-
puted following a mapping method [22] with the results as

oDH

oqj
¼
Z

Y
ðI� b � uÞT � oDMI

oqj
� ðI� b � uÞdY ð16Þ

Combined with Eq. (6), the above equation leads to

oDH

oqj
¼ aqa�1

j

Z
Y j

ðI� b � ujÞT �DB � ðI� b � ujÞdY ð17Þ

Now, we have completed the structural analysis and sen-
sitivity analysis. A flow chart is given in Fig. 4 with each
key step associated with corresponding equations.
0.12 0.4 8 7077

0.12 0.4 N/A 7583
5. Numerical examples and discussions

5.1. Numerical Example I: a discussion of parameters �1, 1MI

and �c

We first consider the so-called MBB beam. The main
objective is both to illustrate the proposed method and to
discuss the parameters �1, 1MI and �c. As will be demon-
strated, all of the three parameters do have an influence
on the resulting topologies (structure and microstructure)
and compliance. But they are different in nature: �1 and
1MI are involved in physical problem as limits of material
consumption, while �c is merely a controlling parameter in
numerical treatment.

A MBB beam in Fig. 5 is loaded with a concentrated
vertical force of P = 1000 at the centre of the top edge
and is supported on rollers at the bottom-right corner
and on fixed supports at the bottom-left corner. Base mate-
rial is assumed to have Young’s modulus E = 2.1 � 105

and Poisson’s ratio m = 0.3. Geometric parameters are
L = 4 and h = 1. As we are only interested in qualitative
results, the dimensions and load for this problem are cho-
sen non-dimensional. Due to the axial symmetry of the
problem, only the right half part is considered as macro
design domain. The mesh is 50 � 25 for macro design
domain and 25 � 25 for the microstructure (8 Node Solid
Element). OPTIMUM SEARCH is implemented by the
optimization package DOT using the SQP algorithm.

To discuss the influence of the adopted perimeter con-
straint, the optimization problem is first solved with fixed
�1 ¼ 0:1, 1MI ¼ 0:4 and varying perimeter constraint �c. As
shown in Table 1, if perimeter constraint is not applied



Fig. 6. Two microstructures for linear cellular material [3].
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or controlling parameter is not small enough, the resulting
microstructural topology tends be very complex, and the
compliance value is relatively higher than those with
appropriate �c. So we suggest, partly based on the numerical
results, that it is necessary to apply numerical treatments in
micro-scale design to ensure a clear topology and better
system performance. However, note that too small �c may
lead to difficulties of convergence.

Then, we set �c to an appropriate value of 4 and solve the
problem again with varying �1. As shown in Table 2,
although resulting microstructures are all porous aniso-
tropic, the topology does vary considerably for different
conditions. When �1 ¼ 0:25, the microstructure after a rota-
tion of 45� closely resembles the so-called ‘Triangular cell’
(see Fig. 6) which is said to have superior in-plane mechan-
ical properties [3]. And when �1 ¼ 0:075, the microstructure
after a rotation of 45� is somewhat more similar to the
‘Mixed cell’ (see Fig. 6), which is considered as another
competitive microstructure for linear cellular material.
These resemblances between our results and some existing
superior microstructures imply the proposed method does
generate microstructures with good equivalent properties.
But they are not optimum if we only consider the equiva-
lent properties. The reason is that the best system perfor-
mance requires a microstructural topology best suiting
the structural results, rather than those merely having
extreme properties. In macro-scale, the design also changes
with the increase of 1 in accordance with different material
properties and changing available porous materials. As for
Table 2
Results for varying �1

�1 1MI Compliance

0.075 0.4 9855

0.09 0.4 7292

0.12 0.4 5676

0.18 0.4 3707

0.25 0.4 2234
the compliance value, it is reasonable that better system
performance is achieved with more base material available.

In Section 2, we have mentioned the trade-off between
macro-scale design and micro-scale design, namely the allo-
cation of material between the two scales which can be
characterized by �1=1MI and 1MI. To illustrate the discussion,
the two-scale design problem is solved again with predeter-
mined available base material �1 ¼ 0:12 and varying 1MI. As
shown in Table 3, larger value of 1MI leads to lower system
compliance with more base material consumption in micro-
scale design and less porous material consumption in
macro-scale design. That means in this case, it is advanta-
geous to strengthen the porous material rather than
enhancing the macrostructure. Does this conclusion hold
for other examples or for other designing objectives?
Further work is being carried out for exploring these
questions.
Structural topology Microstructural topology



Table 3
Results for varying 1MI

�1 1MI Compliance Structural topology Microstructural topology

0.12 0.2 8880

0.12 0.3 6210

0.12 0.4 5676

0.12 0.5 5487

a

a

b = λ⋅a

a

Fig. 7. An L-shaped beam.

a

A

BO

Fig. 8. A decomposition of the L-shaped beam.
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5.2. Numerical Example II: a validation of the proposed

method

An L-shaped beam in Fig. 7 is considered in this exam-
ple to validate the proposed method by comparing numer-
ical results with expectations. The upper edge is fixed and a
group of loads are applied along the right edge to simulate
a moment. For the geometry, a = 1 while b is a variable
determined by k. Constraint parameters �1, 1MI and �c are,
respectively, fixed to be 0.1, 0.4 and 4.

Note that within the whole structure, material is
assumed uniform, but stress conditions could vary consid-
erably, so the design in micro-scale is somehow a multi-
objective optimization problem. This example is a good
illustration. The L-shaped beam can be divided into three
parts as shown in Fig. 8. For bar B, the moments are
imposed on the left and right faces resulting in principal
deformation in x-direction, and we can therefore expect a
larger effective Young’s modulus in x-direction for material
design. Following similar analysis, the microstructural
topology should be stiffer in y-direction for bar A. So the
material designs of the two bars seem to be contradictory
to some extent. However, they must share the same mate-
rial microstructure due to the assumption of material
uniformity.

This contradiction makes it important the weight
between the two bars. k is, therefore, defined to adjust
the weight and three cases are, respectively, considered. If
k = 0, bar B does not exist and bar A is dominant; If
k = 1, the weight of bar B is increased; If k = 2 and 3,
bar B gradually becomes the dominance.

Effective moduli of resulting microstructures are listed in
Table 4. Modulus ratio DH

11=DH
22 is introduced to indicate

the contrast of material arrangement in the two directions
where DH

pq (p, q = 1, 2, 3 in 2D problem) denotes an element
of the modulus matrix. As shown in Table 4, the modulus
ratio is increased with increasing k (k = 1 is an exception
because in this case the influence of part O in Fig. 8 is
greater), which means base material is increasingly
arranged to strengthen the porous material in x-direction.
This result is perfectly consistent with the above analysis,
which again verifies the micro-scale design in a qualitative
sense.



Table 4
Results of the L-shaped beam design

�1 1MI k Compliance DH
11=DH

22 Structural topology Microstructural topology

0.1 0.4 0 43012 0.55

0.1 0.4 1 56958 1.38

0.1 0.4 2 64345 1.08

0.1 0.4 3 76590 1.27
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6. Conclusions

This paper presents a concurrent topology design
method aimed at searching optimum structure composed
of optimum porous anisotropic material.

1. Design variables in two scales are independently defined.
Microstructure is no longer restricted to certain specific
configurations, which makes it possible to take advan-
tage of various porous/ultra-light materials.

2. In order to achieve clear topologies, PAMP is intro-
duced to penalize porous anisotropic material in
macro-scale design, and conventional SIMP is used in
micro-scale.

3. Designs in both scales are integrated into one optimiza-
tion problem and solved concurrently. Constraint
parameters �1, 1MI and �c are numerically discussed. Some
innovative configurations of macro and micro structures
are presented.

4. We strongly underline the uniformity of material micro-
structure in macro-scale. This assumption will inevitably
weaken the benefit derived from the optimum design,
but could result in an easier manufacturing process
and then illuminate practical applications of the results.

Numerical results illustrate the viability of the method.
It is exceptionally interesting to find that for most cases,
the optimum microstructures are truss-like structures.
These results again demonstrate the superiority of truss-
like materials. And these materials can be manufactured
by some existing methods for fabricating truss-like materi-
als. It will be an interesting and challenging work to extend
this concurrent optimization method to multifunctional
application fields (e.g. heat transfer, vibration isolation
and mechanical requirements) and 3D problems.
Acknowledgements

The work is supported by National Natural Science
Foundation of China (No. 10332010), National Creative
Research Team Program of China (No. 10721062) and
National Key Basic Research Program of China (973
Program, No. 2006CB601205).
Appendix. Sensitivity analysis

First, we are to write the structural compliance as a sum-
mation of elemental compliance

C ¼
XN

r¼1

Cr ¼
XN

r¼1

UT
r � Kr �Ur ðA1Þ

where Ur and Kr, respectively, denote deformation vector
and stiffness matrix of the rth element in macro-scale. Their
product equals to the vector of nodal force in the element

Kr �Ur ¼ Fr ðA2Þ

Note that Fr is constant for given design variables, so com-
puting the derivation of the two hands with any design var-
iable X will lead to

oKr

oX
�Ur þ Kr �

oUr

oX
¼ 0 ðA3Þ

The derivative of compliance with respect to X is therefore
expressed as

oC
oX
¼ oð

PN
r¼1UT

r � Kr �UrÞ
oX

¼
XN

r¼1

oðUT
r � Kr �UrÞ

oX
ðA4Þ

In order to simplify this expression, expand each item in
the right-hand equation as
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oðUT
r � Kr �UrÞ

oX
¼ oUT

r

oX
� Kr �Ur þUT

r �
oKr

oX
�Ur

þUT
r � Kr �

oUr

oX
ðA5Þ

Utilizing Eq. (A3), one will have

oðUT
r � Kr �UrÞ

oX
¼ �UT

r �
oKr

oX
�Ur ðA6Þ

The combination of Eqs. (A4) and (A6) will lead to

oC
oX
¼ �

XN

r¼1

UT
r �

oKr

oX
�Ur

¼ �
XN

r¼1

UT
r �

o
R

Xr
BT �DMA � BdX

� �
oX

�Ur ðA7Þ

Now, let us consider the derivative of structural compli-
ance with respect to macro density in the problem with two
class design variables. Note that DMA can be expressed in
the form of Eq. (7), so one can get

oC
oP i
¼ �

XN

r¼1

UT
r �

o
R

Xr
BT �DMA � BdX

� �
oP i

�Ur

¼ �
XN

r¼1

UT
r �

o
R

Xr
BT � P a

r �DH � BdX
� �

oP i
�Ur

¼ �UT
i �
Z

Xi

BT � a � P a�1
i �DH � BdX �Ui

¼ � a
P i
�UT

i �
Z

Xi

BT � P a
i �D

H � BdX �Ui

¼ � a � Ci

P i
ðA8Þ

For the same problem, the derivative of structural com-
pliance with respect to micro density is expressed as

oC
oqj
¼ �

XN

r¼1

UT
r �

oKr

oqj
�Ur

¼ �
XN

r¼1

UT
r �

o
R

Xr
BT �DMA � BdX

� �
oqj

�Ur

¼ �
XN

r¼1

P a
r �UT

r �
Z

Xr

BT � oDH

oqj
� BdX

 !
�Ur ðA9Þ
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