
Real-time, Static and Dynamic Hand Gesture Recognition for
Human-Computer Interaction

S.M. Hassan Ahmeda, Todd C. Alexanderb,
and Georgios C. Anagnostopoulosb

aElectrical Engineering, University of Miami, Miami, FL;
bElectrical & Computer Engineering, Florida Insitute of Technology , Melbourne, FL;

ABSTRACT

Real-time, static and dynamic hand gesture recognition affords users the ability to interact with computers
in more natural and intuitive ways. The hand can be used to communicate much more information by itself
compared to computer mice, joysticks, etc. allowing a greater number of possibilities for computer interaction.
The purpose of this work was to design, develop and study a practical framework for real-time gesture recognition
that can be used in a variety of human-computer interaction applications with the aim of developing a prototype
system for controlling Microsoft PowerPointTMpresentations. The approach taken is to locate hands starting
with the finger tips after investigating potential regions of interest that are maintained through motion detection
and subsequent tracking. The fingertips are very distinguishable from many backgrounds allowing a very robust
tracking system. Using techniques such as Features from Accelerated Segment Test (FAST) corner detection the
tips can be found efficiently. Circles generated using Bresenham’s algorithm were employed for finding corners as
well as the center of the palm. Using features generated from these results along with a semi-supervised Adaptive
Resonance Theory (ART) neural network, static gestures were able to be classified with an overall accuracy of
75%. Dynamic gestures on the other hand were able to be detected using the trajectory formed by the center of
the hand over a finite amount of time. Simple decision heuristics were then utilized to detect the movement of
the hand. This research produced a working prototype of a robust hand tracking and gesture recognition system
that can be used in numerous applications.

Keywords: ART neural networks, computer vision, FAST corner detection, gesture recognition, hand tracking,
human-computer interaction, human-computer interface, motion detection, real-time gesture classification

1. INTRODUCTION

The way humans interact with computers is constantly evolving, with the general purpose being to increase the
efficiency and effectiveness by which interactive tasks are completed. Real-time, static and dynamic hand gesture
recognition affords users the ability to interact with computers in more natural and intuitive ways. The research
presented in this paper is geared towards bringing together static and dynamic gesture recognition approaches,
in order to improve the user experience, when interacting with computers through gestures. The main focus of
the research was on bare-hands∗ utilizing a simple web camera with a frame rate of approximately 30 frames per
second.

Mid-century brought with it a new outlook on science and technology, and human-computer interaction was
no exception to this. As early as 1963 the first device to use gestures existed, that is the Sketchpad light-pen
system. 1964 saw the first trainable gesture recognizer from Teitelman.1 Since this period many successful work
has been done in this field from sign language recognition2–4 to object interaction.5,6

Gestures are a form of non-verbal communication used by people on a daily basis. Similarly using these
particular postures or motion of the hand can be used to communicate with machines. Hand postures or static

Further author information: (Send correspondence to G.C.A.)
G.C.A.: E-mail: georgio@fit.edu, Telephone: 1 321 674 7125
S.M.H.A.: E-mail: h.ahmed@umiami.edu
T.C.A.: E-mail: talexand@fit.edu
∗Gloves or detection aiding devices were not used

gestures are gestures that do not depend on motion, as is the case with Malassiotis’7 and Strintzis’ work. Dynamic
gestures on the other hand require motion and are based on the trajectory that is formed during the motion in
question.5,6

Hand gesture recognition plays an important role in the following areas:

• touchless interaction with objects5,6

• sign-language recognition2–4

• controlling computers8,9

• behavior understanding10,11

Bare-hand gesture recognition presents many challenges to researchers. Over the years various approaches to
overcome these challenges have been published; however, several drawbacks arise due to inherent assumptions in
many of these approaches.

Graph matching: an approach presented by Miners et al.12 has been successful in understanding the
meaning of three to five ambiguous hand gestures. Their goal was to obtain a greater amount of understanding
from gestures rather than simply recognizing them. This was not a bare-hand system, however it provided useful
insight into ways to get dynamic gestures.

Monte Carlo tracking: to address the issue of many possible finger articulations, Wu et al.13 used the
Monte Carlo tracking approach in order to maintain translation and rotation invariance which are common issues
in hand tracking.

Infrared camera: an excellent way of dealing with dynamic backgrounds and low contrast environments
is to work in a different part of the electromagnetic (EM) spectrum as was done by Oka et al.14 Their use of
an infrared camera made it possible to easily segment a human hand based on human body temperatures. This
approach is very reliable for tracking; however, expensive hardware is needed.

The motivation for the work in this paper is to utilize very low-end hardware to perform robust tracking
of the hand, and classification of static and dynamic gestures. In addition, making the system easy to use
on many platforms was taken into consideration, hence personal computers were used to perform the data
processing. In order to minimize the amount of the computer’s resources used by this system for computations,
very efficient algorithms were selected for performing tasks such as finger tip detection, palm detection and
gesture classification. The overall goal of this research is to be able to recognize static and dynamic gestures
performed by a human hand in real time. This involves working in the areas of computer vision, with special
emphasis on image processing and machine learning.

Initial test results for classifying static gestures show a classification rate of 75%. This may be less than
perfect but is only from preliminary testing. It is fair to expect improvements to the features extracted along
with adjustments to the classifiers parameters to improve the classification rate. The approach taken for hand
detection yielded excellent results, with the hand being detected 99% † of the time.

In Section 2 an overview of the research performed is presented. The subsequent sections—5, 6, and, 7
—include an in-depth investigation of the various components. Finally, Section 8 looks at the results from
experimental data followed by any conclusions that can be drawn in Section 9.

Figure 1. Overview of the proposed system’s various components. The process begins with the computer system capturing
a frame from the web camera, which is then processed to detect candidate regions of interest. After a hand is found in a
region of interest it is tracked by the Hand Tracker—all subsequent processing is done on this region. While being tracked
static and dynamic features are collected, with the static features being passed to an ARTMAP Neural Network classifier
and the dynamic features analyzed to obtain high level features. The static and dynamic information is then passed to
the Gesture Recognizer, which communicates the type of gesture to the Action Generator. The action generator passes
the necessary commands to the operating system to create the end result.

2. SYSTEM OVERVIEW
Fig.1 illustrates the major components present in the recognition system. The two fundamental hardware
components are the web camera and the computer system that it is connected to. They are both connected
using a media—Universal Serial Bus (USB), Firewire (IEEE1394), Coxaxial, etc.—then it is up to the computer
system to perform frame grabbing.

Frame grabbing in this case was done through an application programming interface (API) in order to abstract
frame capture as much as possible while allowing the software to run on any computer using a particular operating
system. The original implementation was based on the Microsoft WindowsTMoperating system written in the
C# programming language.15 This area of focus warranted the use of a popular open source image processing
library, AForge.NET.16 This library and its underlying technology, Microsoft DirectShowTM,17 are discussed in
greater detail in Section 7.

Initially, a reference or key frame is set after a determined amount of time from startup. This frame is set
a few seconds after the web camera is activated in order to allow ample time for hardware initialization. At
the beginning of runtime this frame also serves as the previous frame, which is then used to find the difference
with subsequent frames, aiding in the process of motion detection. This is all taken care of in the processing
component.

After processing is complete candidate regions of interest (ROI) are investigated to detect finger tips. If
characteristics of a human hand are found in such a region, this region is considered to be containing a hand, and
is processed as a sub-image utilizing the key frame. Once the hand has been found features for static gestures
are extracted from individual frames. Concurrently, by tracking the hand’s motion, the dynamic features of the
gesture is established.

This system can be used to recognize static and dynamic gestures, resulting in a plethora of interaction
possibilities; however, the research presented here focuses on applying real-time hand gesture recognition to
presentation control as a proof of concept.

The description given for the system in this section hinted at a few restrictions that users would have to abide
by in order for tracking, detection and recognition to all work robustly. They are as follows:

• users and their surrounding environment should be approximately static (non-moving) prior to performing
a gesture

• the color and intensity characteristics of the hand’s region should be distinguishable from the background

These restrictions are reasonable and do not hinder users so much as to make the chosen application imprac-
tical. Firstly, keeping the environment static prior to performing a gesture affords the system the ability to know
when to update the key frame. Secondly, if the hand is camouflaged via its surrounding background, then it will
be a challenge for a human to distinguish, much less a machine.

3. CALIBRATION
In order for tracking and feature extraction to be done robustly and efficiently, the system needs to know certain
information about what to look for in the object(s) that needs to be tracked. It is possible to determine this
information by taking an unsupervised learning approach; however, this can be computationally expensive in a
real-time environment. Due to the fact that the tracked object in this case is the hand it can quickly be calibrated
prior to using the system. Biologically, a human hand motion must obey biomechanical and neuromuscular
constrains.18

In Section 5.1 finger tip detection using FAST corner detection is discussed in detail. However, before fingers
can be accurately detected, suitable parameters have to be obtained. As it will explained further ahead, finger
detection entails choosing an appropriate circle radius for locating potential finger tips. For that purpose, during
calibration a suitable radius is obtained via a supervised process, whereby users place their hands inside of a
preset location in the scene. Then, knowing the number of fingers that should be present, the system iteratively
tries a number of radii, until the best results are obtained.
†Valid provided that the limitations are respected

Figure 2. Example of a previous, current, and binarized difference of the previous and current frames in A, B and C,
respectively. Regions of high intensity in C imply objects of fastest motion. The image in C makes is possible to
discriminate a moving hand, while the rest of the background is virtually motionless.

Figure 3. A ROI containing a hand. this initial ROI was found from motion detection. Then the image was differenced
with the reference frame in that region and binarized, giving a segmented hand image. The size of the ROI is preset
during calibration

4. IMAGE PROCESSING

4.1 Motion Detection for Potential Region of Interest

Motion Detection involves finding the areas of motion in a given scene. An easy way of detecting motion in a
scene is through differencing consecutive images from a stream of images from a particular scene.

In this research motion detection was used for locating a potential ROI. It is generally assumed that there
would be little motion in the background and that the associate body would not be moving. This is a reasonable
assumption, when giving a command to a computer.5,6

The first module for our system involves motion detection for the location of the hand. First, it is assumed
that the input stream consists of grayscale images. The proposed method calculates the pixel-wise, absolute
difference in intensity between successive frames. This will result in a grayscale image, where the regions of
motion will be lighter, while the static regions will be darker, since the difference between pixel values (see
Algorithm 1 would be very close to zero; see Fig.2 for an example.

This grayscale image is then converted to a binarized image by examining which pixels are above and below
a certain threshold. The binarized image is much easier to work with and process. It is also desirable to perform
morphological erosion19 on the binary image, since it removes noise and slight motion of the body.

After performing these steps, there may still be regions, where slight undesirable body motion shows up in
the image as white pixels. A quick technique is required that would differentiate between the hand motion and
other motion such as the one of an elbow or forearm. Since the hand is an appendix, it is assumed that its motion
will have the greatest linear velocity and, hence, the densest amount of white pixels in the differenced image. A
quick search for the densest region in the differenced image is used to pinpoint the potential hand region. The
ROI is then established with center c as the center of the densest region with a width Rw and height Rh. The
values of the Rw and Rh depend on the distance of the hand from the the camera. The values for Rw and Rh are
obtained via system calibration (see Section 3). Any subsequent processing done by the system would only be
performed in this region as opposed to the entire frame. See Fig.3 for an example of an initial region of interest.

Input:

Current Frame: F

Reference Frame: R

Threshold: θ

Output:

Binarized frame difference D

D = |F −R| ;1

foreach pixel p of D do2

if D(p) > θ then3

D(p)←− 1 ;4

end5

else6

D(p)←− 07

end8

end9

Algorithm 1: Simple procedure for motion detection. This grayscale image is then converted to a
binarized image by examining which pixels are above and below a certain threshold. The binarized
image can be processed more efficiently.

4.2 Region of Interest Tracking

ROI tracking is the next step to tracking the hand and extracting features for gesture classification, which will be
performed later. Initially, motion detection (described in Section 4.1) was performed to get a potential regions
of interest. In general, these candidate regions are not guaranteed to contain the hand.

After motion has been detected and some basic criteria are met, the current frame from the stream is
differenced with the reference frame—see Fig.4. The reference frame is taken during system initialization and is
then updated based on activity rules. The difference image is grayscale by default; however, it is then converted
to a binary image as in Fig.4 using another threshold θref , such that we now have a completely segmented hand
within the initial ROI.

Next, fingers are detected within the initial ROI, that was initialized by the motion detection module discussed
in Section 4.1. The presence of fingers will definitely guarantee that the hand is present in the ROI. Detection
of fingertips is performed using an adaption of the FAST algorithm20 and is discussed in Section 5.1.

When fingertips are found, the mean of the x coordinates of the fingertips, µx, and the mean µy of the y
coordinate of the fingertips are calculated. The point (µx, µy) will be the new center for the region of Interest.
If no fingertips were detected, the process reverts again to detecting motion and identifying a new initial ROI
as described in Section 4.1. Also, the number of fingertips Nf is stored as a feature to be used to classify a
potential gesture, which will be discussed in more detail in Section 5.

5. FEATURE EXTRACTION

In order to determine the gesture being performed by the user in real-time, quick extraction of separable features
is desired. These features need to fulfill certain qualities like being rotationally-, scale-, translation-, and, even,
reflection-invariant. This allows for robust gesture recognition as well as for both left- and right-handed system
use.

Figure 4. Reference/key frame, A, frame containing presenter’s hand, B, and the thresholded difference of A and B. The
human subject’s body cna be distinguished in the figure, as it represents a new object in the scene.

Some of features that are used in hand gesture recognition are the number of fingers present, distribution of
fingers with respect to the center, angle between the arm direction and the palm center and the centroid of the
fingers, and other possible features derived from curvature information or skeletonization information.21

The features used in this work include: the number of fingers present; the angle between the vertical direction
and the arm’s orientation; and, the palm center and the centroid of the fingers present. These features are not
very computationally expensive as compared to other features and they satisfy all the qualities of invariance
mentioned above.

The following subsections describe in more detail how these features are extracted. Pseudo-code is also
provided.

5.1 Fingertip Detection

An essential step in our system is correctly determining how many fingers are being shown by the user and
their relative locations. We use a fast corner detection method on our binary hand image to determine where
the fingers are. This method, also known as the Features from Accelerated Segment Test (FAST)20 can give us
real-time performance.

The concept behind this algorithm is traversing all the white pixels and at each of those pixels, examining
the binary value of the points that lie on a circle of a certain radius rfinger around it, see Fig.5. The circle is
traversed and the maximum amount of black (non-hand) pixel points on that circle Nb is calculated. Due to the
specific geometry of the fingers, the value of Nb should be greater than a certain minimum threshold Nmin; see
Fig.5. The circles are generated using the Bressenham circle-drawing algorithm,22 which is a very efficient way
of rasterizing circles. Those pixels on the hand that satisfy the ratio are potential fingertip points.

Since it is possible that several pixels on the same fingertip may match the criterion, it is checked whether a
fingertip point is too close to another fingertip point. The L1 norm is computed between the pixel in question
versus pixels that are already considered part of the tip. If the L1 norm is too small then this means the pixel
in question is really redundant and needs not to be added to the list of fingertip points. See Algorithm 2 for an
outline of the FAST algorithm.

The benefits of this method is that it is also rotational-, translatoinal-, and reflection- invariant given the
search radius. This implies that the hand can be in any orientation in front of the camera and the algorithm
will still be able to detect fingertips.

5.2 Palm Center Location

Locating the palm center is another essential step in the feature extraction process. A similar idea for identifying
the palm center is used as was used for identifying the fingertips. Essentially, the ROI is processed to fit the
largest circle within the hand. From rough calculations, the radius of the palm rpalm was found to be about
1.66 times as much as the radius rfinger used for discovering the fingertips. All the hand pixels are iterated
through and a circle of radius twice as much as the radius used for detecting fingers is fitted. If the circle fits
within the the white region, then the point is added to the list of possible center points. Since the width of the

Input:

Binarized Image: B

finger radius: rfinger

Fingertip threshold ratio: Nmin

Fingertip closeness parameter: dmax

Output: List of pixels denoting detected finger tips A

foreach pixel p|B(p) = 1 do1

/* getCircle will return the x-coordinate and y-coordinate of all the points on a
circle using the Bressenham algorithm with center p and radius rfinger to a data
structure circle that encapsulates that information */

circle←− getCircle(rfinger, p);2

/* returns the max amount of continous black pixels on the circle */

Nb ←− findMaxContiguous(circle) ;3

if Nb > Nmin then /* potential finger tip point */4

isF ingerT ip←− TRUE ;5

foreach q ⊂ A do6

dist←− |q − p|1;7

if dist < dmax then /* checks if too close a point that is already a fingertip8

*/

isF ingerT ip←− FALSE ;9

end10

end11

end12

if isF ingertip = TRUE then13

A←− {A; p} ;14

end15

end16

Algorithm 2: FAST algorithm for detecting fingertips: The concept behind this algorithm is traversing
all the white pixels and at each of those pixels, examining the binary value of the points that lie on a
circle of a certain radius rfinger around it. The circle is traversed and the maximum amount of black
(non-hand) pixel points on that circle Nb is calculated. Due to the specific geometry of the fingers, the
value of Nb should be greater than a certain minimum threshold Nmin

Figure 5. Fingertip detection using FAST

forearm increases near the elbow, there is a possibility that circles of radius rpalm may fit in those locations. An
additional check can be performed, where the L1 distance from a fingertip is calculated. If a pixel in question is
too far away from the fingertip pixels, it cannot be the palm center.

5.3 Arm Orientation Extraction

In order to extract the second feature, which is the angle between the arm orientation and the vector from the
center of the palm and the centroid of the fingertip (see Fig.6), the arm direction must be calculated first. This
is a rather trivial task, but the assumption must be made that there is no wrist movement and the hand is
located away from the body, i.e. the wrist is in line with the rest of the arm as shown in Fig.3. The angle is
calculated by traversing the boundary of the region of interest and finding the mean of the white pixels that
are on the boundary. The vector v1 constructed from the center of the hand and that boundary point is the
vector describing the hand direction. The vector v2 is then constructed using the center of the palm and the
centroid of the fingertip points. The angle between these 2 vectors is used as another feature for the static gesture
classification stage.

The advantage of such a feature is that it satisfies all the invariance qualities mentioned in Section 5. On
the other hand, a disadvantage to this feature is that it becomes less informative for classification, when wrist
movement is not precluded.

5.4 Hand Motion

The basis of dynamic gesture recognition is understanding the movement that a particular object experienced
over a certain interval of time. One of the static features extracted is the center of the palm—section 5.2—and
hence this acts as the reference point for keeping track of the hand’s trajectory.

One of the limitations of the system is that before performing a gesture the user must remain still. This acts
as an indicator to the system to update the reference frame, any subsequent movement will be seen as a potential
start of a gesture, if a hand is detected its center is kept track of in a vector of points—x and y coordinates.

Identifying the end of the gesture is another issue because there needs to be a reliable indicator that tells
the system that a gesture has been completed. In this project completing a gesture in a fixed period of time

Input:

palm radius: rpalm = 1.66 ∗ rfinger

maximum distance the center of palm can be away from the fingers: Dmax

binarized segmented hand image: I

fingertip points: A

Output:

Palm Center pixel: µ

Data:

List of pixels that are close to palm center: P

Number of pixels that constitute circle of radius rpalm: Ncircle

foreach pixel p|I(p) = 1 do1

/* getCircle will return the x-coordinate and y-coordinate of all the points on a
circle using the Bressenham algorithm with center p and radius rpalm to a data
structure circle that encapsulates that information */

circle←− getCircle(rpalm, p);2

foreach pixel q ⊂ circle do3

if I(q) = 1 then4

increment whiteCounter ;5

end6

end7

if8

whiteCounter = Ncircle9

then /* if all surrounding points are white */10

dist←− max |p−A|1 ;11

if dist < Dmax then /* if point is within reasonable distance to fingers */12

P = {P ; p} ;13

end14

end15

end16

µ = mean(P) ;17

Algorithm 3: Detecting the center of the palm: All the hand pixels are iterated through and a circle
of radius twice as much as the radius used for detecting fingers is fitted. If the circle fits within the
the white region, then the point is added to the list of possible center points. An additional check is
performed, where the L1 distance from a fingertip is calculated. If a pixel in question is too far away
from the fingertip pixels, it cannot be the palm center.

Figure 6. Ideal feature extraction on the initial six gestures: This figure shows a visual depiction of several features that
are being extracted. It shows the finger tips, the palm center, the orientation of the arm, and the vector between the
center and the centroid of the fingertips.

Gesture No. of fingers Angle (degrees)
1 5 2-10
2 2 5-15
3 2 25-35
4 1 3-10
5 1 55-60
6 3 5-15

Table 1. Ideal features for each of the six gestures. Please refer to Fig.6 for a depiction of the individual gestures

was deemed reasonable and hence 1.5 seconds was chosen. After this period of time the trajectory information
stored in the history vector is examined to determine what type and or direction the hand moved.

6. CLASSIFICATION

After static features are extracted the next module of the system consists of correctly classifying the presented
pattern to the appropriate gesture. This classification process must be very robust, adaptive and must allow for
real-time performance. For these and a couple more reasons the semi-supervised Fuzzy ARTMAP (ssFAM)23

classifier was implemented for the static gesture classification stage.

ssFAM is a neural network architecture, which is built upon Grossberg’s Adaptive Resonance Theory (ART).24

It has the ability to learn associations between a set of input patterns and their respective class/label, which
then can be utilized for classification purposes. The ssFAM network clusters training patterns into categories,
whose geometrical representations are hyper-rectangles embedded in the feature space. Each time a test pattern
is presented a similarity measure is computed to determine, which of the discovered categories it belongs too.
Via this mechanism, it also has the ability to discover, if completely new information is being presented to the
network. This is the case, when a given test pattern does not fit the characteristics of any of the categories
that the system has learned so far. This mechanism is useful in our application so that irrelevant or ambiguous
gestures are appropriately ignored.

An additional, important quality of ssFAM (and of ART-based classifiers) is the fact that the network is able
to learn incrementally and, therefore, is ideal for online learning tasks. In our framework of gesture recognition
this is a highly desirable feature, as it will allow our system to add new gestures or to accumulate additional
knowledge about already learned gestures in an online fashion.

Finally, the fact that ssFAM is capable of organizing its acquired knowledge by forming categories in a
semi-supervised manner,25 will allow the system to generalize well when attempting to learn gestures.

7. SOFTWARE DESIGN AND ORIENTATION

The majority of the research performed involved implementing and testing algorithms, detectors and classi-
fiers in software. To facilitate future development all software applications were developed for Microsoft’s
WindowsTMoperating system running the .NET framework. The language of choice for development was C#15

for its growing popularity and readability.

7.1 Design

The starting point of the code is based on the AForge.NET package—it provides support for a variety of Ma-
chine Learning and Image Processing methods. However, it is an evolving project; thus, only a few aspects
of the areas mentioned are covered. AForge.NET was used because it is open source, hence the results of this
research can potentially be contributed towards the project. For the research done, the main area of interest
was in the AForge.Video namespace, which provided methods and event handlers for capturing frames from any
Windows R©certified camera.

The Unified Modeling Language (UML) class diagram shown in Fig.7 shows how the AForge package is used
along with the two main classes developed—HandTracker and Hand.

Objects of type HandTracker are composed of Hand objects. For the presentation control application only
one hand is required; however, the class is written so that this property can be set for future development
involving multi-hand tracking. A HandTracker is able to find candidate regions of interest, investigate these
regions then (if data conforming to a hand is found) extract all the necessary features, which are stored in a
Hand object. Hand objects also have methods for obtaining high-level dynamic features, which are in turn used
to determine the hand’s motion. In addition, Hands are composed of one or more Classifier objects, which are
used for classifying static gestures.

Figure 7. Design of hand tracking software. The AForge.NET package was used as the starting point for capturing frames
from any Windows Certified web camera. The HandTracker, Hand, and Classifier classes were then developed to facilitate
tracking, feature extraction and classification.

Figure 8. UML use case diagram outlining the various operations allowed by the developed system. Users are allowed to
calibrate, present to an audience, remain still or performed one of the trained gestures.

7.2 Use Cases

As illustrated in Fig.8, there are four actions that users can be performing at any given point in time:

1. calibrating the system

2. presenting to an audience (random hand and body gestures)

3. remaining still (no moving objects)

4. performing one of the trained gestures

The four main actions also hint at the various states the system is allowed to be in. For example, during
calibration users are expected to place their hand infront of the camera in order for necessary information to be
collected. Likewise random motion will be ignored, but once the user remains still the system will update the
reference frame and stand by waiting for a gesture to be performed.

7.3 Open Source Contribution

One of the objectives of this research was to provide a robust library for hand tracking and, static as well as
dynamic hand gesture recognition. There is room for improvement in the current version and by making the
library open source many more researchers in the field will be able to contribute to the project.

It is possible for our work to be added under the machine learning namespace in AForge, but it can also
just as easily be released as an independent project. Projects such as AForge.NET provide great insight into
different various aspects of image processing and by making this system open many other people with new ideas
will be able to contribute. Once this decision is made the developed library will be added to sourceforge.net or
google.com/code.

8. EXPERIMENTAL RESULTS

Initial experimental results using the ssFAM neural network system will be presented here. The experiment was
conducted in front of a projector system. A LogitechTMweb camera was used in this experiment with resolution
of 1 MegaPixel. The camera was placed about 6 feet away from the projector at a tilted angle of about 30 degrees.
The hand in this experiment was approximately 5 feet away from the camera. The application was started and
the presenter performed different hand gestures in front of the camera. The feature extraction was performed
real-time and recorded in a file format for later use. Each gesture was recorded separately. Afterwards, online
training and testing was performed from the accumulated real-time data collection. The results are presented in
the form of a confusion matrix in Fig.9.

The confusion matrix depicts the rates of correct classification of gestures and the rates of misclassification.
Overall it can be observed that for each performed gesture, the majority of the time it was classified correctly.
Gesture 5 had the highest rate of correct recognition of 88% and this is in accordance with the observable fact
that its different from all the other gestures, since only a thumb is presented. Gesture 6 and gesture 1 have the
highest rate of confusion with each other. Since gesture 1 involves all the fingers being present and gesture 6
involves 3 fingers being present, the cause of the error lies in the fact that in the case of gesture 1, all fingers
may not be detected all the time, especially if the fingers are spaced close to each other.

9. CONCLUSIONS

In this project we explored the area of hand-gesture recognition for applications in human-computer interaction
interfaces. A system was developed for classifying both dynamic and static gestures and based on the combination
employed to Microsoft Power Point TMpresentations. The problems that were dealt with to a sufficient degree
of success were segmentation and tracking of the hand, classification of trajectories of the hand motion and
classification of the static hand gestures.

Our system consists of several modules such as motion detection, segmentation, feature extraction, and
classification. Motion detection is done through differencing consecutive frames. Segmentation is achieved from

Figure 9. Confusion matrix for the 6 initial gestures: The colors at each (x,y) position show the percentage for which the
gesture represented by the y coordinate was classified as the gesture represented by the x coordinate.

Performed Gesture Confused Gesture Rate of Confusion (%)
6 1 27.17
1 6 22.92
2 6 15.24
3 6 14.79
5 3 7.12
4 6 6.52
2 1 6.24
4 5 6.09

Table 2. This table shows a the gestures with the highest rate of confusion and the corresponding gestures they were
confused with

differencing from a reference frame. Feature extraction is then performed for acquiring the number of fingers
present, the arm orientation, and the center of the palm. The fingers are detected through the FAST algorithm.
The center of the palm is determined by attempting to fit the largest circle. The orientation of the arm is
determined by finding white pixels points on the boundary of the ROI.

Overall we were able to develop a working prototype using the techniques mentioned in this report. A classifi-
cation rate of 75 % was achieved for identifying the gestures shown in Fig.6. This field has many opportunities for
future research and improvement. Questions like tracking in unstable/changing backgrounds, quick movements
of the hand, better scene understanding for recognition of the hand, appropriate use of color information, are
just a few topics needed to be dealt with. One direction of future research is the investigation of static gesture
features that are more robust to mild wrist movement.

ACKNOWLEDGMENTS

This material is based upon work/research supported in part by the National Science Foundation under Grant No.
0647120 and Grant No. 0647018. Also, Todd Alexander wishes to acknowledge partial support by the National
Science Foundation under Grant No. 0647120. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of the National
Science Foundation.

REFERENCES
[1] Myers, B. A., “A brief history of human-computer interaction technology,” interactions 5(2), 44–54 (1998).
[2] Vogler, C. and Metaxas, D., “A framework for recognizing the simultaneous aspects of american sign lan-

guage,” Comput. Vis. Image Underst. 81(3), 358–384 (2001).
[3] Fang, G., Gao, W., and Ma, J., “Signer-independent sign language recognition based on sofm/hmm,”

Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time Systems, 2001. Proceedings. IEEE
ICCV Workshop on N/A, 90–95 (2001).

[4] Jiangqin, W., wen, G., yibo, S., wei, L., and bo, P., “A simple sign language recognition system based on
data glove,” Signal Processing Proceedings, 1998. ICSP ’98. 1998 Fourth International Conference on 2,
1257–1260 vol.2 (1998).

[5] von Hardenberg, C. and Bérard, F., “Bare-hand human-computer interaction,” in [PUI ’01: Proceedings of
the 2001 workshop on Perceptive user interfaces], 1–8, ACM, New York, NY, USA (2001).

[6] Laptev, I. and Lindeberg, T., “Tracking of multi-state hand models using particle filtering and a hierarchy
of multi-scale image features,” in [Proc. Scale-Space’01], Lecture Notes in Computer Science 2106, 63+
(2001).

[7] Malassiotis, S. and Strintzis, M. G., “Real-time hand posture recognition using range data,” Image Vision
Comput. 26(7), 1027–1037 (2008).

[8] “Control your computer or car by waving your hands.” http://www.switched.com/2007/10/08/
control-your-computer-or-car-by-waving-your-hands/ (2008).

[9] Rainer, J. M., “Fast hand gesture recognition for real-time teleconferencing applications,” (2001).
[10] McAllister, G., McKenna, S. J., and Ricketts, I. W., “Hand tracking for behaviour understanding,” Image

Vision Comput. 20(12), 827–840 (2002).
[11] Pentland, A., “Looking at people: Sensing for ubiquitous and wearable computing,” IEEE Trans. Pattern

Anal. Mach. Intell. 22(1), 107–119 (2000).
[12] Miners, B., Basir, O., and Kamel, M., “Understanding hand gestures using approximate graph matching,”

Systems, Man and Cybernetics, Part A, IEEE Transactions on 35, 239–248 (March 2005).
[13] Wu, Y., Lin, J., and Huang, T., “Analyzing and capturing articulated hand motion in image sequences,”

Pattern Analysis and Machine Intelligence, IEEE Transactions on 27, 1910–1922 (Dec. 2005).
[14] Oka, K., Sato, Y., and Koike, H., “Real-time fingertip tracking and gesture recognition,” Computer Graphics

and Applications, IEEE 22, 64–71 (Nov/Dec 2002).
[15] Hejlsberg, A., Wiltamuth, S., and Golde, P., [C# Language Specification], Addison-Wesley Longman Pub-

lishing Co., Inc., Boston, MA, USA (2003).

http://www.switched.com/2007/10/08/control-your-computer-or-car-by-waving-your-hands/
http://www.switched.com/2007/10/08/control-your-computer-or-car-by-waving-your-hands/

[16] “Aforge.net.” http://code.google.com/p/aforge/ (2008).
[17] “Microsoft directshow.” http://msdn.microsoft.com/en-us/library/ms783323(VS.85).aspx (2008).
[18] Jerde, T., Soechting, J., and Flanders, M., “Biological constraints simplify the recognition of hand shapes,”

Biomedical Engineering, IEEE Transactions on 50, 265–269 (Feb 2003).
[19] Gonzalez, R. C. and Woods, R. E., [Digital Image Processing], Addison-Wesley Longman Publishing Co.,

Inc., Boston, MA, USA (2001).
[20] Alkaabi, S. and Deravi, F., “Candidate pruning for fast corner detection,” Electronics Letters 40, 18–19

(Jan. 2004).
[21] Ionescu, B., Coquin, D., Lambert, P., and Buzuloiu, V., “Dynamic hand gesture recognition using the

skeleton of the hand,” EURASIP J. Appl. Signal Process. 2005(1), 2101–2109 (2005).
[22] Angel, E. and Morrison, D., “Speeding up bresenham’s algorithm,” Computer Graphics and Applications,

IEEE 11, 16–17 (Nov 1991).
[23] Anagnostopoulos, G., Georgiopoulos, M., Verzi, S., and Heileman, G., “Reducing generalization error and

category proliferation in ellipsoid artmap via tunable misclassification error tolerance: Boosted ellipsoid
artmap,” Proc. IEEE-INNS-ENNS Int’l Joint Conf. Neural Networks (IJCNN’02) 3, 2650–2655 (2002).

[24] Grossberg, S., “Adaptive pattern recognition and universal encoding ii: Feedback, expectations, olfaction,
and illusions,” Biological Cybernetics 23, 187–202 (1976).

[25] Anagnostopoulos, G., Bharadwaj, M., Georgiopoulos, M., Verzi, S., and Heileman, G., “Exemplar-based
pattern recognition via semi-supervised learning,” Neural Networks, 2003. Proceedings of the International
Joint Conference on 4, 2782–2787 vol.4 (July 2003).

http://code.google.com/p/aforge/
http://msdn.microsoft.com/en-us/library/ms783323(VS.85).aspx

	INTRODUCTION
	SYSTEM OVERVIEW
	CALIBRATION
	IMAGE PROCESSING
	Motion Detection for Potential Region of Interest
	Region of Interest Tracking

	FEATURE EXTRACTION
	Fingertip Detection
	Palm Center Location
	Arm Orientation Extraction
	Hand Motion

	CLASSIFICATION
	SOFTWARE DESIGN AND ORIENTATION
	Design
	Use Cases
	Open Source Contribution

	EXPERIMENTAL RESULTS
	CONCLUSIONS

