Computers in Industry 82 (2016) 1-18

COMPUTERS IN -
INDUSTRY.

Contents lists available at ScienceDirect

Computers in Industry

journal homepage: www.elsevier.com/locate/compind

Writing and verifying interoperability requirements: Application to
collaborative processes

g)\
CrossMark

N. Daclin®*, S. Mallek Daclin®, V. Chapurlat?, B. Vallespirb'C

2 LGI2P—Laboratoire de Génie Informatique et d’Ingénierie de Production Site de I'Ecole des Mines d’Alés, Parc Scientifique G. Besse, 30035 Nimes cedex 1,
France

b Univ. Bordeaux, IMS, UMR 5218, F-33400 Talence, France

€CNRS, IMS, UMR 5218, F-33400 Talence, France

ARTICLE INFO ABSTRACT

Article history:

Received 10 April 2015

Received in revised form 5 April 2016
Accepted 11 April 2016

Available online xxx

Interoperability analysis is highly correlated with interoperability requirements, the ability to grasp,
structure, author and verify such requirements has become fundamental to the analytical process. To this
end, requirements must be: (1) properly submitted in a suitable and usable repository; (2) written
correctly by stakeholders with relevance to the studied domain; and (3) as easily verifiable as possible on
various models of the system for which interoperability capabilities are being requested. The purpose of
this article is to present both a structured repository for interoperability requirements and a Domain
Specific Language to write and verify interoperability requirements - within a collaborative process
model - using formal verification techniques. The interoperability requirements repository, which serves
to structure interoperability requirements and make them available, is itself structured through
abstraction levels, views and interoperability life cycle dimensions. Additional parameters detailing the
requested information and the known impacts of requirements on behavior of the studied system have
also been included. The Domain Specific Language provides the means for writing interoperability
requirements. Afterwards, these requirements — more specifically the temporal requirements — are re-
written into properties by transforming the temporal logic TCTL to allow for their effective verification by
using the model checker UPPAAL. The overall approach is illustrated in a case study based on a
collaborative drug circulation process. The article also draws conclusions and offers an outlook for future
research and application efforts

Keywords:

Interoperability requirements
Repository for interoperability
requirements

Requirements verification
Domain Specific Language

© 2016 Published by Elsevier B.V.

1. Introduction For one thing, a requirement assigns, without ambiguity and in
a coherent manner, designers' tasks and constraints when devising
a solution. A requirement can be described using standards [2],

reference models and vocabularies [3]. However, the existing

In the field of Systems Engineering (SE) [1], like in any
specialized engineering field (mechanical, Information Systems,

mechatronics, etc.), requirements engineering is a critical activity
dedicated to ensuring that a given system meets all expressed
requirements (i.e. original requirements corresponding to stake-
holder! expectations and prescriptions, as well as requirements
induced by technical choices and decisions throughout the system
design phase).

* Corresponding author.
E-mail addresses: surname.name@mines-ales.fr (N. Daclin),
bruno.vallespir@ims-bordeaux.fr (B. Vallespir).
! We have adopted the definition in [3] that defines a stakeholder as a “party
having a right, share or claim in a system or in its possession of characteristics that
meets said party’s needs and expectations”.

http://dx.doi.org/10.1016/j.compind.2016.04.001
0166-3615/© 2016 Published by Elsevier B.V.

vocabulary and requirement checklists commonly adopted in the
SE field tend to be understandable, yet perfectible and abstract
when taking a particular category of requirements into account
(e.g. non-functional requirements such as interoperability) or a
particular system (e.g. enterprises involved in collaborative
processes). For another thing, the interoperability concept [4]
remains a key factor of success for enterprises that share and
exchange processes, service data and resources in a collaborative
context; moreover, a number of existing works have sought to
characterize [5], implement [6] and assess this very concept [7-9].
Nevertheless, compliance with interoperability requirements
within a partnership is neglected and constitutes a challenge that
can provide: (1) structure to interoperability requirements, (2) a

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compind.2016.04.001&domain=pdf
mailto:surname.name@mines-ales.fr
mailto:bruno.vallespir@ims-bordeaux.fr
mailto:bruno.vallespir@ims-bordeaux.fr
http://dx.doi.org/10.1016/j.compind.2016.04.001
http://dx.doi.org/10.1016/j.compind.2016.04.001
http://www.sciencedirect.com/science/journal/01663615
www.elsevier.com/locate/compind

2 N. Daclin et al./ Computers in Industry 82 (2016) 1-18

means for expressing requirements, and (3) the tools needed to
detect possible interoperability flaws.

The paper's focus is threefold: grasping and structuring
interoperability requirements, identifying the means of writing
such requirements, and performing verifications with formal
techniques [10]. The definition and verification of requirements
involves a collaborative process model for the purpose of
highlighting interoperability issues that may lead to dysfunctions
and interfacing problems from technical, organizational (including
human) and conceptual points of view. Following this brief
introduction, the problem statement and expected outcomes will
be presented. The relevant research work will be provided and
discussed in Section 3. Section 4 will then lay out the proposed
repository for interoperability requirements, featuring its dimen-
sions, their relationships and the steps allowing for its utilization.
Section 5 will offer a case study to illustrate the value of such an
approach; lastly, Section 6 will assess the approach and its possible
enhancements.

2. Interoperability requirements engineering
2.1. Problem statement and expected outcomes

Nowadays, a technical problem involving interoperability in the
fields of computer science and Information and Communication
Technologies [11] basically includes organizational aspects (i.e. are
the organization and its personnel able to collaborate efficiently?)
and conceptual aspects (do the data being exchanged share a
common semantics?) [12-14]. While initially focused exclusively
on data exchange and sharing, topics such as process interopera-
bility [15] are also receiving consideration at present. Moreover,
interoperability encompasses other aspects, like for instance the
interfacing issue, which extends to the autonomy and reversibility
of partners involved in the collaborative venture [16]. Interopera-
bility therefore is an important and mandatory capability to ensure
effectiveness in terms of: exchanging and sharing information,
products and resources; aligning and orchestrating collaborative
processes; and establishing decisions or policies. Among the
numerous relationships concepts (collaboration, cooperation,
coalition . . .) and their associated time scale, interoperability is
for instance necessary in organizations such as Collaborative
Networked Organizations [61] which rely on collaborative
business processes (which can be coordinated, orchestrated or
else, synchronized) which themselves rely on interoperable
activities, resources, applications (through collaboration points

[62]) which themselves, for instance, exchange data. However, the
better the understanding and definition of interoperability, the
more complex its implementation, monitoring, control and
improvement. This statement actually leads to considering
interoperability requirements and their verification from a more
suitable perspective [17].

Requirements engineering practices must consider two major
aspects [18], namely the requirements management (access,
versioning, change, traceability, etc.) and the actual engineering
steps (elicitation, writing, refinement,). Requirements must be
checked, throughout a system's life cycle from design phase to
execution phase via the corresponding components and sub-
systems development phase [2], in order to prove expectations
have been satisfied and avoid problems (e.g. drift from expected
objectives, cancellation in worst cases). Similarly, some require-
ments must be verified during the actual operations phase and
until the system is decommissioned (or at least partially
redesigned). Requirements engineering therefore plays a major
role in the success or failure of a project [19,58], yet it is often
neglected by actors [20,59,60].

The requirements engineering process continues to be consid-
ered as time- and resource-consuming and without clear added
value. Stakeholders however should always keep in mind that as
more errors or omissions are carried to the upstream engineering
phases, the remedial costs in downstream phases will increase
(modification to the existing system) [21] (Fig. 1). On this figure, an
important aspect is the “cost to extract defects” in relation to the
different steps of development which shows that the more a defect
is identified belatedly, the more the correction cost is important.
The requirements engineering belongs to the field of the definition
of the problem so, it is beneficial to spend time defining clearly
what is expected in order to avoid (as much as possible) problems
in the later phases of development. Interoperability is a non-
functional requirement (NFR) to be incorporated throughout the
system life cycle [22] that affects both the functioning and quality
of system service yet that has remained neglected [23]. Hence,
interoperability requirements engineering is a key to handling,
improving and ensuring that interoperability capabilities are being
properly controlled.

First of all, a simple requirements baseline is unsuitable.
Requirements need to be combined into a structured reference, i.e.
a repository. The overall objective is to structure requirements for
them to be easily: (1) traceable throughout the system life cycle
(defined, verified, allocated, satisfied), (2) modifiable/removable/
addable, (3) usable for determining relevant solutions, and (4)

£ —95%
é 100% Committed Costs o E
- —

2 % 85%

>

o 70%

3 0%

2 20-1
- eﬁ’é 0-100X
o og,‘_-p

€ 5% (v

s 36X

> 4%

]

S 3%

E Develop
¢ 20% - Design

= nci

: 8%

E o

o Time

Fig. 1. Commited Life-cycle cost against time (extracted from [21] from Defense Acquisition University 1993).

Haud o)f CErTe v A

Jdaded swraadedasyy

N. Daclin et al./ Computers in Industry 82 (2016) 1-18 3

:Result
- - -4 . 18+ -0
BPMN 2.0
- -k -0
Transformation
o R |
: Conceptual .
i Graphs 1
1
I
[Networks of ;
I L]
|

Timed Automata

Task has
responsible

Interoperability
-requirements framework

Conlclusion

@\ = ! a-tempora| 1 }E@ﬁﬁi
End user\ :/ gﬂ% c)I rbquirement Conceptual Graph , h@
e %"O/; "Iy Re-writing
requirement

(o ;

?\ T AL v
End user w\ [=¥ | o
\ o = \ s Compati

(&)

= N =

temporal
requirement;

TCTL property

E<> task.Active

Fig. 2. Overall process of managing and expressing interoperability requirements.

identifiable. Moreover, a repository is capable of supporting the
requirements specification from a well-defined basis, rather than
with a jumbled list, and is bound to comply with quality criteria
from a set of requirements, as defined in [24].

The assumption here is that the qualities inherent to a set of
requirements are more easily respected with a repository that
structures the interoperability requirements. As a first and obvious
point, the repository must be in agreement with the interopera-
bility concept, specifically in corporate sectors concerned with
issues of interoperability, interoperability problems and life cycle
(when interoperability is anticipated). Second, a repository can
lead to considering interoperability requirements that might be
generic enough for application to any collaborative processes and
in different fields. This kind of requirement would then be
identified and permanently positioned in the repository to be used
at stakeholders' subsequent request. Third, an overview like a
repository can simplify conflict identification between require-
ments. Such is the case in collaborative processes involving various
activities and resources from various processes belonging to
different organizations with the potential for conflicting expect-
ations. Lastly, a repository in agreement with existing interopera-
bility frameworks and including requirements that satisfy

2 M.US.T. stands for: Measurable, Useful, Simple and Traceable.
3 S.M.A.R.T. stands for: Specific, Measurable, Achievable, Relevant and Traceable
(or Time-bound).

interoperability needs could ultimately yield interoperability
solutions that are fully adapted to the initial expectations.

Stakeholders must subsequently express their requirements. To
this end, a number of practical rules for adequately expressing,
reviewing and sharing requirements are available in the literature.
Let’s cite the well-known acronyms M.U.S.T,> S.M.A.R.T> and ISO
recommendations [25]. The spectrum of languages to express
requirements extends from natural languages to formal languages.
Natural languages offer readability (with requirements being
understandable), flexibility (possibility of writing the same
requirement using different terms), extensibility (definition of
new concepts, terms, attributes), though their principal drawbacks
are low levels of consistency and precision plus a risk of ambiguity.
Furthermore, the verification of these requirements relies, for
instance, on human expertise, thus implying deficiencies (misin-
terpretation of requirements, an untruthful result, time allocation
to verify requirements). Formal languages offer precision (mathe-
matical basis), consistency and are often supported by computer
tools. Conversely, these languages are barely readable and prevent
stakeholders from using their own business vocabulary and
culture. These languages and tools require a solid knowledge,
and only a few stakeholders are accustomed to these techniques in
favoring natural languages.

4 For instance, the modalities in temporal logic, where E stands for “it exits”, A for
“for all”, [] for “always” and <> for “sometimes”.

) AT

Jdaded swraadedasyy

Hauﬂ |7¥ cgrre e

4 N. Daclin et al./ Computers in Industry 82 (2016) 1-18

Regardless of the language, a dedicated language - as formal as
possible — can assist actors in specifying interoperability require-
ments. The proposed language must be concise, accurate and
simple enough to create requirements that are understandable,
distributable, unambiguous and entirely readable for humans (as a
formal language®). The language must then allow writing
interoperability requirements within a collaborative process, i.e.
by including limited concepts related to: attributes for checking
interoperability (data, responsibilities, duration); an expression of
requirements (modalities, state, cause, conclusion); the language
used to model the collaboration. Moreover, the language needs to
guide the writing, by making available both proposals and
information regarding possible error. The language must therefore
comply with a strictly defined grammar.

Consequently, the main goal here is to support the process that
entails managing, writing and verifying interoperability require-
ments (see Fig. 2). The verification step is performed on a
collaborative process model — compliant with BPMN 2.0 [26] -
transformed into an equivalent model for applying the verification
routine. Two formal verification techniques have been used:
conceptual graphs [27] using the COGITANT tool [28] to verify non-
temporal requirements and model checking [29] using UPPAAL
[30] as well as temporal requirements. At this stage, the
collaborative process model is transformed into the model used
by verification tools [31]. Moreover, requirements are written
directly in the formal language, i.e. conceptual graphs and TCTL
(temporal logic—Timed Computation Tree Logic). The purpose
then is to enable: (1) managing requirements in a structured form,
whereby a set of requirements can be selected/added/removed/
modified; and (2) writing requirements using a human readable
language and addable into a dedicated repository. As a final
condition, requirements must be transformed into the targeted
formal language for verification.

This stage will solely consider the writing of temporal
requirements. Non-temporal requirements have already been
written and positioned within the repository for selection and
verification. Hence, the goals are to: (1) render the writing of
temporal requirements feasible with a dedicated stakeholder-
oriented language; (2) rewrite this requirement into the language
used in formal verification techniques; and (3) perform the
verification step.

2.2. Managing and writing interoperability requirements

Interoperability is applicable in various fields (e.g. medicine
[32,33], armed services [34], computer science |[35], crisis
management). As regards corporate interoperability, research
has sought to: (1) define interoperability, (2) develop methods
and tools for interoperability evaluation, and (3) propose
methodologies for its implementation. Some work can serve as
a basis to manage interoperability requirements and elicit
requirements.

Interoperability frameworks structure interoperability accord-
ing to its characteristics (problems, approaches). Most frameworks
[55] consider interoperability [4,36,37] as a conceptual, organiza-
tional and technological issue. Some however include additional
dimensions in order to develop interoperability solutions [4]; they
mainly consider the “how” (solution) rather than the “what” (what
needs to be done?), yet they do allow structuring interoperability,
and this step needs to be considered in grasping (a solution is a
response to a requirement(s)), organizing and handling interoper-
ability requirements.

Interoperability evaluation also involves interoperability
requirements. As regards maturity evaluations [38-41], maturity
models describe expectations to be met regarding a given
interoperations capability that may evolve throughout maturity

levels. The notion of requirement is implicit and not formalized (i.e.
not structured or expressed as a requirement), yet these models
remain a key input from which interoperability requirements can
be extracted. Operational measurements (i.e. effective exchange
and sharing phase) [8,42] define and provide metrics for an
interoperability evaluation. These results are compared with
respect to expected results describing requirements in terms of
operational interoperability. Further details (maturity/operational
evaluation) are available in [43].

Regarding research on interoperability requirements, [44]
defines interoperability as a fundamental “ility” that enhances
Systems of System capabilities. In a similar manner, the latest
version of TOGAF [45] highlights the need to define interoperabili-
ty requirements and provides guidelines in support of their
definition. Moreover, [46] proposed a set of interoperability
requirements (related to gas and electricity Smart Metering
Systems), according to a defined and common format. With
respect to the structuring of interoperability requirements, [31]
proposed a set of requirements and a 3-dimensional model to
provide a means for verifying interoperability requirements. This
work was mainly directed at the effective verification of require-
ments supported by formal techniques. Let's note that [4], with its
interoperability engineering phase dimension, considers defining
requirements, yet this has not been developed any further for
relevant application and moreover may be extended to consider
interoperability requirements. Finally, other works focusing on the
notion of interoperability and collaboration between organizations
can be also considered. Along these lines, let's mention the service
level agreements (SLA) that contractually define the expected
quality of services between parties.

To address these issues surrounding requirements expression,
various vocabularies and their semantics can be employed in order
to abandon the natural language and its weaknesses. These
vocabularies must support designers not only in expressing the
requirements, but also in decomposing or refining them from a
more relevant and formal presentation into a set of sub-require-
ments. Various approaches are available to handle these vocabu-
laries; however, it remains a difficult task to choose and develop a
dedicated language that is concise and capable of: properly writing
requirements, specifying interoperability, performing verifica-
tions, and being simple enough for widespread comprehension.
From this perspective, mental maps or guided interviews may be
used to specify requirements among the less formal techniques.
More formally speaking, the KAOS method [47], boilerplate
approaches [48], Use Case Map notation [49], standardized
requirement checklists [3] or the REGAL approach [50] have all
been recognized as suitable methodologies. These approaches
however offer methodologies to write requirements using natural
language. In this sense, the use of standards offering a vocabulary
based on natural language, in addition to limiting and structuring
the writing of requirements, seems to be more appropriate. Let's
also mention URN [51], GRL [52] or SBVR [53]. For instance,
Semantic Business Vocabulary Rules (SBVR) propose a defined
vocabulary to write business rules that represent requirements. In
fact, SBVR “defines the vocabulary and rules for documenting the
semantics vocabularies, business facts and business rules for the
interchange of business vocabularies and business rules among
organizations and between software tools” [53] and moreover is
based on a natural language that simplifies writing requirements in
comparison with a formal language [54]. Thus, SBVR offers a clear
representation of requirements without necessitating specific
skills since it is based on natural language with a limited
vocabulary. These semi-formal notations, either graphical or
textual, feature a well-defined syntax and are easily understood
and handled by stakeholders. Conversely, the majority of these
languages are only minimally automated and still present a risk of

e

o e

EE A RER

Jaded awraadedasayy

N. Daclin et al./ Computers in Industry 82 (2016) 1-18 5

[) DrugCircuit g Requirement Framework 3 E Sample Verification ! Requirement Solution = 0
INTEROPERABILITY REQUIREMENT FRAMEWORK
Interoperabiity levels Position: Service x Organisational x Compatibility
Name Origin Status
name 73] hd
resource @ bl
i (2] v
Interoperability categories aptitude L
authorization (3] v
mail] v
phone 3] v
Interoperabilty lifecyde responsibleName (5} v
responsible] v
login 3] v
/ / / password 53] v
© Business
/ Nature: aTemporal
Verification: conceptual graph
© Process) concepreioren s oo
Requirement: if task requires_authorization then task has_authorization
/ Description: f a given taskM requires authorization then -
/ taskN that want to access it must have the authorization.
@ Service
/0 © Reversibility
/ - Autonomy
© Data . O Interoperation
© Compatibility
o " « T] »
Conceptual @ Organisational
* Technologica
< m b
Framework

Fig. 3. The Interoperability Requirements repository (requirements shown with a lock are predefined and unmodifiable).

ambiguity. Formal languages (CTL, LTL, TCTL, etc.) also make it
possible to write requirements with great precision by offering a
defined syntax and semantics with a high level of automation. In
contrast, these languages are difficult to learn, read and under-
stand without extensive expertise. Lastly, let's mention the Formal
Description Techniques (FDTs) which offer languages to describe a
system, especially for computer system development. FDTs ensure
to get a set of specifications which respect characteristics such as
clearness, concision, completeness, consistency, tractability, and
conformance. FDTs are addressed to developers, implementers,
testers and end users and let's quote ESTELLE, ALBERT II, LOTOS...
[65]. These FDTs remain close to the programmatic languages
structure based on mathematical symbols that can hardly usable
but they allow to reach an effective and reliable system in an
efficient and rigorous manner. Thus, it could be interesting to
extend these kinds of approaches to allow - beyond the developers
and implementers - the business users in charge of the
management of collaborative processes and, here, the manage-
ment of interoperability aspects, to benefit from formal techniques.

From these considerations, it is necessary at first to clearly
structure identified (or written) interoperability requirements
according to: (1) interoperability problems, and (2) the interoper-
ability definition. This structure must ultimately provide feasible
interoperability solutions that satisfy stakeholder expectations.
Second of all, it is necessary to write requirements in adhering to
strict guidelines and rules applicable to stakeholders in their
specifications task and the resulting requirements must be verified
with formal techniques. This has to lead to the development of a

language sufficiently “non formal” to be used without strong
knowledge and sufficiently formal to be linked with a tool allowing
formal verification. Thus, the expecting result is a Controlled
Natural Language [63] enables non engineers or experts in
requirements engineering to take advantage of reliable verification
means based on formal language while keeping, as possible, the
comfort and the power of expression of the Natural Language, i.e.,
“to bridge the gap between a natural language and a formal language
by the use of a controlled natural language (CNL) that can mediate
between these languages” [64].

3. Repository for interoperability requirements
3.1. Fundamental dimensions

A repository is “a place where things are stored and can be found®
Regarding interoperability requirements engineering, the
repository provides a means for structuring, organizing and
managing requirements according to interoperability features, in
continually verifying their compliance throughout a partnership
and guiding the selection of a best interoperability solution [9]. In
other words, it offers a set of interoperability requirements that
respect the quality criteria of a set of pre-established requirements,
thus making it possible to:

”

5 http://dictionary.cambridge.org/.

Jaded awraadedaayy
EE}. E Rk aniainkay

http://dictionary.cambridge.org/

6 N. Daclin et al./ Computers in Industry 82 (2016) 1-18

e grasp and structure interoperability requirements—stakeholders
may set up their own requirements in accordance with
dimensions properly related to interoperability;

o specify the requirement author, modify and remove interopera-
bility requirements all in an efficient manner;

e include a basic set of interoperability requirements—existing
requirements from the literature applicable to any collaborative
process (i.e. independent of the context) are already positioned
and proposed;

e satisfy all stakeholder expectations, avoid redundancy and
conflict between requirements, ensure that a set of (selected)
requirements can be satisfied (otherwise, provide for early
detection of infeasibility), and ensure that requirements are
easily accessible and available for consultation (structuring).

e generate a set of interoperability solutions when a requirement
is not satisfied — the targeted repository must be consistent with
existing interoperability frameworks yielding interoperability
solutions.

Consequently, the proposed repository is in agreement with the
framework in [4] and [36]. This one can act as a base to collect
interoperability requirements to get a relevant repository.
Moreover the original version of the framework makes available
a set of interoperability solutions - according to its dimensions -
that can be related with interoperability requirements. Thus, the
repository considers three basic dimensions: abstraction, views,
and interoperability life cycle (Fig. 3), in agreement with [4].
Abstraction levels are included within the interoperability prob-
lems. Interoperability views are the companies’ fields affected by
interoperability. Lastly, a third dimension is added and defined as
interoperability life cycle which is the decomposition of interoper-
ability into agreements during the partnership life cycle. For
instance, requirements at the beginning of a partnership concern
interfacing while requirements at the end pertain to unplugging.

The dimension of abstraction levels considers interoperability
problems in the three realms of Conceptual (meaning of
information, capability of expressing and communicating infor-
mation), Organizational (responsibilities, authority decision-mak-
ing processes, policies, organizational processes and regulations)
and Technological (physical interface compatibility issues).

The dimension of interoperability views identifies the main
fields needed to develop in-company interoperability [36]:
Business, Process, Service and Data. Initially limited in its original
version to the data exchange, sharing and the exploitation of

Table 1

exchanged and shared data exclusively, this last level of the
repository has currently been extended to consider other flows, so
as to enable specifying interoperability requirements. For our
purposes, this level includes:

- Resources. The interoperability of resources relates to the
specific resources (human, software, hardware) that belong to
the various partners and that can be shared among them. This
aspect mainly pertains to the synchronization of resources
deployed, their aptitudes and capacities;

- Material. Material interoperability refers to exchanges of the
materials to be processed by the various partners. This aspect
mainly pertains to the volume, length, span, etc. of the material
being exchanged.

The dimension of interoperability life cycle phases relates to the
occurrence of interoperability during the partnership. Interopera-
bility requirements may indeed evolve, depending on the phase of
the partnership, i.e. the beginning (partner connections), the
operational phase (interoperation exchange, sharing, perfor-
mance) or the end (dismantling). Each phase therefore is
consistently correlated with interoperability. As such, this dimen-
sion is characterized by: compatibility (interfacing issues),
interoperations (running of the partnership), autonomy, and
reversibility [31].

As shown in the previous figure, a set of interoperability
requirements is already positioned within the repository. The
stakeholder must obtain information on the requirements and is
unconcerned with any writing or verification process. For instance,
the selected requirement is positioned at the service/organiza-
tional/compatibility level; moreover, it is non-temporal and
verified with conceptual graphs (pre-loaded). Moreover, its goal
consists of ensuring that a person associated with a task of a given
process holds the possible required authorization to access another
process (information, tool, database). The stakeholder then merely
has to instantiate the requirement in specifying the considered
tasks (shown in the description). Lastly, the following table
presents some typical interoperability requirements positioned
into the repository. This table presents the two dimensions
interoperability levels and interoperability categories, the inter-
operability lifecycle phase is positioned beside the requirement (C-
compatibility, I-interoperation, A-autonomy and R-reversibility)
(Table 1).

Examples of interoperability requirements (available at: https://tel.archives-ouvertes.fr/tel-00666099/document).

Conceptual Organizational Technological
Business - e The decisional structures are defined (C) -
e A common strategy is defined (I)
o A strategy of a partner is not altered by the
common strategy (A)
Process e The internal processes are modeled (C) e The collaborative process is modeled (I) -
Service e The services are described (C) o The responsible are identified (C) e A communication protocol is defined (C)
e The receiver acknowledges reception (I) e The duration to exchange is less than a defined
o The internal functions are performed after the value (I)
partnership (R) e The duration to use exchanged data is less than a
e A service can stand in for the service involved defined value (I)
into the partnership (A) e The duration to execute a task post-partnership
is equal to the duration ante-partnership (R)
Data e Data are unambiguous (C) o Internal data are secured (C) e A data mapping language is defined (C)

Resource e Received data are conform to required data (I) e Data to exchange are available (I)

Material e Data are not degraded (R)

The quantity of required data is equal to the
quantity of received data (I)

e

o e

CE}- - Rk

Jaded awraadedasayy

http://https://tel.archives-ouvertes.fr/tel-00666099/document

N. Daclin et al./ Computers in Industry 82 (2016) 1-18 7

All these requirements are either (1) expressed and verified
with conceptual graphs due to their a-temporal nature, (2)
expressed and verified with the model checking technique due
to their temporal nature or (3) kept like this whatever their nature
and verified by expertise since it is impossible to express them
with a more formal language.

Lastly, let’s mention that the following point of view is adopted
to consider a requirement as an interoperability requirement:
when heterogeneous organizations work together and require to
share, exchange, use, modify, have permission ... functionalities,
resources, data . . . from each other, and when objects and attributes
from different organizations occur in a requirement that can impact
the relation, the requirement falls into the category of interoperability
requirements and are positioned into the repository.

3.2. Additional parameters

Other parameters must also be considered by the repositrory in
order to: (1) ascertain with precision the impact of interoperability
requirements on collaborating partners and/or on the partnership
itself; (2) provide information about verification techniques and
the means for writing requirements; and (3) ensure availability of
adapted solutions with respect to the verified requirements. These
parameters are known as “Granularity”, “Analysis”, “Solution
proposal” and “Means of verification” [17].

The Granularity parameter represents the level of detail on the
object affected by interoperability. The selection and implementa-
tion of an efficient interoperability solution depends on how
accurate the particular object has been identified. Interoperability
solution can indeed influence partnership operations or efficiency
(mission, objectives, etc.) or a partner (mission, objectives,
components, resources). As an example, “partners hold the
necessary authorization to access shared data” (CxOxD®) does affect
partnership activities (risk of lost time while obtaining the
information required by an activity). The requirement “function
f, performed by resource r involved in partnership, is still performed”
(AxOxS) exerts an impact on a partner (execution of a function).
Partners can thus select/adapt/build interoperability solutions or,
potentially, relax requirements.

Analysis levels constitute the main characteristics affected by
the implementation of interoperability. The satisfaction of a
requirement can affect criteria (e.g. performance affecting the
partnership or a partner). Requirements must therefore be defined
according to these criteria in order to highlight interoperability
expectations and their impacts on partner and partnership. These
criteria are defined as: performance, stability, and integrity.
Performance refers to the ability of a system to achieve its
objectives. Requirements positioned on this characteristic concern
the expected interoperability performance and the impact of
interoperability on partner/partnership. For instance, the require-
ment “the duration to connect application is less than x times units”
impacts performance (CxTxS). More precisely, it affects partner-
ship performance by extending for example partners' interface

6 We have adopted the following convention regarding the position of a
requirement:

o The first letter denotes the interoperability life cycle (e.g. “C” stands for
compatibility).

e The second letter denotes the abstraction level (e.g. “O” stands for organiza-
tional).

o The third letter denotes the interoperability level (e.g. “D” stands for data).

For instance, CxOxD means the requirement concerns the interfacing aspect
(Compatibility) at the Organizational level and is required for the exchange/sharing
of Data.

duration and the time required to deliver the expected service/
product. Stability refers to a system's ability to maintain its viability
and adapt to its environment (external change). For purposes of
illustration, the requirement “a resource r is used to change the
partnership mission” (IXTxS) indicates that a modification in the
mission (e.g. new service expected by the customer) must be
performed by the initially allocated resource. In this case, the
stability of the partnership is affected since the resource must be
capable of participating in the new mission, under satisfactory
conditions and with the expected performance level (e.g. agility,
flexibility, reactivity). Integrity refers to a system's ability to remain
consistent and carry out its functions in case of modifications (e.g.
loss of resources — internal change). For instance, the previous
requirement “function f, performed by resource r involved in
partnership, is still performed” alters the integrity of a partner
since its own resource is being allocated to the partnership and an
internal function also needs to be performed. In this case, the
partner must take action to sustain its own integrity (e.g. overload
of another internal resource, subcontracting, overtime hours).

Solution proposal parameters are intended to make available a
set of solutions (this set is fully related to [4]) in accordance with
the considered requirement. This parameter also includes: (1)
information on the potential problem(s) resulting from require-
ment non-verification; and (2) the potential impact on the
verification of other requirements once a solution is implemented.
For instance, non-verification of the requirement “if task requires
aptitude, then resource has aptitude” (CxOxS) can lead to partial task
achievement or, in the worst case, to its non-achievement. The
solution might then consist of either replacing the allocated
resource by one with the requested aptitude or training the current
resource. The choice of solution (resource change) can however
produce an impact on the verification of other requirements,
namely those related to the achievement of other tasks and the
availability of shared resources (e.g. “It is possible that task is
starting and resource is available”).

Verification means stakeholder guidance during selection of a
predefined requirement or in writing a requirement. It therefore
provides information about the technique used to verify require-
ments (expertise, conceptual graphs, model checking), depending
on both the nature of the requirement (temporal or non-temporal)
and its ability to be verified automatically (conceptual graphs and
model checking) or not (human expertise). It also provides the
dedicated domain specific language, according to a selected means
of verification, for writing a requirement. For instance, the previous
requirement “a resource r gets used to carry out a change in the
partnership mission” is verified by an expert because no verification
can be conducted with any formal technique. Consequently,
stakeholders must have the possibility to write requirements
depending on the chosen means of verification. The next section
will present a language to write interoperability requirements for
verification using model checking techniques.

4. Process of writing interoperability requirements
4.1. Principles of DSL” applied to writing interoperability requirements

First, the domain specific language must be easily manipulated
and accessible without any sophisticated knowledge (in compari-
son with temporal logic, for instance) and allow stakeholders to
properly create and verify requirements. Hence, the proposed
language must be limited yet sufficient to write requirements, i.e. it
must be developed in accordance with the field under study. In this
research, DSL includes limited concepts, such as:

7 DSL stands for Domain Specific Language.

Jaded awraadedaaay

EE A RER

8 N. Daclin et al./ Computers in Industry 82 (2016) 1-18

Table 2
DSL grammar for temporal requirement writing.

Requirement: (mod=Modality p+=Proposition+) | (p+=Proposition+ lead=LeadTo q+=Proposition+);
Proposition: obp+=OpenBracket* (iter=Iter? | neg="not'?) fact=Fact cbp+=CloseBracket* bool=Bool?;

Fact: sT=StartFact (cbf+=CloseBracket* | eF+=EndFact*);

StartFact: (stateTerm=StateTerm (verb=Verb | timeTerm=TimeTerm)) | tab=Tab | val=Value | c=Clock;
EndFact: (comp=Comparator | op=Operator) ((stateTerm=StateTerm timeTerm=TimeTerm) | val=Value |

tab=Tab);

StateTerm: st=("task" | "resource");
Clock: c="clock";

Value: val="value";

TimeTerm: tt=("timeMax" | "timeMin");

Verb: v=("is_waiting' | 'is_working' | 'is_starting' | 'is_finished' | 'is_stopped' | 'is_available' | 'is_active');
Comparator: comp=("is_less_than' | 'is_greater_than' | 'is_equal_to' | 'is_not_equal_to');

Operator: op=('plus' | 'minus');

Bool: b=('and' | 'or");

Iter: it=("for all' | 'it exists') itType=IterType;

IterType: id_it=("tasks,' | 'sequence_flows,' | 'message_flows,');
Tab: tab=("task_start [index]' | ‘'task_end [index]' |

'emission_message_start

[index]' |

'emission_message_end [index]' | 'reception_message_start [index]' | 'reception_message_end [index]' |

'reception_sequence_start [index]' | 'emission_sequence_end [index]');

Modality: reachable="1It is possible that" | invariantly="Invariantly," | inevitable="It is inevitable that" |

potentially="There is potentially always ";
LeadTo: It="lead to';
CloseBracket: cb=")";
OpenBracket: ob='(";

1. The language used to model the collaborative process (BPMN
concepts, like task, resource, event) [26];

2. The verification technique (UPPAAL) to model process behavior
and temporal requirements [30]. All automaton and states
corresponding to the BPMN object behavior (e.g. task in a
“Working” state) are taken into consideration, as is the
specification language (reachability “E<>").

3. Interoperability concepts, i.e. all concepts absent from the
previous point but still relevant to writing interoperability
requirements [16] (aptitude, is_less_than, authorization, respon-
sibilities, etc.).

The proposed DSL is constrained to write interoperability
requirements and formalized in the following formula:

InteroperabilityRequirement DSL={BPMNconcepts,UPPAALconcepts,
Interoperabilityconcepts} (1)

Second, the DSL must provide: (1) proposals throughout the
writing process, (2) information about possible mistakes, and (3) a
human readable language rather than a formal language. On the
basis of this DSL therefore, stakeholders must be able to write a
temporal interoperability requirement for verification on a
collaborative process model. For example, the interoperability
requirement ‘it is possible that a task is working and a resource is
active’ is built based on BPMNconcept (task, resource) and
UPPAALconcept (working, active). Furthermore, instead of using
the formal quantifier “E < >", this one is expressed by ‘it is possible
that’, which is a more easily understood construction.

4.2. The syntax of interoperability requirement DSL

The proposed syntax allows stakeholders to express require-
ments from an intelligible language while respecting the
fundamental characteristics of a requirement. It makes funda-
mental objects available, such as the modalities that express the
type of proposition to verify (e.g. “it is inevitable that”), the
elements involved in the collaborative process (resources), and the

Requirement

/\

mod p
1 TN T
reachable st v b st v

Fig. 4. Example of a syntax tree for a requirement conforming to DSL grammar.

task is_working resource is_active

state of a given element in the collaborative process (resource
availability), operators (Boolean as well as comparative). In turn, all
these elements serve to build and create a set of interoperability
requirements. From a formal perspective, an interoperability
requirement can be simply written in order to respect the
following syntax:

interoperabilityRequirement: =modality p | p leadTo q (2)
where:

modality: = {reachable, invariantly, inevitable, potentially} 3)
lead To: = {lead to} (4)
and:

p,q: =proposition (5)

A proposition can also include various operators (e.g. Boolean,
iterator) to build a more complex interoperability requirement. For
this purpose, the proposition integrates BPMNconcepts, UPPAAL-
concepts and Interoperabilityconcepts. Moreover, let's note that the
proposed syntax can evolve in accordance with the specific needs
of stakeholders in terms of requirement writing. The resulting
implementation of the DSL grammar is given in Table 2 below.

N. Daclin et al./ Computers in Industry 82 (2016) 1-18 9

States Variables
/\ :
S
Waiting Start meMir Working
o——0O——0

Fig. 5. Task automaton in UPPAAL.

The following example shows that a requirement conforms to
the grammar defined above. The syntax is implemented within the
xText® framework, which allows defining an entire specific
language that includes aspects leading to completion and mistake
avoidance during requirement writing (Fig. 4).

4.3. TCTL syntax

The UPPAAL tool is used to process a behavioral model defined
as a set of templates that communicate by synchronization using
channels and syntax such as sent/receive. Templates are given
locations and transitions [30]. The principle of a model checker is
to exhaustively verify requirements with temporized and possibly
constrained automata that describe the behavior of a system.
Furthermore, temporal requirements must be formalized into the
TCTL (Timed Computation Tree Logic) properties used to consider
several possible futures based on the state of a system. The UPPAAL
model checker features four TCTL quantifiers (A: for all paths, E: a
path exists, []: all states in a path,<>: some states in a path)
introduced to write a property. Formally, a TCTL property (a query
in UPPAAL) can be simply written in respecting the following
syntax.

Query: = quantifier p| p leadTo q (6)
where:

Quantifier: = (pathQuantifier, temporalQuantifier) (7)

with:

pathQuantifier = {[], <>} (8)
temporalOperator = {E, A} (9)
leadTo = {—} (10)
and:

D, q=expression (11)

An expression (p) is written in accordance with existing
automata (states and variables), as presented in Fig. 5 for the
automaton of a task described with four states (Waiting, Start,
Working and Stop) and two variables (timeMin and timeMax) used
in a clock T.

Furthermore, an expression may also include various operators
(e.g. Boolean, iterator) to build a more complex property to verify.

8 Available online at: http://www.eclipse.org/Xtext/.

The resulting implementation of this TCTL grammar is shown in
Table 3 (adapted from [30]).

As per the previously defined TCTL query syntax, Fig. 6
describes a given requirement using TCTL logic.

4.4. Rewriting of interoperability requirements

Once a requirement has been written using DSL, it then needs to
be rewritten into the language used to apply the verification
technique (TCTL). Both syntaxes are based on the use of modalities
(interoperability requirement DSL)/quantifier (TCTL) followed by a
proposition.

The first mapping involves the link between the modalities of
the interoperability requirement DSL and the quantifier used in
TCTL. As such, four modalities are defined in keeping the meaning
of the quantifier. These modalities are human readable and express
path quantification (E, A) and temporal operators ([], <>) (Table 4).

The second mapping pertains to the link between a proposition
expressed using DSL and a proposition using TCTL. For instance, a
stateTerm (e.g. “task”) will be mapped with an iValue. In the same
manner, a verb (e.g. “is_waiting”) will also be mapped with an
iValue. Beyond this simple mapping however, both the structure of
the written requirement and the targeted language must be
considered as well. For instance, the stateTerm “task” in a
requirement means that the mapping must be established with
the automaton Task. In addition to this initial mapping, a
subsequent mapping of the Verb “is_waiting” must be performed
with the corresponding state of the automaton Task (“Waiting”).
This second mapping must still respect the structure of the writing
using TCTL, which means that the dot symbol (“.”) must be inserted
between the name of the automaton and the considered state.
Consequently, this second mapping also considers the aspect of
query building correctness by incorporating the “pID” rule found in
the grammar.

The mapping therefore depends not only on a simple
relationship between the elements of a requirement and a query
(one-to-one mapping) but also on how they are arranged in the
requirement and the correspondence of this arrangement within a
query. A partial representation of the proposed solution is given in
the following table (Table 5).

Based on this mapping, all elements of an interoperability
requirement (DSL grammar) need to be transformed into a query
(TCTL grammar). To this end, rules have been developed to
automatically rewrite a requirement. For instance, a mapping can
be derived to rewrite the interoperability requirement “It is possible
that task is_working and resource is_active and clock is_less_than
timeMax” into TCTL, as: “E < > task.Working and resource.Active and
T < timeMax”. In considering and respecting the proposed map-
ping, the modality can indeed be rewritten into a quantifier and the
DSL proposition rewritten into a TCTL proposition, as shown in
Fig. 7.

Lastly, to prepare a requirement for verification entails
instantiating it with existing elements in the studied collaborative
process model. This implies that before the rewriting step,
elements within the process must be proposed from the elements
that compose the requirement to be verified. Thus, for a given
requirement involving both tasks and resources for example, then
each task and resource belonging to the collaborative process
model must be proposed to instantiate the requirement. In
pursuing the current example “It is possible that task is_working
and resource is_active”, all names of tasks and all names of
resources involved in the process need to be proposed in order to
instantiate the requirement.

e

1=

@ T

EE A RER

Jaded awraadedasayy

http://www.eclipse.org/Xtext/

10 N. Daclin et al./ Computers in Industry 82 (2016) 1-18

Table 3
Implementation of the TCTL query grammar (adapted from UPPAAL).

Query: ((quantifier = QuantifierPath) p = AbstractExpression) |
(p = AbstractExpression lead = QuantifierLead q = AbstractExpression);

AbstractExpression: atom = Atom (binary = Binary | atom1 += Atom | point += Point)*;

Point: pID ="." ident = Ident;

Word: w = wValue;

enum wValue: deadlock ='deadlock’ | false = 'false' | true = 'true';
Atom: (unary = Unary? | iter = Iteration) (ident = Ident | word = Word);
Unary: unaryValue = uValue;

enum uValue: plus = '+' | minus ='-' [no="!" | not = 'not';

Binary: binaryValue = bValue;

enum bValue: inf = '<' | infE = '<=' | strictE = '=="1 dif = "!=" | supE = ">=' | sup=">'| plus = '+' | minus ="-'|
mult ="#"ldiv="/"|percent="'%" | sAnd = '&' | sOr ="l' | exp = "'A"' | hInf = '<<' | hSup = '>>' | and = '&&' | or

="II'linfD ="'<?" | supD =">?" | orL = 'or' | andL = 'and' | imp = 'imply";
Iteration: iterOp = ('forall' | 'exists') '(' iterBody1 = Ident ":" iterBody2 = Type ')';
Ident: iValue = 1D;

Type: prefix=Prefix typeld = Typeld;

Typeld: identType = Ident | typeWord = TypeWord | scalar = Scalar | int = Inte | struct = Struct;

Struct: s = 'struct' '{' fieldl = FieldDecl field2 += (FieldDecl) '}";
FieldDecl: Type ID arrayl += ArrayDecl (',' ID array2 += ArrayDecl)* ';';
ArrayDecl: '['a=Atom ']' | '[' t=Type 'l';

Inte: i ="int' '[' exprei = Atom ',' expreil = Atom ']'";

Scalar: scal = 'scalar' '[' expres = Atom ', expres| = Atom ']';

TypeWord: typeWordValue = twValue;

enum twValue: int = "int' | clock = 'clock’ | chan = 'chan' | bool = 'bool';
Prefix: prefVaLue = pValue;

enum pValue: urgent = 'urgent' | broadcast = 'broadcast' | meta = 'meta’ | const = 'const';

QuantifierLead: gL = '-->";
QuantifierPath: quant = QuantValue;

enum QuantValue: invariantly = "A[]" | inevitable = "A<>" | potentially = "E[]" | reachable = "E<";

Query
quantifier p
| .

reachable ident pID ident andL ident pID ident

-

E<> task . Working and resource Active

Fig. 6. Example of the syntax tree for a query conforming to TCTL grammar.
5. Application case study: the drug circulation process®

Drug circulation is a critical process in hospitals since it is
mandatory to provide the right drug to the right patient in time and
in the right dose. While apparently simple, proper execution of this
circulation primarily depends on good interactions between
participants and precise interactions between all resources
involved. This process therefore must closely involve stakeholders
in order to improve pharmacy practices and strengthen the role of
the Medicine Committee (care unit). A drug circuit is generally
composed of three main steps: prescription, delivery, and
administration performed by both the care unit and the pharmacy.
Furthermore, three resources are involved: a nurse (Care Unit), a
medical practitioner (Care Unit), and a pharmacist (Pharmacy). All

9 A demonstration of the developed tool is available at: goo.gl/chclk7, in offering
details of the application case study.

data relative to the process, e.g. resource declaration, resource
allocation, attribute declaration, are provided by the stakeholders
in charge of modeling. Tasks and interactions are modeled with a
BPMN 2.0 modeler (Fig. 8). The following diagram (known as a
collaboration diagram in BPMN [26]) sets up the model for various
processes from various entities (Pharmacy and Care Unit) and their
interactions (message flows between processes), with the entire
set-up constituting the drug circulation process (upper part of
Fig. 8). Various resources are involved and ascribed to a single
entity. These resources are declared (a point to extend the BPMN
language has been developed, lower part of Fig. 8) and allocated to
the various process tasks (a resource ascribed to one entity can in
fact be allocated to a task of another entity process).

It is now proposed to show how interoperability requirements
are managed through the designated repository. This discussion
will concern the selection and use of a requirement already
existing in the repository. Afterwards, the case study will
demonstrate how stakeholders can write, select and verify their
own requirements. Two interoperability requirements expressed
in natural language will be considered:

1. When a given task requires a specific aptitude to be deployed, the
allocated resource must have the appropriate aptitude.
2. Aresource is available to perform its allocated task when required.

Interoperability is often simplified to the exchange and sharing
of information and technical compatibilities. In a collaborative
process context, beyond the exchange of information, the exchange
and sharing of resources (hardware, software or human) may be
required as well. Such is the case in this process, for which the
“medical practitioner” resource is declared as belonging to the

N. Daclin et al./ Computers in Industry 82 (2016) 1-18 11

Table 4
Mapping between DSL modalities and the TCTL quantifier.

Interoperability requirement modalities

TCTL quantifier

It is possible that (p is satisfied in some possible worlds)
Invariantly (p is satisfied in all worlds)

It is inevitable that (p will inevitably become satisfied)
There is potentially always (p is potentially always satisfied)

E <> (p is true in one reachable state)

A[] (p is true in all reachable states)

A <> (p is true in some states of all paths)

E[] (exists a path in which p is true in all states)

Table 5
Mapping between DSL proposition and TCTL proposition (partial representation).

Interoperability requirement DSL proposition TCTL proposition

Ident (iValue)

Ident (iValue)

Point (pld)

Binary (binaryValue)
Binary (binaryValue)
Iteration (iterop)

StateTerm (st)

Verb (v)

StateTerm Verb (st v)
Operator (op)

Bool (b)

Iter (it)

“Care Unit” participant. Beyond his/her involvement in the
activities of the “Care Unit”, the “medical practitioner” is indeed
also involved in the activities of the participant “Pharmacist”, so as
“to provide opinion and analysis”. The first requirement therefore
entails ensuring that the resource is in effect available (in terms of
time) to perform the activity. The second requirement concerns
ensuring that the allocated resource is capable (in terms of
aptitude, as the medical sector requires numerous qualifications)
of performing the activity.

The first requirement is predefined and non-temporal with the
possibility of being selected in the repository. It is positioned on the
service view, at the conceptual and compatibility level. Moreover,
it is expressed such that “if task requires aptitude then resource has
aptitude”. As a predefined requirement, it can be directly selected
by stakeholders before its instantiation and verification.

The conceptual graph corresponding to this requirement also
exists and can be applied in its current form (Fig. 9).

Hence, the stakeholders are not concerned by the writing of this
kind of requirement. They must merely ensure, via the information
provided by the requirement repository, that the requirement
matches its expectations in terms of collaborative process model
verification and has been selected. The previous requirement is
already positioned in the repository and cannot be modified by
users (locked). The nature of the requirement, the means used for
its verification, and its expression and information are all used to
guide the selection (Fig. 10).

The second requirement is temporal and can be written or
chosen should it exist in the repository. If it is written, then

stakeholders must position it in the repository according to the
relevant view, abstraction level and life cycle level. The following
figure shows the graphical user interface that implements the DSL
to allow writing a requirement. The writing process is guided
through a set of proposals that are consistent with the defined
grammar. As regards the requirement presented in Fig. 11, once the
stakeholders have selected the nature of this requirement
(temporal vs. non-temporal) as well as its means of verification
(expertise vs. model checking vs. conceptual graphs), the
corresponding defined grammar is proposed (Fig. 11a). As for
writing this requirement and in agreement with the syntax (see
Section 4.2), the modalities, iterations and negation are proposed
first. Since the stakeholders have chosen a modality (“It is possible
that”), “iterations”, “negation” and “stateTerm” are all proposed.
Let's note that additional constraints have been included in the
syntax in order to detect the previous terms and propose only the
verb related to this term (e.g. the verbs “is_waiting”, “is_working”,
“is_starting” and “is_stopped” only relate to the state term “task”).
Moreover, the syntax tree is built according to the same principle
and until the stakeholders complete their writing process. In this
example, the last proposals are the verbs related to the state term
“resource”, namely “is_active” and “is_available”. Lastly, let's note
that the stakeholders are constrained when they build a
requirement and cannot write nonsense; otherwise, the require-
ment could not be validated (errors are highlighted, see Fig. 11b) or
verified.

This requirement, expressed previously in natural language, is
now being expressed with the dedicated language; it uses the
modality “it is possible that”, which indicates that proposition must
be satisfied along one path of the collaborative process (stemming
from the originating requirement “when it is required”). It is also
composed of the proposition “task is_starting and resource
is_available”, which means that when a task begins to fit into
the working state, the allocated resource must be positioned in the
state available at the same time. The set, modalities and
proposition taken together make up the interoperability require-
ment to verify. Moreover, the expressed requirement can be saved
and added to the repository for further verification (Fig. 12).

Requirement DSL grammar TCTL grammar Query
(stakeholder input) {ouput to verify)
It is possible that Modality QuantifierPath E<>
task StateTerm Ident Task
is_starting Verb Point (. Ident) . Starting
and Bool Re-writing Binary and
(rules)
resource StateTerm — Ident Resource
is_active Verb |. = Point {. Ident) . Active
and Bool Binary and
clock Clock Ident T
is_less_than Operator Binary <
value TimeTerm Ident Value

Fig. 7. Principle of mapping between an interoperability requirement and a TCTL query.

o e

Jaded swraad
EE}-E M

12

N. Daclin et al./ Computers in Industry 82 (2016) 1-18

[DrugCircuit 82 {ff Requireme = g
Bl
To distribute
nominative druas
E i
= To give opinion To produce and] 5 To supply
= __and ar :ma\ alysis | __ control | ,J
o] -
T 1
|| 1 =
To distribute ! i
alopal druas i
1
— ! a
T je=
4 i H
- [¢) Y e ;
- L ol g .
g k To prescribe To administrate L
O = druas | | _to the patient | |
< | n 3
= Properties &3 | [] Temporal Verification Result [A-Temporal Verification Result o = m|

&3 Drug circuit process

— Resource
Description

Process

Target resource [MedicalPractitioner

Definitions Aptitudes
Data Items

Resources attributes

Aptitude protocolDef

Aptitude drugDeflLevl

Aptitude drugPrep

Phone number
Mail
Login

Password

0555654321

Doc.Surname@hop.com
) True @ False

@ True () False

Access validity Duration

Fig. 8. The drug circulation process modeled with BPMN 2.0, including the declaration of a human resource.

Requirement expression

Conceptual graph representation

If task requires aptitude Task

requires Aptitude | (cause)

then resource has aptitude @

Resource

@ (conclusion)

Fig. 9. Expression of a non-temporal requirement and mapping with the conceptual graph.

It is to note that some requirements are predefined and directly
usable. This is typically the case for the requirements which are
domain-independent and which can be applied on any collabora-
tive processes. Other requirements are defined directly by the
stakeholders with the help of the proposed grammar to write
temporal requirement and verified by model checking. For
instance, the selected requirement (receipt) is a predefined and
unmodifiable (lock) requirement. It is expressed by a conceptual
graph and allows verifying that an acknowledgement of a receipt
has to be performed when a task receives a message flow from
another entity: “if task receive a message flow then a mechanism of
confirmation exists” (Fig. 13, using the language used by COGITANT
on the left and the graphical representation on the right).
Conversely, the requirement previously written (ResourceAvaila-
bilityError) is intentionally built with an error. In that case, the
requirement is added into the repository, can be modified (without
lock) but cannot be used for verification.

To extend the case study from the originating requirement to
the writing of a requirement and finally its verification, let’s
consider the stakeholder requirement:

“The duration of interactions between participants must not

exceed x time units and the duration of interaction between the

activities within an internal process must not exceed y time units”.

In this format, the stakeholders have two ways to verify this
need. First, they can use expertise and perform a complete review
of the model and its inputs related to the times and durations of the
activities and interactions to be sure that they meet the
expectation. This is relevant but it can require time and several
resources with the possibility to get an error. Second, they can take
time to build a requirement based on a defined grammar that
guides the writing. They have to write the originating requirement
according to the elements in the grammar that allows considering
and expressing the duration between participants and within a
participant. Thus, the proposed language is enough constrained to

=4
(1]

Jaded suwrdac
Hauﬂ o)t cgrre

N. Daclin et al./ Computers in Industry 82 (2016) 1-18 13

5] DrugCircuit equirement Framework &2 ||S Sample Verification equirement Solution
DrugCircui Requil F k 2 [Sample Verificati 8 Requi Soluti = =
resource 5] v -
= & =
Interoperability categories aptltud.e . -
authorization @ v
mail 5] v
phone \'i\ v
Interoperabiity ifecyde responsibleName [} v
responsible 5] v
login] v
/ / / password) v
© Business
/ Nature: aTemporal
© Process Verification: conceptual graph
/ Requirement: if task requires aptitude then resource has aptitude
/ Description: If 3 given taskM requires aptitude to be performed -
khen the allocated resource must have the right aptitude.
@ Service
/ © Reversibility
/ ' Autonomy
© Data |/ © Interoperation
© Compatibility i
. . < n »
‘ Concentual © Oraanisational B
< n »

Framework

Fig. 10. Positioned requirements in the repository and the set of information provided.gr10

express a requirement accurately and to be mapped with a formal
language to be verified. Obviously, the use of such a language (as
for any languages) requires a minimum of knowledge and time to
be mastered but as mentioned in introduction, the time spent in
the expression of the problem allow to avoid mistakes in the later

phases. Hence, although the writing step is guided, it is required to
understand the semantic and the syntax of the grammar to be sure
that the written requirement is the right expression of the
originating requirement. As a consequence, the requirement

[2) DrugCircuit fff *Requirement Framework 52 S Sample Verification 8 Requirement Solution = m
INTEROPERABILITY REQUIREMENT
Current Position: Service x Organisational x Interoperation
Name: ResourceAvailability
Nature: © temporal aTemporal
Verification: model checking ~
Requirement: @ Itis possible that task is_starting resour(ej -
V is_active - verb
V is_available - verb
Proposals
< »
Description: A resource is available to perform the task to h it is allocated when it is required -

ition

INTERC
Current
Name:
Framework | Requirement 23
Nature: .
Verification: model checking v 0

Requirement:

O It is.possible that task is.starting and resourcsis. available]

Requirement:

It is possible that task is_starting resource is_available

Fig. 11. Writing of a temporal interoperability requirement.

Haud o)f CErTe v A

Jdaded swraadedasyy

14 N. Daclin et al./ Computers in Industry 82 (2016) 1-18

|&] HealthCarePlatform (5" Sample Verification [2] DrugCircuit P Requirement Framework 52 = 08
INTEROPERABILITY REQUIREMENT FRAMEWORK =
Interoperability fevels Position: Service x Organisational x Interoperation
Name Origin Status
receipt Y.
sequenceDuration v
v
Interoperabiiity categories SkRescurceTime
—_— taskResourceWorking v
taskResourceStarting (2] v
taskSucc @ v
Interoperabiity lfecyde taskStop @ v
ResourceAvailability IE] v
ResourceAvailabilityError =] @
/ / / dateControl =] v
/ / durationControl B v
/ Nature: aTemporal £
_ _ Verification: conceptual graph
© Business Requirement: if task receive a message flow then a mechanism of confirmatic
/ Description: An acknowledgement of receipt has to be performed when
© Process
@ Service
/J Reversibility
© Autonomy
© Data @ Interoperation
© Compatibility
> = & r < m »
© Conceptual @ Organisational -
© Technological -

Framework

Fig. 12. Requirements added to the repository (without locks, one correct and one with an error).

shown in natural language can be write with the proposed
controlled language as:
“It is possible that for all message_flows, emission_message_end
[index] minus reception_message_start [index] is_less_than value

<?xml version="1.0" encoding="1SO-8859-1"?>
<cogxml>
<graph id="receipt" nature="PositiveConstraint">

<concept id="_C1" labelType="Task" color="0"/>
<concept id="_C2" labelType="MessageFlow" color="0"/>
<concept id="_C3" labelType="ExtensionAttributeValue" color="1"/>
<concept id="_C4" labelType="value" color="1"/>
<concept id="_C5" labelType="Receipt" color="1"/>
<concept id="_C6" labelType="receiptMechanism" color="1"/>
<concept id="_C7" labelType="Value" labelMarker="true" color="1"/>

<relation id="_R1" labelType="MessageFlow#targetRef#interactionNode" color="0 "/>
<relation id="_R2" labelType="BaseElement#extensionValues#ExtensionAttributeValue" color="1"/>

<relation id="_R3" labelType="hasAttribute" color="1"/>
<relation id="_R4" labelType="hasValue" color="1"/>
<relation id="_R5" labelType="hasAttribute" color="1"/>
<relation id="_R6" labelType="hasValue" color="1"/>
<edge label="2" cid="_C1" rid="_R1"/>
<edge label="2" cid="_C3" rid="_R2"/>
<edge label="2" cid="_C4" rid="_R3"/>
<edge label="2" cid="_C5" rid="_R4"/>
<edge label="2" cid="_C6" rid="_R5"/>
<edge label="2" cid="_C7" rid="_R6"/>
<edge label="1" cid="_C2" rid="_R1"/>
<edge label="1" cid="_C1" rid="_R2"/>
<edge label="1" cid="_C3" rid="_R3"/>
<edge label="1" cid="_C4" rid="_R4"/>
<edge label="1" cid="_C5" rid="_R5"/>
<edge label="1" cid="_C6" rid="_R6"/>
</graph>
</cogxml>

and for all sequence_flows, reception_sequence_start [index]
minus emission_sequence_end [index] is_less_than value”

In this requirement, “message_flows” represents the interac-
tions between the participants, “sequence_flows”, the interactions

Cause Conclusion

BaseElement#extensionValues
#ExtensionAttributeValue

essageFlowt#targetRe
#InteractionNode

MessageFlow: *

| ExtensionAttributeValue: *

hasAttribute

hasValue

Receipt: *

hasAttribute
receiptMechanism: *

hasValue

Fig. 13. Predefined requirement using the conceptual graph technique.

o
o

Jdaded aul'.mrlerlaa.u_

EE) RO

N. Daclin et al./ Computers in Industry 82 (2016) 1-18 15

between activities inside a process, “reception_message_start”
(“emission_sequence_end” . . .) represents the dates of emission/
reception in the collaborative process, “[index]” the considered
message flow(s) and sequence flow(s) and, “value”, the time to not
exceed.

Then, the written requirement must be instantiated and
mapped (automatically) into the targeted formal language to be
verified. Regarding to the example the following property is
getting:

E<> forall(i:NbMessageFlow)emission_message_end [i]-recep-

tion_message_start [i]<5 and forall(i:NbSequenceFlow)recep-

tion_sequence_start [i]-emission_sequence_end [i]<10

In this formal requirement, the stakeholders are interested in all
interactions (index “i”) and choose different value to not exceed (5
time units between participants and 10 time units inside a
process). This process — from an originating requirement
expressed in the Natural Language to a formal requirement
expressed in a Formal Language — shows that a controlled natural
language to express a requirement can act as pivot between the
Natural Language with its imperfection and its lack of reliable
verification means and a Formal Language hard to use and
understand but having a reliable support tool to perform the
verification.

To return to the initial case study, requirements must be
instantiated (Fig. 14) according to their constituent concepts (e.g.
task, resources, clock, time) and elements existing in the
collaborative process (e.g. “to provide opinion and analysis”, “to
supply”, Nurse, Pharmacist). For this purpose, a set of instantiation
proposals are directly submitted, in accordance with the selected
requirement (coming from its position in the repository), leaving
stakeholders to choose the relevant proposals with respect to their
verification goal. Hence, the first requirement “if task requires
aptitude then resource has aptitude” must be instantiated with the
name of the set of tasks and resources defined on the collaborative
process model (instance proposals). The resulting instantiation
leads to the requirement being defined as “if To give opinion and
analysis requires aptitude then MedicalPractitioner has aptitude”

[2) DrugCircuit [ff Requirement Framework 'S" Sample Verification 52 = @ Requirement Solution

1 - DIAGRAM SELECTION

¥ || Requirement

(instantiation result). The instantiation of the second requirement,
i.e. “it is possible that task is_starting and resource is_available”
(interoperability requirement) follows the same principle and
must be instantiated with the tasks and resources (instance
proposals). The resulting requirement is automatically generated
and, in this example, becomes “It is possible that To give opinion and
analysis is_starting and MedicalPractitioner is_available” (instantia-
tion result).

Lastly, temporal and non-temporal requirements can be
verified, which can then be provided to the stakeholders as
results. Let's note that the mapping and verification steps are not
visible to stakeholders, only the verification result is given.

As shown in Fig. 15, the temporal requirement (upper frame) is
satisfied, which implies that the resource (medical practitioner) is
effectively available when requested by the activity (“to give
opinion and analysis”). More precisely, the model checker explores
all process paths (transformed into a network of timed automata
[54]) and ensures that a path exists whereby the activity is in the
“start” state and the resource in the “available” state. In contrast,
the non-temporal requirement “aptitude” (lower frame) is not
verified, which indicates that the resource cannot appropriately
perform its assigned activity due to an aptitude defect. More
specifically, the projection mechanisms offered by conceptual
graphs confirm that all aptitudes requested by the activity to be
performed are effectively held by the allocated resource. According
to the verification result, stakeholders must decide, define and
apply corrective actions to ensure that the requirement is satisfied.
Note that once satisfied, the non-temporal requirements called
“responsible” (not presented herein) were intended to ensure that
the Medical Practitioner would interact with the right person at
the right time and right place in the pharmacy.

6. Discussion

The proposed approach aims to facilitate and guide the use of
interoperability requirements within collaborative processes by
means of comparison with hazardous approaches. Its support of
this aspect involves an attempt at reducing the cognitive load

4 - INSTANCIATED REQUIREMENT

| DrugCircuit Technique Severity Select Remove
2 - EXISTING REQUIREMENTS if To give opinion and analysis exists then responsible is_identified conceptual gr... Critical v ()
o Reversibility Conceptual if To give opinion and analysis requires aptitude then MedicalPractitioner has aptitude conceptual gr... ~ Critical v ()
Itis possible that To produce and control is_stop imply a To distribute nominative drugs is_starting model checking Information x
Process Autonomy Technological =
Position: Itis possible that To give opinion and analysisis_starting and MedicalPractitioneris_availaple model checking ~ Critical v x
© Service @ Interoperation ® Organisational L —
Data Compatibility T

Name Requirement Nature

taskResourceTime Itis possible that task is_working and resource is_active and clock is_les..
It is possible that task is_working and a resource is_active

Itis possible that task is_starting and resource is_available

Itis possible that task is_stop imply a task is_starting

Itis possible that task is_stop

Itis possible that task is_starting and resource is_available

Temporal
taskResourceWorking
taskResourceStarting
taskSuce

taskStop
ResourceAvailability
ResourceAvailabilityError

Temporal
Temporal
Temporal
Temporal
temporal
temporal

J »

Itis possible that task is_starting and resourceis_available

Instanciate

Li
Interoperability requirement

3 - INSTANCE PROP8SA
Choose a value for task0: -
To give opinion and analysis
To product and control
© To distribute nominative drugs
To distribute global drugs
To supply
To prescribe drugs - I
To administrate to the patient IHStance proposa S
Choose a value for resource0:
pharmacist
MedicalPractitioner
Nurse

testResource

Severity: @ Critical ©) Major ©) Minor ©) Information

Create

Instantation result

[@ Check requirement

Fig. 14. Interoperability requirement instantiation.

16 N. Daclin et al./ Computers in Industry 82 (2016) 1-18

6 :

1 ™) Temporal Verification Result 3 U e E e

| Audited diagram: DrugCircuit 1 satisfied, 0 unsatisfied (For 1 property checked) [
1 t
I Requirement Severity Result Message Trace Cot

) —————— - | @ test
[|
\ To give opinion To produce and
> and analysis control
—and panse ____control |

e - - O r— - — - -
_____ gl LT] T
I 5] A-Temporal Verification Result $2

1 Audited Diagram: DrugCircuit, unstatisfied constraint2

Requirement Severity Result Message Element

Critical satisfied test1386.. --

e

\ 1 €3 aptitude Critical

NOT Satisfied if To give opinion and analysis requires ap... Task

Critical Satisfied

Care Unit
/T
b

To prescribe i
druas '

Lo- il

Fig. 15. Results of interoperability requirement verification.

required to manage-write-verify requirements, in order to add
value to the process. The repository introduced allows properly
structuring the requirements in agreement with the studied field
and encompassing key requirements in the collaborative process
so as to save (or at least not lose) time for their verification rather
than deal with an endless inventory. Writing/instantiation serve to
express requirements without strong knowledge using formal
technique and mechanisms that avoid mistakes, either with rules
during the writing process or with proposed objects belonging
only to the studied collaborative process model during instantia-
tion. Moreover, the verification process including rewriting and
model transformation is not visible for the end user and merely
outputs the final result. Obviously, all requirements cannot be
verified with formal techniques, but those that can are no longer
being assigned to stakeholders.

Although this approach has laid the initial concepts and tools,
numerous points can still be improved in order to further support
stakeholders' efforts to avoid bad practices. Despite the fact that
conflict identification between requirements stems from different
stakeholders and that this kind of structure supports redundancy,
the repository remains dependent upon human expertise and its
possible absence, especially when the set of requirements becomes
substantial. Automated means can be implemented to address this
issue; to this end, the work performed on ontologies or semantic
similarity measurements may prove useful and substantiate this
aspect of requirement engineering. The solution issue however is
still inadequately developed; hence, a solution can only be linked
to arequirement. As mentioned previously, interoperability is part
of a broad set of requirements to be satisfied, and any given
solution can affect the other requirements (functional as well as
non-functional) and further the collaboration of a given partner.
Hence, the link between requirements in terms of dependence and
the possible nature of this link in terms of impact/influence must
be established. The work presented in [57] has been performed
along these lines and reveals the possible dependencies among “-
ilities”, including interoperability. The final goal consists of making
available the most appropriate solution by taking into account the
environment of interoperability requirements and stakeholder
priorities (e.g. investment/gain tradeoff). Another aspect to be
considered is the existing approaches [56] to develop interopera-
bility that may also be useful in choosing a relevant solution
according to the temporal aspect of a partnership (long vs. short
term). The choice of a solution is therefore not solely related to the
non-verification of an interoperability requirement but also to
numerous parameters of varying importance and for various
partners. The link between interoperability requirements and
interoperability solutions needs to be refined, and the choice of
solution is to be guided with as much finesse as possible.

Regarding the proposed DSL, it is highly correlated with the
process modeling language and extensions performed on it. As
such, this initial version must consider, if possible, other objects
belonging to BPMN as well as potential extensions to be added (e.g.
equipment and their attributes). The DSL thus needs to be refined
to take these objects into consideration within a requirement. The
mapping rules between DSL and the language used by the formal
verification technique (model checking plus the conceptual graph)
must consequently be refined. One expected characteristic of the
proposed DSL is to be usable by anyone with a minimal learning
process. For instance, the modalities currently expressed are
understandable, but other objects remain difficult to use as is (e.g.
Invariantly, for all tasks, task_end[index] minus task_start[index]
is_less_than value) and only a few have been developed or
proposed. Furthermore, the TCTL grammar offers other advanced
objects (e.g. urgent), requiring knowledge of their relevance and
utility, which in turn will require developing their expression close
to the natural language and implementing them in the DSL without
any loss of the original meaning.

Finally, the use of such an approach and, more widely, the
concepts stemming from Systems Engineering and Requirements
Engineering falls under the responsibility of actors involved in the
collaboration. This set-up fits into a change management process
that extends from experiential approaches to more pragmatic
approaches. Stakeholders however must keep in mind that the
main point is to strike the right balance between the weaknesses
(e.g. loss of a requirement) along with the broad freedoms (e.g.
possibility to express anything) offered on the one hand and the
difficulties (e.g. constrained grammar) despite reliable results and
supporting tools (e.g. formal verification) offered by the other.

7. Conclusion and outlook

Requirements engineering is crucial to designing a system that
achieves its own missions and reaches its performance goals. Prior
to producing any system design, it is necessary to establish
requirements that are: (1) well written, (2) appropriate and
relevant to the studied field, (3) verifiable, and (4) accessible and
understandable. The lack of a clear repository for managing
requirements and dedicated languages for writing requirements
leads to taking the risk of failing to meet certain expectations (non-
related requirement, conflict, omission, lack of traceability, etc.). In
the work presented herein, these characteristics have been applied
to the field of collaborative process analysis in order to detect
interoperability problems before implementing the process or
while running the process so as to make the proper adjustments.

This article has presented a repository for structuring interop-
erability requirements that: (1) constitute a set of predefined and

o e

Jaded swraad
EE}-E M

N. Daclin et al./ Computers in Industry 82 (2016) 1-18 17

available requirements (some 30 in all, temporal as well as non-
temporal, present in the literature or derived from stakeholders);
and 2) may be used as a guide to elicit other interoperability
requirements. Another challenge is to allow stakeholders, either
with or without a weak knowledge of formal verification
techniques, to accurately write interoperability requirements. To
this end, a specific DSL has been proposed to assist and guide
stakeholders in writing their requirements and overcoming the
problems of ambiguity, redundancy and inconsistency. Finally, the
proposed approach also allows instantiating requirements in
accordance with the studied collaborative process model and
rewrite them (using mapping rules) into properties, in the case of
temporal requirements, so as to enable their verification using
UPPAAL.

Although the repository for interoperability requirements
makes it possible to select and verify non-temporal requirements
(based on the conceptual graphs), no dedicated language is
available for writing non-temporal requirements. As such, it would
be necessary to develop this DSL, in establishing proper mapping
and mechanisms for its instantiation, in order to enable verifica-
tion with COGITANT. The challenge here is to tie a human readable
DSL with a graphical language.

References'®

[1] Guide to the Systems Engineering Body of Knowledge (SEBoK), version 1.0,
available at: http://www.sebokwiki.org/wiki/Main_Page.

[2] ANS/EIA 632 Standard: Processes for Engineering a System (1998).

[3] ISO/IEC 15288:2008(E)/IEEE Standards 15288.2008 - Systems engineering —
System life cycle processes (2nd edition), February (2008).

[4] 1SO, Advanced Automation Technologies and Their Applications—Part 1:
Framework for Enterprise Interoperability, International Organization for
Standardization, 2011 (ISO 11354, ISO/TC 184/SC 5).

[5] D. Chen, G. Doumeingts, F. Vernadat, Architectures for enterprise integration
and interoperability: past, present and future, Comput. Ind. 59 (7) (2008) 647-
659.

[6] R. Chalmeta, V. Pazos, A step-by-step methodology for enterprise
interoperability projects, Enterp. Inf. Syst. 9 (4) (2015) 436-464.

[7] CA4ISR Architecture Working Group (AWG), Levels of Information Systems
Interoperability (LISI), USA Department of Defense, 1998.

[8] C.T. Ford, Interoperability Measurement, Ph.D. Thesis, Department of the Air
Force Air University, Air Force Institute of Technology, 2008.

[9] N. Daclin, S. Mallek, Capturing and structuring interoperability requirements:
a framework for interoperability requirements, Enterprise Interoperability VI
Proceedings of the I-ESA Conferences Volume 7 (2014) 239-249.

[10] P.Dasgupta, A Roadmap for Formal Property Verification, Springer, 2010 (ISBN:
978-90-481-7185-9).

[11] IEEE, IEEE Standard Computer Dictionary: A Compilation of IEEE Standard
Computer Glossaries, Institute of Electrical and Electronics Engineers, New
York, 1990.

[12] X. Wang, X.W. Xu, DIMP: an interoperable solution for software integration
and product data exchange, Enterp. Inf. Syst. 6 (3) (2012) 291-314.

[13] R. Jardim-Goncalves, A. Grilo, C. Agostinho, F. Lampathaki, Y. Charalabidis,
Systematisation of interoperability body of knowledge: the foundation for
enterprise interoperability as a science, Enterp. Inf. Syst. 7 (1) (2013) 7-32.

[14] H. Panetto, J. Cecil, Information systems for enterprise integration,
interoperability and networking: theory and applications, Enterp. Inf. Syst. 7
(1) (2013) 1-6.

[15] B. Vallespir, D. Chen, Y. Ducq, Enterprise modelling for interoperability, 16th
IFAC World Congress, Prague, Czech Republic, July, 2005.

[16] D. Chen, M. Dassisti, B. Elveaeter, Enterprise Interoperability Framework and
Knowledge Corpus—Final Report, Interop Deliverable Di.3, May, 2007.

[17] N. Daclin, S. Mallek, Towards a sustainable implementation of interoperability
solutions: bridging the gap between interoperability requirements and
solutions, 6th International IFIP Working Conference on Enterprise
Interoperability (IWEI 2015), Nimes, France, 28-29 may, 2015.

[18] J. Favaro, H.S. De Koning, R. Schreiner, X. Olive, Next generation requirements
engineering, 22th Annual INCOSE International Symposium, Rome, Italy, 2012.

[19] The Standish Group, The Chaos Report, The Standish Group International, Inc,
1995, 2016.

[20] G.V. Bochmann, Writing Better Requirements, University of Ottawa, 2010
(slide only).

10" All links in the references are accessible as of September 2015.

[21] INCOSE. Systems Engineering Handbook—A guide for System life cycle processes
and activities, INCOSE Systems Engineering Handbook v. 3.2.2INCOSE TP 2003
002 03.2.2, October 2011.

[22] A.M. Ross Defining and using the new ilities, Systems Engineering
Advancement Research Initiative (SEARi) working paper series, 2008.

[23] J. Willis, Systems Engineering and the forgotten ‘-Illities, 14th Annual Systems
Engineering Conference, San Diego, CA, the United States of America, 2011.

[24] INCOSE. Guide for writing requirements, v1.0, Requirements WG-INCOSE,
INCOSE-TP-2010-006-01, 2012.

[25] ISO/IEC/IEEE. Systems and software engineering - Life cycle processes —
Requirements engineering, ISO/IEC/IEEE 29148:2011, 2011.

[26] Open Management Group (OMG): Business Process Model and Notation
(BPMN) — version 2.0, available at: http://www.omg.org/spec/BPMN/2.0/,
January 3rd (2011).

[27] J.E. Sowa, Conceptual graphs, IBM]. Res. Dev. 20 (4) (1976) 336-357.

[28] Cogitant: CoGITaNT Version 5.2.0, Reference Manual (http://cogitant.
sourceforge.net) (2009).

[29] Edmund M. Clarke Jr., O. Grumbereg, A.P. Doron, Model Checking, The MIT
Press, 1999.

[30] G. Behrmann, A. David, K.G. Larsen, A Tutorial on Uppaal, Department of
Computer Science, Aalborg University, Denmark, 2004.

[31] S. Mallek, N. Daclin, V. Chapurlat, The application of interoperability
requirement specification and verification to collaborative processes in
industry, Comput. Ind. 63 (7) (2012) 643-658.

[32] NEHTA. 2007. Towards a Health Interop Framework. Version 1.0. www.nehta.
gov.au.

[33] A.A. Sinaci, G.B. Laleci Erturkmen, A federated semantic metadata registry
framework for enabling interoperability across clinical research and care
domains, J. Biomed. Inf. 46 (5) (2013) 784-794.

[34] Department of Defense, Department of Defense Dictionary of Military and
Associated Terms, US Department of Defense, 2001.

[35] ISO. 2002. ISO 16100, 1 - Industrial Automation Systems and Integration —
Manufacturing Software Capability Profiling for Interoperability—Part 1:
Framework. Geneva : International Organization for Standardization. ISO/TC
184/SC 5/WG 4, 2002.

[36] ATHENA Integrated Project. Requirement for interoperability framework,
product-based and process-based interoperability infrastructures,
interoperability life-cycle services, ATHENA deliverable A4.1, 2005.

[37] EIF, European Interoperrability Framework for pan-European eGovernment
services, European Commission, version 2.0, 2008.

[38] CA4ISR, Levels of Information Systems Interoperability (LISI), USA Department
of Defense, Architecture Working Group (AWG), 1998.

[39] A. Tolk, S.Y. Diallo, C.D. Turnitsa, Applying the levels of conceptual
interoperability model in support of integratability, interoperability, and
composability for system-of-systemsengineering, Syst. Cybern. Inf. 5 (5)
(2007) 65-74.

[40] S. Fewell, T. Clark, Organisational interoperability: evaluation and further
development of the OIM model, 8th International Command and Control
Research and Technology Symposium, Washington DC, 2003.

[41] IEC, Common Automation Device—Profile guideline, IEC 32390, TC 65:
Industrial Process Measurement and Control, 2005.

[42] M. Kasunic, W. Anderson Measuring systems interoperability: challenges and
opportunities, Software engineering measurement and analysis initiative,
Technical note CMU/SEI-2004-TN-003, 2004.

[43] R. Rezaei, T.K. Thiam Kian Chiew, S.P. Sai Peck Lee, Z.S. Zeinab Shams Aliee,
Interoperability evaluation models: a systematic review, Comput. Ind. 65 (1)
(2014) 1-23.

[44] Kang Shian Chin, Pee Eng Yau, Sim Kok Wah, Pang Chung Khiang, Framework
for managing System-of-systems ilities, DSTA Horizons, 2013/14.

[45] The Open Group Architecture Framework. TOGAF version 9, chapter 29
Interoperability requirements, 2011.

[46] S. Harrison, J. Brogden Interoperability requirements, Supplier Requirement
for SMART Metering (SRSM) project report, 2007.

[47] A. Van lamsweerde, A. Dardenne, B. Delcourt, F. Dubisy, The KAOS Project,
Knowledge Acquisition in Automated Specification of Software, AAAI Spring
Symposium Series, American Association for Artificial Intelligence, 1991.

[48] G.Fanmuy,]. Llorens, A. Fraga, Requirements verification in the industry, CSDM
(2016) 2011.

[49] Use Case Map (UCM) notation, available at: http://jucmnav.
softwareengineering.ca/ucm/bin/view/UCM/AboutUseCaseMaps.

[50] INCOSE, REGAL. Requirements Engineering Guide for All, but applicable to
Systems Engineering, 2008.

[51] Itu-T Z.151 - Telecommunication Standardization Sector Of Itu: Series Z:
Languages And General Software Aspects For Telecommunication Systems —
Formal description techniques (FDT)—User Requirements Notation (URN),
Language, Definition Recommendation (2008).

[52] University of Toronto. Goal-oriented Requirement Language, available at:
http://www.cs.toronto.edu/km/GRL/.

[53] Open Management Group (OMG): Semantics of Business Vocabulary and
Business Rules (SBVR)—version 1.0, available online at http://www.omg.org/
spec/SBVR/1.0/PDF 2008.

[54] S. Mallek, N. Daclin, V. Chapurlat, B. Vallespir, Enabling model checking for
collaborative process analysis: from BPMN to Network of Timed Automata,
Enterp. Inf. Syst. (2015), doi:http://dx.doi.org/10.1080/17517575.2013.879211.

Hauﬂ € |F Crre v e

Jdaded swraadedasyy

http://www.sebokwiki.org/wiki/Main_Page
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0020
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0020
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0020
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0025
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0025
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0025
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0030
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0030
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0035
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0035
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0040
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0040
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0045
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0045
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0045
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0050
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0050
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0055
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0055
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0055
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0060
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0060
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0065
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0065
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0065
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0070
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0070
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0070
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0075
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0075
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0080
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0080
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0085
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0085
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0085
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0085
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0090
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0090
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0095
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0095
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0100
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0100
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0115
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0115
http://www.omg.org/spec/BPMN/2.0/
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0135
http://cogitant.sourceforge.net
http://cogitant.sourceforge.net
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0145
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0145
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0150
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0150
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0155
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0155
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0155
http://www.nehta.gov.au
http://www.nehta.gov.au
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0165
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0165
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0165
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0170
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0170
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0190
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0190
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0195
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0195
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0195
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0195
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0200
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0200
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0200
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0215
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0215
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0215
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0235
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0235
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0235
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0240
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0240
http://jucmnav.softwareengineering.ca/ucm/bin/view/UCM/AboutUseCaseMaps
http://jucmnav.softwareengineering.ca/ucm/bin/view/UCM/AboutUseCaseMaps
http://www.cs.toronto.edu/km/GRL/
http://www.omg.org/spec/SBVR/1.0/PDF
http://www.omg.org/spec/SBVR/1.0/PDF
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0270
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0270
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0270

18 N. Daclin et al./ Computers in Industry 82 (2016) 1-18

[55] ISO (2002). Enterprise Integration—Framework for Enterprise Modelling,
International Organization for Standardization, ISO/CEN 19439CEN TC310/
WG1 and ISO TC184 SC5/WGT.

[56] ISO. ISO 14258—Industrial Atomation Systems—Concepts and Rules for
Enterprise Models, ISO TC184/SC5/WG1, 1999.

[57] A.M. Ross, D.H. Rohdes, Towards a prescriptive semantic basis for change-type
ilities, Procedia Comput. Sci. 44 (2015) 443-453.

[58] D. Norfolk Reducing the risk of development failure . . . with cost-effective
capture and management of requirements, a white paper by Bloor Research,
available online at http://www.ibm.com/, July 2013.

[59] Dassault Systemes, ENOVIA Requirements Central Essentials, student guide,
2008-2011.

[60] INCOSE, A world in motion—Systems Engineering Vision 2025, 2014.

[61] L. Camarinha-Matos, H. Afsarmanesh, Collaborative networks: a new scientific
discipline,]. Intell. Manuf. 16 (2005) 139-452.

[62] Q. Li, Z. Wang, W. Li,]. Li, C. Wang, R. Du, Application integration in a hybrid
cloud computing environment: modelling and platform, Enterp. Inf. Syst. 7 (3)
(2016) 237-271, doi:http://dx.doi.org/10.1080/17517575.2012.677479,2013.

[63] A.Wyner, K. Angelov, G. Barzdins, D. Damljanovic, B. Davis, N. Fuchs, S. Hoefler,
K. Jones, K. Kaljurand, T. Kuhn, M. Luts, J. Pool, M. Rosner, R. Schwitter,]. Sowa,
On Controlled Natural languages: Properties and Prospects, Workshop on
Controlled Natural Language, CNL. 2009, Marettimo Island, Italy, June 8-10,
2009.

[64] R. Schwitter, Controlled natural languages for knowledge representation,
Proceeding COLING ‘10 Proceedings of the 23rd International Conference on
Computational Linguistics: Posters, Beijing, China, 23-27 August, 2010.

[65] KJ.Turner, Using Formal Description Techniques—An introduction to ESTELLE,
LOTOS and SDL, John Wiley and Sons Ltd., 1993.

Haud o)f CErTe v A

Jdaded swraadedasyy

http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0285
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0285
http://www.ibm.com/
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0305
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0305
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0310
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0310
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0310
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0315
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0315
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0315
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0315
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0315
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0320
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0320
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0320
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0325
http://refhub.elsevier.com/S0166-3615(16)30061-6/sbref0325

	Writing and verifying interoperability requirements: Application to collaborative processes
	1 Introduction
	2 Interoperability requirements engineering
	2.1 Problem statement and expected outcomes
	2.2 Managing and writing interoperability requirements

	3 Repository for interoperability requirements
	3.1 Fundamental dimensions
	3.2 Additional parameters

	4 Process of writing interoperability requirements
	4.1 Principles of DSL77DSL stands for Domain Specific Language. applied to writing interoperability requirements
	4.2 The syntax of interoperability requirement DSL
	4.3 TCTL syntax
	4.4 Rewriting of interoperability requirements

	5 Application case study: the drug circulation process99A demonstration of the developed tool is available at: goo.gl/chcl...
	6 Discussion
	7 Conclusion and outlook
	References1010All links in the references are accessible as of September 2015.

