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Abstract In this paper, the modeling of a redundant
SCARA-type manipulator robot with five degrees of
freedom is presented. We propose three controllers -
hyperbolic sine-cosine, sliding mode, and calculated torque
- which are applied to the discussed model. A simulation
developed using MatLab/Simulink
programming tools. This simulation environment is

environment is

employed to perform several tests (including actuators'
dynamics) on the model of the redundant manipulator,
with each different controller, under path tracking
requirements. Results were obtained from comparative
curves and rms index for joints and Cartesian errors.

Keywords Redundant manipulators, dynamic model,
controllers, simulation.

1. Introduction

The widespread utilization of manipulator robots during

the current stage of industrial development has led to
productivity enhancements and quality improvements in

www.intechopen.com

manufactured products - mainly due to the better
repeatability of robot movements, which has consequently
resulted in a higher accuracy in their performance.
Although the first applications of such manipulators
appeared in painting and welding processes, the
automotive industry soon started to use them, expanding
their field of application to the manipulation of bodyworks,
engines, chassis and other components [1-5]. This required
an increase in the flexibility of their workspace, a feature
that can be achieved by increasing the number of degrees
of freedom in the robots, i.e., making them redundant.
Nevertheless, none of these activities would be possible
without the adequate design of robots along with proper
control techniques. To fulfil this purpose, knowledge and
the study of a mathematical model and a certain kind of
"intelligence" is required to govern the manipulator in
order to perform the assigned tasks. By employing the
basic physical laws ruling robot dynamics, it is possible to
derive a model representing its behaviour and, by means
of proper programming tools, to develop a simulation
environment for subjecting the manipulator to different
tests, such as path tracking.
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In this paper, we present the modelling of a SCARA-type
redundant manipulator robot with five degrees of freedom
and, furthermore, we subject the resulting model to a path
tracking test consisting of a spiral in Cartesian space. Three
controllers are elaborated for testing the model: hyperbolic
sine-cosine, sliding mode and calculated torque. A
simulator is developed by means of the MatLab/Simulink
software to run the redundant robot model with each
controller. Actuator dynamics are also included in this
analysis. Results are obtained from comparative curves
and the rms index of joints and Cartesian errors.

2. Redundant Robots

Redundant robots are a kind of manipulator which has
more degrees of freedom than the number required to
perform some specific task [6, 7]. During recent years,
special attention has been paid to the study of these
manipulators, since redundancy has been considered a
major feature for performing tasks requiring a level of
dexterity comparable to the human arm, as in space
technology applications such as the Special Purpose
Dexterous Manipulator (SPDM), an essential component
of the Canadarm-2: Robotic Arm designed by Canada for
the International Space Station, shown in Fig. 1.

RN )
" 'I’ ,' N 'l[
i

{/ 4
'h{lh{'h Wb ;.:.’h., st

Figure 1. Special Purpose Dexterous Manipulator.
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Even if the majority of non-redundant manipulators have
enough degrees of freedom to perform their main tasks,
for example, position and/or orientation tracking, it is
known that their restricted manipulability leads to a
reduction of the work space, due to mechanical
limitations of the joints and the presence of obstacles in
this space. This problem has motivated researchers to
study manipulators' behavior when adding more degrees
of freedom (kinematic redundancy), permitting these
systems to manage additional tasks defined by the user.
Such tasks can be represented as kinematic functions,
including not only the kinematic functions reflecting
some desirable properties of the manipulator's behavior,
like joints characteristics and obstacle avoidance, but also
can be expanded to include dynamic yield measurements
through the definition of functions in the robot's dynamic
model, like impact force, control of inertia, etc. [8].
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The studied robotic manipulator has two additional
degrees of freedom, giving it redundancy for its
rotational movement in plane x-y, as well as in its
prismatic movement in z axis, as seen in Fig. 2.

It is possible to generalize kinematic redundancy in the
plane x-y as is shown in Fig. 3, where the internal variable
6 establishes the relative angle between two adjacent
links, and to determine the position of the end effector in
terms of Eq. (1) [9].

T
|:xj| = |:le‘ cosy; , le‘ Sin‘//i:| , (1)
Yy i=l i=1

where yi corresponds to the link's absolute angle, given
by Eq. (2):
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Figure 2. Scheme of a robotic manipulator with rotational and
prismatic redundancy.
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Figure 3. Scheme of a manipulator with generalized rotational
redundancy in the plane x-y.

3. Scara-Type Redundant Manipulator
Fig. 4 shows a scheme of a SCARA-type redundant

manipulator where we can see the redundancy in its
rotational movement in the plane x-y as well as that in its
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prismatic movement along the z axis and the distribution of
the coordinate axes' systems and the position of centroids.
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Figure 4. Scheme of a SCARA-type redundant manipulator.

Next, we proceed to perform the calculations corresponding
to the manipulator's kinematic model.

3.1 Kinematics
In order to obtain the kinematic model, we have

considered the standard Denavit-Hartemberg method,
whose parameters are listed in Table 1.

Articulacion i O di ai ai
0° hi+di 0 0°
2 6> 0 I 0°
3 O3 0 Is 0°
4 04 0 la 180°
5 0° Is+ds 0 0°

Table 1. Denavit-Hartemberg parameter assignment.
Then, applying the homogeneous transformations given

by Egs. (3) and (4), we obtain the direct kinematic model
given by the matrix (5):

HT[ = ROt(Zi—l .6 )'Tras<zi-1 .d; )'Tras(xi’ai )’ROt(xtsai ) > (3)

cosd; -cosg;sind; sing;sind, a;cosb,
ilp sind, cosa;cosf;, -sing;cosd; a;sind;
! 0 sina, cos ¢, d |
0 0 0 1
Csa Sozu 0 Ley+hey+lcyy,
|53 "G 0 Lsy+hsy+1,55,
0 0 -1 L+d-L—-d, | ®)
0 0 0 1
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where:
s, =sinb,, sy =sin(6,+6,), s, =sin(6,+6,+6,),
c, =c0sb,, Cyy=cos(6+6,), Cyy =cos(6+6,+0,).

In order to obtain inverse kinematics in a redundant
robot we must consider different methods, selecting the
most adequate one in accordance with model
considerations. If we use homogeneous transformation
matrices it is necessary to clear the n "q variables", in
terms of vector components n, o, a and p corresponding
to the direct kinematic model, as stated in expression (6):

[8 - ﬂ =[] ©

where the t;j elements are functions of the joints
coordinates [g1,...,q:]7, and in this way it is possible to
think that by means of some combinations of the 12
equations presented in (6) we can clear the n "q joints
variables" in terms of the vector components n, o, a and p.
In most cases, this method can be quite tedious,
appearing as transcendental equations. Nevertheless, if
we consider three degrees of freedom, we can simplify
the procedure in the following way:

T = 'T,'T,>T,, @)
rearranging, we obtain:

(OTl)_lT = 'T,’T,

e Y (op Y 2 2 )
(Tz) (Tl) T T,,

since T is known, the members to the left in expressions
(8) are functions of the joints variables (qs,...,4x), while the
members to the right are functions of the joints variables
(ge,...,qn). In this way, it is possible to reduce the
complexity when obtaining the joints variables.
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Figure 5. Scheme of the three rotational DOF in the SCARA-type
redundant robot manipulator.
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When applying this method to the three rotational
degrees of freedom that rules the robot's movement in the
plane x-y, as shown in Fig. 5, multiple solutions will be
obtained. In order to overcome this limitation, we
establish the condition stated by Eq. (9):

Accordingly with these considerations - and after
adequate simplifications - the inverse kinematic model is
obtained, expressed by:

0, = m+arccos(a), (10)
a = L(l+1)/4l1

(405 =12 )(20d =17~ 12 )+ 41y (2 + 5 ))% %11113 ,

6, = —2arctan(f), (12)

-+

(11)

xt (X2 +y° =5 (413 cs(hesth)+h’ ));

B= , (13)

y+is3+Ls,,

d; = L+d -1l -z,

(14)
where z and d1 are known.
3.2 Dynamics

Having in mind the above presented manipulator, it is now
necessary to obtain its dynamic model. For this purpose,
we will employ the Lagrange-Euler formulation that is
based on the principle of energy conservation [10]. Next,
we need to obtain the manipulator's kinetic energy and
potential energy. Therefore, to obtain the dynamic
equation of the robotic manipulator, we must determine
[11]:

>  manipulator's kinetic and potential energy,

»  the Lagrangian (Eq. (15)), and
»  toreplace in Lagrange-Euler equation (16),

L(q.q) = K(q.4)-U(q). (15)

. - d[o(q4)) oL(a.4) (16)
dt oq oq

where:

L : Lagrangian function (Lagrangian).

K : Kinetic energy.

U : Potential energy.

q : Vector of generalized (joint) coordinates.
q : Vector of generalized (joint) speeds.
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T : Vector of generalized forces (forces and torques).
In this way, the dynamic model of a manipulator with n
joints can be expressed through Eq. (17) [9, 12, 13]:

T = M(9)4+C(4.9)+G(9)+F(q). a7

where:

: Vector of generalized forces (nx1dimension).

: Inertia matrix (nxn dimension).

: Vector of centrifugal and Coriolis forces (nx1
dimension).

: Components of the joint position vector.

: Components of the joint speed vector.

ng-

: Vector of gravitational force (nx1dimension).
: Vector of joint acceleration (nx1dimension).

e ) e

: Vector of friction forces (nx1dimension).

Therefore, from Egs. (15), (16) and (17) the dynamic
model of the redundant robotic manipulator can be
expressed through Egs. (18) to (35):

My My, My My, Ms
My My My My M
M = My My, My My M|, (18)
My My My My My
Mg Ms, Msy Ms, M
M, =m +m, +m; +my, +ms, (19)
My, =My, =Mj;z=My =M, =M, = 20)
Mys=Ms,=Mys =Ms;= M5 =Ms, =0
Ms = M5, = —ms 21)
Moy =1, my + (17 + 1> + 2L Ly 04 )my +.
(L2 +17 +1,7 + 2L 1 ey Jmy +..
2Ll cu+ b1 e )my +... 2
(B2 +1 +12 + 2L Iyc Jmg +..
2Ll eyt Ll ey )ms +...
[222 +I3zz +I4zz
My =My :(lczz +121c3°3)m3 oyt
(L2 +14> +Lley+ 2L L 0y )my +... 23)
(L 1yc38)my + (L1, 085, )ms...+
(17 +1 +L Loy + 2L 1yc, )m,
My, =My, :(lc4 +hlgcithlgcy, )m4 o
(24)

(L7 +Llyc,+ ey Jm+ 1,

zZZ
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My = 17 my+ (L + 1,2+ 2L 1 ¢, )my +...

(25
(17 +17 42010 mg + Iy + 1.
My =My :(1542 +l3lc4c4>m4 +...
(26)
(L7 + Ly, )mg+1,..
My, =L m +1>m+1,_. 27)
Mss = ms (28)
T
C = [Cn Gy G Gy C51] (29)
Gy =Gs =0 (30)
Cp, =—(lymy +lymy +1ymy )l s5- 0 +..
(lc4m4+l4ms)lzs34-93 +..
—(Lymy +1,ms) (s34 +18,)0, +...
—2(Lymy +lymy +1mg )y sy 0, 0, +... (31)
(Lymy +1,ms)lys54-0, 05 +...
=2(Lymy +1yms )(1ysy,+158,)0,0, +...
—2(lc4m4+l4m5)(l3s4+lzs34)9394
3 = (Lymy +Lymy +Lymg) Ly s5- 0,% +..
(Lymy +1yms)lys5,- 0, +...
~(Lymy +1,ms)lys,- 0,7 +.. (32)
- (lc4m4+l4ms)l3$4-t92 0, +...
~2(1ymy +1,mg)lys,- 6,0,
Cy =(Lymy +1,ms)(ls,+1,55,)0," +...
(Lymy +1ymg s, 0. +... (33)
2(lyms +14my)lys,-0, 0,
G:[(m1+m2+m3+m4+m5)gz 000 —mSgZ]T
(34)
T
F = [Fn Fy F Fy F51] (35)
where:
s, =sind;, s, =sind,, ¢y =cosb;,

¢, =cosl,, sy, =sin(6,+06,), cy =cos(bs+06,),

m1 : Mass of the first link.

m2 : Mass of the second link
ms : Mass of the third link.
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ms : Mass of the fourth link.

ms : Mass of the fifth link.

I : Length of the first link.

I : Length of the second link.

Iz : Length of the third link.

Is : Length of the fourth link.

Is : Length of the fifth link.

lo : Length from the origin of the 24 link to its centroid.

ls : Length from the origin of the 3 link to its centroid.

la : Length from the origin of the 4t link to its centroid.

Iozz : Inertial momentum of the 2" link with respect to the
1% z axis of its joint.

I3z : Inertial momentum of the 3 link with respect to the
1¢t z axis of its joint.

lazz : Inertial momentum of the 4% link with respect to the
1%t z axis of its joint.

In the manipulator's dynamic model, as pointed in Eq. (17),

the term corresponding to centrifugal and Coriolis forces is
frequently expressed through a Vm matrix, asin (36):

T = M(q)i+V,(4.9)q4+G(q)+F(g) (36)

According to this, the matrix Vm can be expressed by
means of Egs. (37) to (46):

11 leZ

(37)

S S S S
2
SRS

V =V 45 = (38)
= V m54 V O

N .%V s
Il

Y V V
II
N
V

Vs = —(Lymy +lymy +1ymg )y 55065 + ..
(lamy +1yms )y 8570 + .. (39)
—(Lymy +1,mg)(lys,+1, 534)9
Vs = —(Lsmy +lymy +1ymg)1, $36, +..

Lymy +1,ms)l, $3,0, +..

gy +1ymg)l, S3,0; +..

c

~(
~(%
—(Lymy +1Lymy +1mg)lys5 05 +. (40)
~(/
-(C

amy +1ms)(Ls,+1, 534))94
Viga==(Lymy+1yms)(ls,+ 1,85, )(‘92 +0,+ 94) (41)

|4

32 = (Lymy +lymy +1,mg )y 840, +...
(Lamy +1ms )Ly 8550, +... (42)

—(Lymy +1,ms )L, 5,0,
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Viss =—(Lymy +1,ms)l;s,-0, (43)

Visa = = (Lamy +1,ms )5, (0, +6,+6, ) (44)
Viar = (Lymy +1yms )(lys5,+158, )0, +...

(Lymy +1,ms)ls,-6; ()

Vi = (Lymy +1yms )y, (0, +0,) (46)

4. Actuator Dynamics

The actuators considered in this study are servo motors,
which are composed by a direct current motor, a gear
train for reducing spin speed and increasing torque in the
drive shaft, a potentiometer connected to the output axis
which is used to know a position, and a feedback control
circuit which converts a PWM (Pulse-Width Modulation)
input signal into voltage, compares it with the feedback
position, and then amplifies it to drive an H-bridge so as
to produce the spin at a specified speed [3].

In Figs. 6 and 7 we can see, respectively, a schematic
diagram and a block diagram of a servomotor coupled to
a robotic manipulator as a load [14].

The dynamic model of the considered servo motors has
been developed by authors in [14], and is given by
expressions (47) and (48):

k
T, = l(R—“Akskpvi—Jm%q}—...

n a

1((k k 1. & 1 @7
—| | Zalb —jaa iy
n{( R +Bm]nq+Ra Akqu+fgc(nqu

foe () = Ftanh(kg)(1+sgn(g))/2+... us)

F,,, tanh (kg)(1 —sgn(q))/Z
where:

n : Gear ratio (m/n2).

k. : Motor torque constant.

R« : Armature resistance.

A : Gain of the power amplifier (H bridge).
ks : Comparator sensibility.

ky : Total PWM (kp1 - kp2) conversion gain.
vi : Servomotor input voltage.

Jm : Motor inertial momentum.

kv : Inverse electromotive force constant.
B : Motor viscous friction.

p : Position potentiometer gain.

k : tanh function slope gain.

Int J Adv Robotic Sy, 2012, Vol. 9, 58:2012
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H-Bridge R, L,
Amplifier g

I\]:Z Comparator
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k
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— m

Vi Voltage to PWM
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Figure 6. Schematic diagram of a servomotor coupled to a
robotic manipulator as a load.

6,

Servomotor

Figure 7. Block diagram of a servomotor coupled to a robotic
manipulator as a load.

k is a constant used to increase or reduce the curve slope
in the zero-crossing.

5. Considered Controllers

Next we present a summary of the controllers considered
for model evaluation of the robot along with its actuators,
with their respective performance.

6. Hyperbolic Sine-Cosine Controller

This controller, already presented in [15], is composed by a
proportional part based on hyperbolic
functions, a derivative part based on a hyperbolic sine, and
gravity compensation, as pointed in Egs. (49) and (50).

sine-cosine

T = K, sinh(q,)cosh(q,)+...
49
-K, sinh(q)+G(q) @)
qe = 4q-9 (50)
where:
K, = diag(K,.K,,,...K,,) (51)

Ky : Proportional gain matrix, diagonal and definite
positive (nxn dimension).

K, = diag(K,.K,,,....K,,)

vl Ty vn

(52)

Kv : Derivative gain matrix, diagonal and definite positive
(nxn dimension).

www.intechopen.com



ge : Joint position error vector (nx1 dimension).
qd : Joint desired position vector (nx1 dimension).

In [15] it is established that the robotic manipulator joint
position error will asymptotically tend to zero as time
approaches infinity:

lim q. > 0 (53)

t—o

this behavior is demonstrated by analyzing Eq. (54) and
identifying that the system's only equilibrium point is the
origin (0, 0).

as) - o)

a=-q (54)
a, = M(q)'1 (Kp sinh(q, )cosh(q, )+...
K, sinh(q)-C(q.q)q)

6.1 Sliding Mode Controller

Sliding Mode Controllers (SMC) are a particular kind of
Variable Structure Control (VSC) system with the ability
to change structure by means of some law in order to
satisfy the desired features [16]. SMC consists in defining
a control law which - switching at a high frequency -
drives the system's status into a surface called a "sliding
surface”, keeping it in front of possible external
perturbations [17]. One of the major advantages of the
sliding mode control lies on its invariance against
parameter uncertainties and external perturbations.
Nevertheless, high switching frequencies usually cannot
be implemented [18], and it also introduces to actuators
the vibration phenomenon called “chattering”, which
must be avoided in many physical systems, such as servo
control systems, structure vibration control systems and
robotic systems [19].

The control law corresponds to:

T = —K-sgn(s) (55)
where:
K = diag(K.K,,...K,) (56)

K : Definite positive diagonal matrix (nxn dimension).
and the sliding surface is given by:

s = W-(q-q,)+(q-4,) 57)
where:

W = diag(W.,W,, ... W,) (58)

W : Definite positive diagonal matrix (nxn dimension).

www.intechopen.com

6.2 Calculated Torque Controller

Another developed controller employs a control law by
calculated torque, consisting in the application of a torque
in order to compensate the centrifugal, Coriolis,
gravitatory and friction effects, as stated in Eq. (59) [20]:

T = M(q)(ijd+que+que)+...

L (59)
C(9.9)+G(q)+F(4)

where:

M : Estimation of inertia matrix (nxn dimension).

C : Estimation of centrifugal and Coriolis forces vector

(nx1 dimension).
G : Estimation of gravity force vector (nx1 dimension).
F

: Estimation of friction forces vector (nx1 dimension).
Kv : Definite positive diagonal matrix (nxn dimension)

defined in (52).

Ky : Definite positive diagonal matrix (nxn dimension)
defined in (51).

ge : Joint position error vector (nx1 dimension)
defined in (50).

d. = 94-9 (60)

q,. : Joint speed error vector (nx1 dimension).
qq4 : Joint desired acceleration vector (n1x1 dimension).

If the estimation errors are little, joints errors
approach to a linear equation, as pointed in Eq. (61).

q. +K,q. +que ~ 0 (61)

6. Simulation Environment

£ SRS NI
HA‘ ::a “I SERVOS5 tau
Img J
:

F »
»
R —»
qd P —> a1
qq* 1P| ddad cl —p] SIE =
Trajecto »| : ™ o %Ogg\.-r q
st N ¥ m Actuators I i 1
q" E2
A Ei Eo E EF2
Controller Rabet -‘
qd xyd XY » g

Convert

xy.mat

Figure 8. Block diagram of the simulator employed to test the
manipulator model along with the mentioned control laws.
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The three control laws above mentioned, along with the
SCARA-type redundant manipulator dynamic model and
the actuator dynamics, were run in a simulation
structure, created by means of MatLab/Simulink
programming tools, as shown in Fig. 8.

Parameter values considered for the manipulator are
displayed in Table 2.

Link1| Link2 | Link3 | Link4 | Link5 | Units
1 10524 02 02 02 | 014 [m]
le | - 100229 | 00229 | 0.0229 | - [m]
m 1228 | 1.023 | 1.023 | 1.023 | 05114 | [kg]
L= | - |0.0058 | 0.0058 | 0.0058 | - [kgm?]
Fo | 0.03 | 0.025 | 0.025 | 0.025 | 0.02 [Nms/rad]
Feu | 005 | 005 | 005 | 005 | 003 | [N-m]
Few [ -0.05 | -0.05 | -0.05 | -0.05 | -0.03 | [N-m]

Table 2. Parameters considered for the manipulador.

Table 3. shows the set of parameter values used for each
actuator.

Table 4. shows the set of gain values employed for each
kind of controller.

7. Results

After developing the manipulator model and the
simulation environment - including the actuator
dynamics - and establishing the control laws to be used, a
test trajectory was determined in the space to subject the
manipulator's model to path tracking, and we then
studied the results in terms of the performance of each
controller. This trajectory is shown in Fig. 9.

Servo1 | Servo 2-3-4 | Servo 5 Units

R 1.6 1.6 1.6 [Q]

La 0.0048 0.0048 0.0048 [H]

Jm 0.007 0.007 0.007 [kg-m?]
Bm | 0.01413 0.01313 0.01208 [N-m-s/rad]
ka 0.35 0.35 0.35 [N-m/A]
ko 0.04 0.04 0.04 [V-s/rad]
Feca 0.05 0.05 0.03 [N-m]
Fea -0.05 -0.05 -0.03 [N-m]
n 1/600 1/561.6 1/561.6 [Times]
A 15 15 15 [Times]
ks 10 10 10 [Times]
kp 1 1 1 [Times]
4 1 1 1 [Times]

Table 3. Parameters considered for servo motors.

Int J Adv Robotic Sy, 2012, Vol. 9, 58:2012

Kind of Controller
ot | G oty | Gty Miacle |
Torque
K, Ki2, Kps, | 400, 300, 200, o 400, 600, 700,
Kps, Kps 100, 100 800, 100
Ku, Kuz, Kz3, 5,4,3, o 120, 100, 60,
Kus, Kos 2,2 50,40
Ki, K2, K3, - 0.74,1.45,14, _
Ks, Ks 1.35,1.54
Wi, Wa, W, _ 10, 10, 10, _
Wi, W5 10, 10

Table 4. Gains considered for the controllers.

Test Cartesian desired trajectory

0.8
E 0.6
t 0.4 SN \
@ (-
z ——
& 02
0
02
0.1
02 0s 06 07
. 03 04 -
Axis y (m) 03 o o1 02 7
Axis x (m)

Figure 9. Test Cartesian desired trajectory.

Cartesian trajectories: desired and real (sinh-cosh)

0.8
E [N I — xy:d
w04 xyz e Yy
@ . A
g o
£ 02
0
0.2
0.1

0.7

0.5 0.6

. 03 04
Axis y (m) 03 001 02 Axis x (m)

Figure 10. Comparison in the space of the desired and real
Cartesian trajectories using the hyperbolic sine-cosine controller.

Figs. 10, 11 and 12 show the curves corresponding to
comparisons between the desired Cartesian trajectory and
the real Cartesian trajectory, displaying the views in space,
plane x-y and plane y-z, respectively. All of this is under
the action of the hyperbolic sine-cosine controller, where:

xyza : Desired Cartesian trajectory, in space.
xyz : Real Cartesian trajectory, in space.

xya : Desired Cartesian trajectory, in plane x-y.
xy : Real Cartesian trajectory, in plane x-y.
yzi : Desired Cartesian trajectory, in plane y-z.
yz : Real Cartesian trajectory, in plane y-z.
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Cartesian trajectories: desired and real plane x-y (sinh-cosh)
0121

0.08} ™~

0.04 -

Axis y (m)
f=]

-0.04 |

-0.08¢ .

012 . . I I .
03 034 038 042 046 05

Axis x (m)

0.54 058 0.62

Figure 11. Comparison in plane x-y of the desired and real
Cartesian trajectories using the hyperbolic sine-cosine controller.

In Fig. 13 are seen the curves corresponding to desired
and real joint trajectories, when using the hyperbolic sine-
cosine controller, where:

gdn : Desired joint trajectory, where n represents joints 1
to 5.
gn : Realjoint trajectory, where n represents joints 1 to 5.

Forces and torques supplied to the robot by actuators,
under the action of hyperbolic sine-cosine controller, are
shown in Fig. 14, where:

fi : Force applied in joint 1.
n : Torque applied in joint 2.
» @ Torque applied in joint 3.
n : Torque applied in joint 4.

f5 : Force applied in joint 5.

Cartesian trajectories: desired and real plane y-z (sinh-cosh)
0.54 ¢

e R 7

0.39F =

—————

-0.09 -0.06 -0.03 0 0.03 006 0.09 0.12
Axis y (m)

0.36

Figure 12. Comparison in plane y-z of the desired and real
Cartesian trajectories using the hyperbolic sine-cosine controller.
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Joint trajectories: desired and real (sinh-cosh)
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Figure 13. Comparison of the real and desired joint trajectories
using the hyperbolic sine-cosine controller.

Forces and torques applied (sinh-cosh)
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Figure 14. Forces and torques applied to the robot when using
the hyperbolic sine-cosine controller.

Figs. 15 and 16 display the errors obtained from desired
and real Cartesian trajectories, and desired and real joint
trajectories, respectively, when using the hyperbolic sine-
cosine controller, where:

ex : Error in Cartesian trajectory, x axis.

ey : Error in Cartesian trajectory, y axis.

ez : Error in Cartesian trajectory, z axis.

en : Error in joint trajectory, where n represents joints 1
to 5.

Claudio Urrea and John Kern: Modeling, Simulation and Control
of a Redundant SCARA-Type Manipulator Robot
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o 10° Cartesian error (sinh-cosh)
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Figure 15. Cartesian trajectory error, when using the hyperbolic
sine-cosine controller.

Joint error (sinh-cosh)
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Figure 16. Joint trajectory error, when using the hyperbolic sine-
cosine controller.

Cartesian trajectories: desired and real (sliding-mode)
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Figure 17. Comparison in the space of the desired and real
Cartesian trajectories using the sliding mode controller.

Comparisons between the desired and real Cartesian
trajectories, under the sliding mode controller, are
shown in Figs. 17, 18 and 19, displaying the charts
corresponding to the space, the plane x-y and the plane
y-z, respectively.

In Fig. 20 we display the charts related to joint desired

and real trajectories when using the sliding mode
controller.
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Cartesian trajectories: desired and real plane x-y (sliding-mode)
0121
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Figure 18. Comparison in plane x-y of the desired and real
Cartesian trajectories using the sliding mode controller.

Cartesian trajectories: desired and real plane y-z (sliding-mode)
0.54

051F T

0.36 . L | . . . L
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Figure 19. Comparison in the plane y-z of Cartesian desired and
real trajectories using the sliding mode controller.

Joint trajectories: desired and real (sliding-mode)
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100
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Figure 20. Comparison of the joint desired and real trajectories
when using the sliding mode controller.

Fig. 21 shows the response of the actuators, indicating

forces and torques developed during trajectory tracking,
when using the sliding mode controller.
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Forces and torques applied (sliding-mode) Errors produced by the difference between the desired
and real Cartesian trajectories and the joint desired and
real trajectories when applying the sliding mode
controller, are shown in Figs. 22 and 23, respectively.

The tracking response of robot model in the joint space,
when using the calculated torque controller, is shown in
Figs. 24, 25 and 26, displaying the desired and real curves
in the space, the plane x-y and the plane y-z, respectively.

Cartesian trajectories: desired and real (calculated-torque)

—_T 0.8
2 2
— T P I R —
g ! ’ g
7 04
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>
w -] m|' Z 0.2
22 0
0.2
-3 ; : ; ' ; 0.1
0 1 2 3 4 5
Time (sec)

02
Axis y (m) 03 o o1 02

03 04
Figure 21. Forces and torques applied to the robot when using

Axis x (m)
the sliding mode controller.

Figure 24. Comparison in the space of the desired and real
Cartesian trajectories when using the calculated torque controller.

o 107 Cartesian error (sliding-mode)
. Cartesian trajectories: desired and real plane x-y (calculated-torque)
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Figure 22. Error in Cartesian trajectory when using the sliding

Figure 25. Comparison in plane x-y of the desired and real
mode controller.

Cartesian trajectories when using the calculated torque

) o controller.
Joint error (sliding-mode)
4r Cartesian trajectories: desired and real plane y-z (calculated-torque)
c € e (54 (& 054
3L 1 2 3 4 5 .
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Figure 23. Error in joint trajectory when using the sliding mode Figure 26. Comparison in plane y-z of the desired and real
controller Cartesian trajectories when using the calculated torque
controller.

www.intechopen.com Claudio Urrea and John Kern: Modeling, Simulation and Control

of a Redundant SCARA-Type Manipulator Robot



12

Comparisons between joint desired and real trajectories
under the calculated torque controller are shown in Fig. 27.

Joint trajectories: desired and real (calculated-torque)

100 -
80} .
60+
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20}
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201

Time (sec)
Figure 27. Comparison of the joint desired and real trajectories
when using the calculated torque controller.
Forces and torques applied (calculated-torque)
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Figure 28. Forces and torques applied to the robot when using
the calculated torque controller.

In Fig. 28 are seen the curves corresponding to the forces
and torques applied by servo motors under the
application of the calculated torque controller.

In Figs. 29 and 30, we can see the error curves obtained

from Cartesian and joint desired and real trajectories
when using the calculated torque controller.
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Cartesian error (calculated-torque)
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Figure 29. Error in Cartesian trajectory when using the calculated
torque controller.
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Figure 30. Error in joint trajectory when using the calculated
torque controller.

Finally, figs. 31 and 32 show joint and Cartesian rms
errors, respectively, in accordance with Eq. (62).

(62)

Where ei represents both the joint and Cartesian trajectory
errors and 7 is the number of data.

Joint performance index
0.035
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0025 I €41 RMS :| € 4.RMS
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0.02 3
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0.015
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Joint error RMS (°)
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sliding-mode calculated-torque

sinh-cosh
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Figure 31. Performance index corresponding to joint trajectory.
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Cartesian performance index
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Figure 32. Performance index corresponding to the Cartesian
trajectory.
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Figure 34. Scheme of a SCARA-type redundant robot (view B).
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8. Conclusions

In this paper, we developed the kinematic and dynamic
model of a redundant SCARA-type manipulator robot
with five degrees of freedom using the Denavit-
Hartemberg and Lagrange-Euler methods, respectively.
Three controllers were developed: hyperbolic sine-cosine,
sliding mode and calculated torque. A simulator was also
created, using the MatLab/Simulink software. Several tests
on this model were presented, including actuator
dynamics under each controller through a path tracking
test consisting of a spiral in the Cartesian space. The
results obtained through the simulation environment
were displayed by means of comparative curves and an
rms index for joint and Cartesian errors.

From the results obtained, we can see that the redundant
manipulator model presented a path tracking response
whose maximum errors were less severe when using the
hyperbolic sine-cosine controller than in the other two
leading to more homogeneous manipulator
movements. We also appreciate that the greatest joint and
Cartesian errors produced when testing the robot model,
both for maximum and rms values, occurred when using
the calculated torque controller. Consequently, the best
results for the robotic manipulator's model performance
were obtained when applying the hyperbolic sine-cosine
controller, as shown in Figs. 31 and 32. It is important to
notice that both the hyperbolic sine-cosine and the sliding
mode controllers present a lesser simulation complexity,
since they do not require the second derivative of joint
position. Such a condition can be decisive in the case of
not having high-performance processors. The practical
implementation of the sliding mode controller, however,
has a considerable disadvantage: the controller's high
switching frequency, leading to a
deterioration of the actuators.

cases,

remarkable

9. Further Research

From the behavior obtained through the simulation tests
for the redundant robot model with its actuators and the
different control laws that were analyzed, we can begin a
new stage in the study and analysis of redundant robotic
manipulators, consisting in the practical implementation
of real industrial-type robots, its
controllers, by means of the development of the proper

actuators and
hardware, as is schematized in Figs. 33 and 34.
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