
1

A Real-time Hand Gesture Recognition and
Human-Computer Interaction System

Pei Xu∗

Department of Electrical and Computer Engineering,
University of Minnesota, Twin Cities

Email: ∗xuxx0884@umn.edu

Abstract—In this project, we design a real-time human-
computer interaction system based on hand gesture. The whole
system consists of three components: hand detection, gesture
recognition and human-computer interaction (HCI) based on
recognition; and realizes the robust control of mouse and key-
board events with a higher accuracy of gesture recognition.
Specifically, we use the convolutional neural network (CNN) to
recognize gestures and makes it attainable to identify relatively
complex gestures using only one cheap monocular camera. We
introduce the Kalman filter to estimate the hand position based on
which the mouse cursor control is realized in a stable and smooth
way. During the HCI stage, we develop a simple strategy to avoid
the false recognition caused by noises - mostly transient, false
gestures, and thus to improve the reliability of interaction. The
developed system is highly extendable and can be used in human-
robotic or other human-machine interaction scenarios with more
complex command formats rather than just mouse and keyboard
events.

Keywords—Gesture recognition, convolutional neural network,
human-computer interaction, mouse cursor control.

I. INTRODUCTION

The hand gesture, during daily life, is a natural commu-
nication method mostly used only among people who have
some difficulty in speaking or hearing. However, a human-
computer interaction system based on gestures has various
application scenarios. For example, play games who intend to
provide mouse- and keyboard-free experience; control robots
in some environment, e.g. the environment underwater, where
it is inconvenient to use speech or typical input devices; or
simply provide translation for people who use different gesture
languages.

The premise of implementing such a system is gesture
recognition. Gesture recognition has become a hot topic for
decades. Nowadays two methods are used primarily to perform
gesture recognition. One is based on professional, wearable
electromagnetic devices, like special gloves. The other one
utilizes computer vision. The former one is mainly used in the
film industry. It performs well but is costly and unusable in
some environment. The latter one involves image processing.
However, the performance of gesture recognition directly based
on the features extracted by image processing is relatively
limited. Although the performance has improved as the appear-
ance of advanced sensors, like Microsoft Kinect sensors, the
relatively higher price of such devices is still an obstacle to the
large-scale application of gesture-based HCI systems. Besides,

such advanced sensors perform even more unreliably than
optical cameras in some certain environment. For instance, the
attenuation of infrared ray in water could largely limit the use
of those like Microsoft Kinect sensors in water with a good
light condition.

The nature of gesture recognition is a classification problem.
There are lots of approaches to handle 2D gesture recog-
nition, including the orientation histogram [1], the hidden
Markov model [2], particle filtering [3], support vector ma-
chine (SVM) [4], etc. [5][6]. Most of those approaches need
preprocessing the input gesture image to extract features. The
performance of those approaches depends a lot on the feature
learning process. Recently, with the development of hardware,
much research about object recognition using CNNs becomes
practical and achieves success [7][8][9]. CNNs usually learn
features directly from input data and often provide a better
classification result in the case where features are hard to
be extracted directly, such as image classification. In this
project, we design a real-time, gesture-based HCI system who
employs a CNN to learn features and to recognize gestures
only using one cheap monocular camera. We simplify the
process of recognition in order to make the system usable on
the platform with limited hardware resources when keeping the
high accuracy and reliability. We train a model with a gesture
set composed of 16 kinds of static gestures. The accuracy rate
of the recognition can reach over 99.8%. Moreover, due to
that we use a CNN with a simple structure, the classification
process can be done quite fast and thus makes the whole
system runnable in real time.

Another challenge this project deals with is the implemen-
tation of mouse cursor control. Although mouse cursor control
is not a must-have function in some application scenarios
like human-robotic interaction, it is necessary in some other
scenarios, like gaming or operating a device with a complex
graphic user interface. It is expected that the mouse cursor
can be controlled by hand gestures in a smooth and stable
way with acceptable sensitivity. However, the hand itself is
not a reliable mean to control the mouse cursor. The hand
itself, due to the variability of gestures, is unable to provide a
stable, easily found point, which should always be able to be
tracked. Besides, it is quite hard for a person to strictly keep
his hand stable when controlling the mouse cursor, especially
when changing gestures to realize different control effects (e.g.
changing gestures to control the mouse cursor from ‘move’ to
‘left click’). In order to solve these problems, some gesture

ar
X

iv
:1

70
4.

07
29

6v
1

 [
cs

.C
V

]
 2

4
A

pr
 2

01
7

2

control schemes introduce extra wearable or portable devices,
like colored tips or light balls, as a mark, through tracking
which the mouse cursor control can be implemented. In this
project, we impose some limitation on the set of gestures, who
can implement mouse cursor control, and then make it simple
to position a continuously trackable point on the hand without
any extra mark. Furthermore, we introduce the Kalman filter
to further improve the stability and smoothness of the motion
of mouse cursor controlled by the hand. The main purpose
of the Kalman filter here is to limit the motion of mouse
cursor, prevent the cursor from jumping on the screen with
the movement of the tracked hand, and thus make its motion
smooth.

As what we mention above, the hand is an unstable object.
The change from one gesture to another would cause a
series of transient, intermediate gestures, to whom the HCI
system should not make any response. In order to improve
the reliability of the system, we propose a simple strategy to
control the behavior of the system and prevent the system
from responding to the gesture signal immediately when a
new gesture signal is received from the recognition process.
A more reliable scheme is proposed in [10], who introduces
a feedback mechanism to make confirmation with the human
operator when a signal, which leads to a command with high
cost or low likelihood, is received. That scheme is suitable in
the scenario where there is no high demand on the response
speed of the interaction system and where the likelihood and
cost of a command are predictable.

Basically, the gesture-based HCI system developed in this
project follows three principals: real-time, reliable and low-
cost. While the system is originally developed to post mouse
and keyboard events to the x86 computer based on hand
gesture recognition, it is quite easy to extend the system and
make it able to carry out more complex commands. As a
proof and additional work, we make a little modification to
the system and change the system into an interface to control
autonomous robots remotely.

II. BACKGROUND AND RELATED WORK

The gesture recognition and HCI system developed in this
project involves a set of problems, mainly including hand
detection and background removal, gesture recognition, mouse
cursor control by hand gestures and behavior control of the
system.

Hand detection and background removal are indispensable
to gesture recognition. We need to segment the hand region
from the background so that the gesture recognition algo-
rithm can work properly. Some gesture recognition meth-
ods [2][4][11] simply bypass this problem by assuming that
the background can be filtered out easily. However, hand
detection and background removal using only one monocular
camera could become a complex problem in the practical
scenario. A disadvantage of using one monocular camera is
the lack of depth information such that it becomes a problem
to separate the hand region from the background. Many
methods are proposed to perform hand detection. Most of
them are based on shape [12], color [13], Harr features [14]

(a) (b) (c)

Fig. 1. An example of detecting fingers using convexity defects. (a) is an
binary image of a palm. (b) shows the detected convexity defects. The green
points are the start or end points of the defects. The red points are the farthest
points of the defects. The yellow line is the detected convex hull. (c) shows
the detected fingertips after filtering invalid convexity defects.

or context information [15]. Most of these methods work
well if we impose some limitation on the environment from
which the detector finds out the hand. However, all of these
methods have their limitations in practical scenarios where
the background environment may be cluttered, changeable
and unpredictable. For examples, color-based methods may
become useless when people wear gloves or when the color
or mixture of the background is too close to that of the hand;
the methods using context information need some other parts
(usually face) of the human are visible, which also may be
unrealizable in some scenarios; and shape- and Harr feature-
based methods may fail when facing unforeseen hand gestures.
In our developed system, we leave an interface for users to
calibrate the hand detector by applying the color filter and
background subtraction. This scheme is not a grandmaster key
to all possible application scenarios but can deal with the case
with an unchangeable or distinct background.

The data that one monocular camera can provide are a
series of sequential, static 2D images. An intuitive method
for gesture recognition using static 2D images is based on
convexity defects or curvature. Fig. 1 shows the convexity
defects detected from an binary image of a palm using the
algorithm in [17] and [18]. The method based on curvature is
quite similar to that based on convexity defects. The nature of
these methods is to detect fingers. In order to make this method
effect, a model is needed to filter invalid convexity defects and
to ensure that each defect represents a finger. Two common
parameters, which are used to build the model, are the length
and intersection angle of each defect. A more complex model
can be built up if considering the eccentricity [19] [2], elon-
gatedness [11], or other features that can be extracted directly
from the contour information of the hand image [1]. However,
there still lacks a general model to describe hand gestures
directly based on these contour features. The empirical model
does not always work satisfactorily during our testing even
in the case where we only count fingers. [11] uses a simple
artificial neural network to identify gestures based on a set of
combined contour features. [4] uses SIFT to describe and SVM
to recognize gestures. [20] uses kinematic features to identify
American sign language. All of these methods cannot provide
a satisfactory accuracy. Some of them even cannot reach 95%.

In order to conduct HCI through the mouse cursor controlled
by hand gestures, a stable point must be tracked on the hand,
a point based on which we can position the mouse cursor on
the screen. Some papers announce the achievement of mouse

3

Fig. 2. Relatively stable though the whole hand keeps, the position of
estimated hand centers (blue points) changes significantly when the hand
gesture changes from ‘palm’ to ‘fist’.

Fig. 3. Some transient, false gestures are detected during the process of the
gesture changing from ‘palm’ to ‘fist’.

cursor control only by tracking the position of the whole hand.
However, hands are agile, while gestures are variable. The
variability of hand gestures might lead to a significant change
in the shape of the hand. Therefore, we must define a special
point on the hand, a point which can be tracked stably. Why
not the hand center? A direct answer is that we simply do not
know where is the ground truth position of the hand center. Our
estimation of the hand center is likely to vary with the change
of gestures, even if the hand is kept stable during the process.
Fig. 2 shows the shift of the estimated hand center when
the gesture changes from ‘palm’ to ‘fist’. A simple solution
to this problem is to use wearable devices, such as colored
tips [21][22][23]. [24] and [25] achieve mouse cursor control
through the cooperation of two hands. However, both of the
two interaction methods are not natural. Besides, the screen
and camera usually have different resolutions, which means
that the mouse cursor cannot reach all possible pixel points
on the screen if we simply linearly position the cursor on the
screen based on the movement of a tracked point on the hand.
Furthermore, due to the difference in the resolution, a slight
movement of hands could lead to a jump of the cursor on the
screen. The experience of such a mouse cursor control effect is
annoying. Nevertheless, few of papers consider the smoothness
of the motion of the mouse cursor controlled by hand gestures.

The robustness of the gesture-based interaction system is
not only determined by the accuracy of gesture recognition,
but also the effectiveness of rejecting noise. The noise here
is not necessarily caused by the cluttered background, camera
blurring or some other external factors, but often is caused
by the hand gesture itself and is ineluctable. Fig. 3 shows
the process of the gesture changing from ‘palm’ to ‘fist’. In
the process, some transient gestures are detected. We called
these gestures the false gestures, since we simply expect
the interaction system not to make any response to these
gestures. A decision scheme should be proposed to deal with
the transient, false gestures. Most discussion about the similar
topic is in the scenario of human-robotic interaction, where
some risky actions can be taken by the robot only when the
riskiness has been fully evaluated [10][26][27].

III. METHODOLOGY

The developed gestured-based HCI system runs with fixed
frames per second. Every time an image is captured by the
camera, the system works as the following:

1) The captured image is preprocessed and a hand detector
tries to filter out the hand image from the captured
image; the whole process terminates if there is nothing
detected.

2) A CNN classifier is employed to recognize gestures
from the processed image, while a Kalman estimator is
employed to estimate the position of the mouse cursor
according to the movement of a point tracked by the
hand detector.

3) The recognition and estimation results are submitted to
a control center; a simple probabilistic model is used
to decide what response the system should make.

A. Hand Detection and Gesture Recognition

We use a CNN modified from LeNet-5 [28] to recognize
gestures. The structure of the CNN is shown in Fig. 4. The
CNN feeds on a binary image such that the classifier could not
be impacted by the color features of the hand. Images need
to be preprocessed before fed to the CNN classifier. The pre-
processing includes background subtraction (optional), hand
color filtering, Gaussian blurring, thresholding, morphological
transformation (opening and closing), contour extraction. A
hand detector works after the preprocessing. It tracks the
movement of a special point on the hand – the point which
is used to control the mouse cursor later, estimates the hand
center and palm radius, and extracts the contour region of
the hand. Finally, the contour region is resized into a fixed
size while keeping the aspect ratio, and then is centered on
a canvas, before fed to the CNN classifier. Fig. 5 shows the
whole process of generating the image, which is fed to the
CNN classifier.

The hand center is estimated by the distance transformation.
The pixel point in the hand contour region with the maximal
value after distance transformation is considered as the hand
center. The palm radius is estimated by the farthest distance
between the hand center and the farthest point (as the red points
shown in Fig. 1) of the valid convexity defect. The word ‘valid’
means that the convexity defect has been validated such that
it is likely represents a fingertip. If there is no valid convexity
defect, e.g. in the case where the gestures is a fist, the palm
radius is estimated by the minimum distance between the hand
center and a point outside the region of the hand contour. The
palm radius is used to estimate the location of the wrist, Then
the hand region is separated from the arm based on the location
of the wrist. Fig. 6 gives a demonstration of how the palm
radius is estimated and how the arm region is separated out.

In order to improve the performance of detecting convexity
defects, the hand contour, before detecting convexity defects,
is approximated by a polygonal curve such that each finger-
tip becomes a triangle-like shape, as shown in Fig. 7. The
Ramer-Douglas-Peucker algorithm is employed to perform the
polygonal approximation.

4

Fig. 4. The structure of the CNN classifier.

Fig. 5. The process of generating the hand image, which is fed to the CNN classifier, from the image captured by a camera. The process includes background
subtraction, color filtering, Gaussian blurring, thresholding, morphological transformation, contour extraction, hand region extraction, image resizing.

(a) (b) (c)

Fig. 6. A demonstration of how the hand region is extracted. (a) is the
extracted contour region. In (a), the blue point is the estimated hand center,
the green points are the detected fingertips, the red points are the farthest
points of the valid convexity defects, and the yellow circle is drawn according
to the estimated palm radius. Only the region enclosed by the green rectangle
is kept and then (b) is obtained. Finally, (b) is resized while keeping the aspect
ratio and is centered at a new canvas such that we get (c), which will be fed
to the CNN classifier.

(a) (b)

Fig. 7. A comparison of detecting convexity defects from the hand contour
with and without polygonal approximation. The green and red points are the
detected convexity defects. (a) Directly detect convexity defects without the
polygonal approximation. (b) Apply polygonal approximation before detecting
convexity defects.

In the stage of gesture recognition, the CNN classifier feeds
on the processed, binary images, where the hand contour is
centered and adjusted to a fixed size, and then produces a
probabilistic result. The system recognizes the gesture as the
one with the highest probability. An advantage of employing
a CNN to perform image classification is that we do not need
to extract features manually. All features are extracted, or say
learned, by the CNN itself. Such a characteristic often leads to
a better classification result when we lack an effective mean
to extract features. The CNN, which we use here to recognize
gestures, contains two convolutional layers, each of which is
followed by a max-pooling layer, and two fully connected
layers. It uses rectified liner unit (ReLU) as the activation. Our
preprocessing steps threshold, resize and center the hand image
and thus introduce contrast, scale and translation invariants
to some degree during the CNN learns features. The usage

(a)

(b)

Fig. 8. Gestures suggested for controlling the mouse cursor. (b) is obtained
by performing the polygonal approximation on (a). The green points are the
suggested points for tracking. They are located from the images in (b).

of max-pooling layers makes features learned by the CNN
classifier be rotation-invariant to a certain extent [33] as
well. The structure of the CNN used here is simple, at least
compared to AlexNet [30], GoogLeNet [31], ResNet [32] or
some other CNNs or deep CNNs proposed in recent years.
The simple structure ensures that the recognition process can
be done in real time.

B. Interaction Scheme with Human
The interaction scheme involves two problems: how to

control the mouse cursor by hand gestures and how to avoid
responding to the transient and false gestures as shown in
Fig. 3.

The key point of the former problem is that we must,
form the hand, find a trackable point through tracking which
the movement of the mouse cursor can be controlled stably.
Fig. 8 shows some gestures that we suggest for controlling
the mouse cursor. The characteristic of these gestures is that
they are all palm-based gestures. When making transformation
among these gestures, the hand can keep relatively stable.
The point that we suggest for tracking is the topmost point
of these palm-based gestures. Typically, the topmost point
of these gestures is also the tip of the middle finger. This
fingertip can be located easily especially after the polygonal
approximation is applied. People usually can smoothly make
change among these gestures, while keeping their middle finger
immobile. Such palm-based gestures are diverse enough to

5

support various mouse events, including ‘move’, ‘single click’,
‘double click’, ‘right click’ and ‘drag’.

In order to avoid responding to the transient and false
gestures, we introduce a probabilistic model. Suppose that the
system receives a series of gestures from the CNN classifier,
G, during a response period, i.e.

G = {g1, g2, . . . , gn}

where gi is the i-th gesture recognized by the system. The
discriminant function to execute the command ci, which is
corresponding to a gesture g, is defined as

fi(G) = Pr(ci|G)

We can introduce a Markov model or Bayes risk estimator
to evaluate fi. However, we may only have insufficient or even
completely have no knowledge about the risk and appearance
frequency of each gesture and command. In this case, we can
simplify the discriminant function into the following form and
thus make the probabilistic model work.

fi(G) =
∑
j ri,j

|G|
where

ri,j =

{
1, gj = ci
0, gj 6= ci

j = 1, . . . , n and | · | is the cardinality operation.
In the above discussion, we introduce a concept of ‘response

period’. The developed system does not immediately make a
response right after it receives a gesture recognized by the
CNN classifier, but executes a command according to the
discriminant function, which is computed via the sequential
gestures appearing during a period. This method can effectively
improve the robustness of the HCI system, but also could
lead to a delay in response. The delay may interrupt some
durative control effects, or say ‘held-on’ actions. For instance,
the ‘drag’ action of the mouse cursor. The system must keep
the cursor executing the ‘drag’ action rather than do ‘drag’
every response period, in order to prevent the ‘drag’ action
from terminating accidentally. A mean to handle this problem
is that we force the system to keep executing the ‘held-on’
action once the action is confirmed and until a new action is
confirmed by the response scheme discussed above.

IV. RESULTS

A. Gesture Recognition
We, using the CNN, train a model including a set of 16 kinds

of gestures. 19,852 sample images, in total, are collected from
five people. Each gesture has more than 1,200 samples. For
each gesture, 200 samples are used for validation, while the
rest are used for training. Fig. 9 shows the 16 kinds of gestures.

The stochastic gradient decent method is used for training.
At each iteration, the estimated parameters, θ, are updated via

θ(k+1) = θ(k) + v(k+1)

where
v(k+1) = µv(k) − α∇θL (1)

Fig. 9. The gesture set collected for training. Their names are: Fist, One,
V, W, Four, ILY, Rock, Loose, Thumb-Left, One-Right, Two-Left, Three-Left,
Palm, Palm-Tight, Palm-Left and Palm-Right.

0 5000 10000 15000 20000
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Lo
ss

Input Image Size: 32x32
Input Image Size: 64x64
Input Image Size: 128x128

Fig. 10. Loss of three models during training.

0 5000 10000 15000 20000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

Input Image Size: 32x32
Input Image Size: 64x64
Input Image Size: 128x128

Fig. 11. Accuracy of three models during testing.

in which α is the base learning rate, µ is the momentum, and
L is the loss function.

We train several models using sample images with the size
128 × 128, 64 × 64 and 32 × 32 respectively combined with
various values of learning rate, α, and momentum, µ, and find
that the model using sample images with the size 64 × 64
provides the best performance when α = 0.0001 and µ = 0.9.
Fig. 10 shows the loss during training when α = 0.0001 and
µ = 0.9. Fig. 11 shows the accuracy when applying the model
to the test set during training. Basically, the model using the
input image with size 128×128 and that using the image with

6

0.0 4.0 8.0 10
Time [Second]

200

400

600

800

1000

1200

1400

1600

H
o
ri

zo
n
ta

l
C

o
o
rd

in
a
te

Without Kalman Filter
With Kalman Filter

Fig. 12. Change in the horizontal coordinates of the mouse cursor controlled
by a hand moving horizontally from the left to right.

size 64 can reach quite similar loss and accuracy. However,
the smaller size of the input image leads to a huge reduce in
computational cost. When the model using the input image
with size 64 × 64 is used, the final accuracy, during our test,
can reach over 99.8%.

B. Interaction Performance Evaluation

The Kalman filter, which is used to smooth the motion of
mouse cursor, is initialized with four state variables and two
measurement variables. The four state variables respectively
represent the horizontal coordinate, x, the vertical coordinate,
y, the horizontal offset, dx and the vertical offset, dy. The
two measurement variables represent the observation of the
horizontal and vertical coordinate. The transformation matrix
is, therefore, defined as

F =

 1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1


Fig. 12 displays the change of horizontal coordinates when

a mouse cursor is controlled by a hand moving from the left to
right horizontally with and without the Kalman filter. We can
find that the introduction of the Kalman filter makes the mouse
cursor move more smoothly. Although the Kalman filter also
introduces some delay, such delay is acceptable.

In order to evaluate the performance of the proposed
response scheme that is based on the probabilistic model,
we record the response of the system when it faces certain
transformation of gestures. The results are shown in Table I.
From the results, we can find that the system does not respond
to transient, false gestures when gestures change and that
the system barely accidentally interrupts ‘held-on’ actions. It
demonstrates that the proposed response scheme can effec-
tively prevent the system from responding to the transient,
false gestures, and, meanwhile, keep sensitive to the durative
commands.

TABLE I. PERFORMANCE OF PROPOSED RESPONSE SCHEME

Initial Final
Sa Fb

Gesture Action Gesture Action

Four Drag (Mouse) Four Drag (Mouse) 48 2

Palm-Tight Move (Mouse) Palm-Left Click (Mouse) 50 0

Palm-Tight Move (Mouse) One Up (Keyboard) 50 0

One Up (Keyboard) One Up (Keyboard) 50 0

One Up (Keyboard) Thumb-Left Left (Keyboard) 49 1
a S for success. b F for failure. For durative commands or ‘held-on’ actions,

such as the ‘drag’ action, F means an accidental termination.

(a) (b)

Fig. 13. Two demos of the developed gesture-based HCI system. In (a), the
user utilizes hand gestures to trigger keyboard events and play the game Lep’s
World. In (b), the user utilizes hand gestures to trigger mouse events and play
the game Angry Birds.

Fig. 14. The developed HCI system is extend to the HRI case. The user
utilizes gestures to control the movement of a simulated turtle robot through
the ROS.

Fig. 13 shows two demos of the developed gesture-based
HCI system. In the first demo, the user utilizes the gesture
‘one’ to command the HCI system to simulate the event caused
by pressing the ‘up’ key. In the second, the user utilizes the
gesture ‘four’ to command the system to simulate the ‘drag’
event of the mouse.

C. Application in Human-Robot Interaction
The developed HCI system, in the above experiments, runs

to post mouse and keyboard events based on gesture recog-
nition. In most cases, there is no essential difference between
posting mouse and keyboard events and sending more complex
commands to the computer. We tweak the developed system
and make it publish Robot Operating System (ROS) topics
when facing certain gestures. Fig. 14 displays how we use hand
gestures, through the ROS, to control the simulated turtle robot
walking. The turtle robot is simulated in a virtual machine,
while the developed gesture control system is run on a real
operating system. The developed system recognizes gestures
and publishes messages. The turtle robot, as a subscriber,
receives messages and executing corresponding commands

7

such that the human-robot interaction (HRI) is achieved.

V. CONCLUSION

In this project, we develop a real-time gesture-based HCI
system who recognizes gestures only using one monocular
camera and extend the system to the HRI case. The developed
system relies on a CNN classifier to learn features and to
recognize gestures. We employ a series of steps to process
the image and to segment the hand region before feeding it
to the CNN classifier in order to improve the performance of
the CNN classifier. 3,200 gesture images are collected to test
the CNN classifier and demonstrate that the CNN classifier
combined with our image processing steps can recognize
gestures with high accuracy in real time. The usage of the
CNN frees us from extracting the gesture features manually
and improve the recognition accuracy. Besides, we propose to
employ the Kalman filter to smooth the motion of the mouse
cursor controlled by the hand, and give a suggestion about how
to, on the bare hand, position a point through which to control
the movement of the mouse cursor. For the sake of reliability,
we, furthermore, propose a simple probabilistic model to
effectively prevent the developed system from responding to
invalid gestures.

The developed system now only support static gestures.
In the future work, we will investigate robust classifiers for
dynamic gestures and develop a gesture-based HCI or HRI
system with the support of complex motion recognition.

REFERENCES

[1] W. T. Freeman and M. Roth, Orientation histograms for hand gesture
recognition. International workshop on automatic face and gesture
recognition. 1995, 12: 296-301.

[2] T. Starner and A. Pentland, Real-time american sign language recog-
nition from video using hidden markov models. Motion-Based
Recognition. Springer Netherlands, 1997: 227-243.

[3] L. Bretzner, I. Laptev and T. Lindeberg, Hand gesture recognition using
multi-scale colour features, hierarchical models and particle filtering.
Automatic Face and Gesture Recognition, 2002. Proceedings. Fifth IEEE
International Conference on. IEEE, 2002: 423-428.

[4] N. H. Dardas and N. D. Georganas, Real-time hand gesture detection and
recognition using bag-of-features and support vector machine techniques.
IEEE Transactions on Instrumentation and Measurement, 2011, 60(11):
3592-3607.

[5] Y. Wu and T. S. HuangVision-based gesture recognition: A review.
International Gesture Workshop. Springer Berlin Heidelberg, 1999: 103-
115.

[6] S. Mitra and T. Acharya, Gesture recognition: A survey. IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), 2007, 37(3): 311-324.

[7] P. Y. Simard, D. Steinkraus and J. C. Platt, Best Practices for Convolu-
tional Neural Networks Applied to Visual Document Analysi. ICDAR.
2003, 3: 958-962.

[8] A. Krizhevsky, I. Sutskever and G. E. Hinton. Imagenet classification
with deep convolutional neural networks. Advances in neural informa-
tion processing systems. 2012: 1097-1105.

[9] K. Simonyan and A. Zisserman, Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[10] J. Sattar and G. Dudek, Towards quantitative modeling of task con-
firmations in human-robot dialog. Robotics and Automation (ICRA),
2011 IEEE International Conference on. IEEE, 2011: 1957-1963.

[11] M. M. Islam, S. Siddiqua and J. Afnan, Real time Hand Gesture
Recognition using different algorithms based on American Sign Lan-
guage. Imaging, Vision & Pattern Recognition (icIVPR), 2017 IEEE
International Conference on. IEEE, 2017: 1-6.

[12] E. J. Ong and R. Bowden, A boosted classifier tree for hand shape
detection. Automatic Face and Gesture Recognition, 2004. Proceedings.
Sixth IEEE International Conference on. IEEE, 2004: 889-894.

[13] J. Fritsch, S. Lang, A. Kleinehagenbrock, G. A. Fink and G. Sagerer,
Improving adaptive skin color segmentation by incorporating results from
face detection. Robot and Human Interactive Communication, 2002.
Proceedings. 11th IEEE International Workshop on. IEEE, 2002: 337-
343.

[14] Q. Chen, N. D. Georganas and E. M. Petriu, Real-time vision-based
hand gesture recognition using haar-like features. Instrumentation and
Measurement Technology Conference Proceedings, 2007. IMTC 2007.
IEEE. IEEE, 2007: 1-6.

[15] P. Buehler, M. Everingham, D. P. Huttenlocher and A. Zisserman, Long
term arm and hand tracking for continuous sign language TV broadcasts.
Proceedings of the 19th British Machine Vision Conference. BMVA
Press, 2008: 1105-1114.

[16] A. Mittal, A. Zisserman and P. H. S. Torr, Hand detection using multiple
proposals. BMVC. 2011: 1-11.

[17] S. Suzuki, Topological structural analysis of digitized binary images
by border following. Computer vision, graphics, and image processing,
1985, 30(1): 32-46.

[18] J. Sklansky, Finding the convex hull of a simple polygon. Pattern
Recognition Letters, 1982, 1(2): 79-83.

[19] C. Charayaphan and A. E. Marble, Image processing system for
interpreting motion in American Sign Language. Journal of Biomedical
Engineering, 1992, 14:419-425.

[20] K. G. Derpanis, R. P. Wildes and J. K. Tsotsos, Hand gesture recog-
nition within a linguistics-based framework. European Conference on
Computer Vision. Springer Berlin Heidelberg, 2004: 282-296.

[21] A. Banerjee, A. Ghosh, K. Bharadwaj and H. Saikia, Mouse control
using a web camera based on colour detection. arXiv preprint
arXiv:1403.4722, 2014.

[22] S. Thakur, R. Mehra and B. Prakash, Vision based computer mouse
control using hand gestures. Soft Computing Techniques and Imple-
mentations (ICSCTI), 2015 International Conference on. IEEE, 2015:
85-89.

[23] S. H. Grif and C. C. Farcas, Mouse Cursor Control System Based on
Hand Gesture. Procedia Technology, 2016, 22: 657-661.

[24] A. D. Wilson, Robust computer vision-based detection of pinching for
one and two-handed gesture input. Proceedings of the 19th annual ACM
symposium on User interface software and technology. ACM, 2006: 255-
258.

[25] A. A. Argyros and M. I. A. Lourakis, Vision-based interpretation of
hand gestures for remote control of a computer mouse. European
Conference on Computer Vision. Springer Berlin Heidelberg, 2006: 40-
51.

[26] M. Montemerlo, J. Pineau, N. Roy, S. Thrun and V. Verma, Experiences
with a mobile robotic guide for the elderly. AAAI/IAAI, 2002, 2002:
587-592.

[27] D. Kuli and E. A. Croft, Safe planning for humanrobot interaction.
Journal of Field Robotics, 2005, 22(7): 383-396.

[28] Y. LeCun, L. Bottou L, Y. Bengio Y and P. Haffner, Gradient-based
learning applied to document recognition. Proceedings of the IEEE,
1998, 86(11): 2278-2324.

[29] A. Krizhevsky, I. Sutskever and G. E. Hinton, Imagenet classification
with deep convolutional neural networks. Advances in neural informa-
tion processing systems. 2012: 1097-1105.

[30] A. Krizhevsky, I. Sutskever and G. E. Hinton, Imagenet classification
with deep convolutional neural networks. Advances in neural informa-
tion processing systems. 2012: 1097-1105.

http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1403.4722

8

[31] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke and A. Rabinovich, Going deeper with convolutions.
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2015: 1-9.

[32] K. He, X. Zhang, S. Ren and J. Sun. Deep residual learning for image
recognition. Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 2016: 770-778.

[33] Y. Gong, L. Wang, R. Guo and S. Lazebnik. Multi-scale orderless
pooling of deep convolutional activation features. European conference
on computer vision. Springer International Publishing, 2014: 392-407.

	I Introduction
	II Background and Related Work
	III Methodology
	III-A Hand Detection and Gesture Recognition
	III-B Interaction Scheme with Human

	IV Results
	IV-A Gesture Recognition
	IV-B Interaction Performance Evaluation
	IV-C Application in Human-Robot Interaction

	V Conclusion
	References

