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Phase Noise in LC Oscillators: A Phasor-Based
Analysis of a General Result and of Loaded �
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Abstract—Recent work by Bank, and Mazzanti and Andreani
has offered a general result concerning phase noise in nearly-si-
nusoidal inductance–capacitance (LC) oscillators; namely that the
noise factor of such oscillators (under certain achievable condi-
tions) is largely independent of the specific operation of individual
transistors in the active circuitry. Both use the impulse sensitivity
function (ISF). In this work, we show how the same result can be
obtained by generalizing the phasor-based analysis. Indeed, as ap-
plied to nearly-sinusoidal LC oscillators, we show how the two ap-
proaches are equivalent. We analyze the negative-gm LC model and
present a simple equation that quantifies output noise resulting
from phase fluctuations. We also derive an expression for output
noise resulting from amplitude fluctuations. Further, we extend the
analysis to consider the voltage-biased LC oscillator and fully dif-
ferential CMOS LC oscillator, for which the Bank’s general result
does not apply. Thus we quantify the concept of loaded .

Index Terms—Impulse sensitivity function, noise factor, oscilla-
tors, voltage controlled oscillator, phase noise.

I. INTRODUCTION

T HE PAST 20 years have seen significant progress in
the understanding of noise in electrical oscillators.

During this period, the design community has advanced be-
yond Leeson’s classic linear analysis [1] and adopted analysis
methods that more appropriately capture the time-varying
and large-signal nature of any realizable oscillator. While
lacking the rigor of mathematically involved analyses [2]–[4],
the linear-time variant (LTV) approach to analyzing noise in
oscillators has gained the most traction in the circuit design
community. This is no doubt attributable to the high accuracy
of its predictions and the relative simplicity of the mathematical
tools employed. Two LTV methods stand out: the impulse-re-
sponse-based approach proposed by Hajimiri and Lee [5], [6],
and the phasor-based approach pioneered by Samori et al. [7],
Huang [8], and Rael and Abidi [9].

Central to Hajimiri and Lee’s work is the derivation of the
impulse sensitivity function (ISF) that shows how the phase dis-
turbance produced by a current impulse depends on the time at
which the impulse is injected; for example, a current impulse in-
jected at a zero-crossing will generate a greater phase shift than
if injected at the peak of an oscillation. The work is very in-
tuitive and, if applied correctly, results in accurate predictions;
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Fig. 1. Generic negative-gm LC oscillator model.

notably Andreani et al. [10]–[13] have used the ISF to develop
closed form expressions for the most common inductance–ca-
pacitance (LC) oscillators. More recently, Bank [14] used the
ISF to derive a remarkable result, namely that the noise factor
of a nearly-sinusoidal LC oscillator, under certain common con-
ditions, is largely independent of the specific operation of indi-
vidual transistors in the active circuitry. Mazzanti and Andreani
[15] then, aware of Bank’s work, provided a novel proof of this
same general result. Their work also employed the ISF.

The alternative phasor-based analysis method, which is
adopted in [7], [9], [16], [17], looks at phase noise generation
mechanisms in the frequency domain. While this approach is
practical only for nearly-sinusoidal LC oscillators, it offers an
alternative perspective and does not require the development
of specific theoretical concepts such as Hajimiri and Lee’s
ISF. Nevertheless, published work expanding on this method
appears curiously to have dried up after Kouznetsov and Meyer
[16]. As in the ISF approach, all noise sources are considered
stationary or cyclostationary (with respect to the oscillation
frequency) [18], and both calculations involve a given source
acting on a “noiseless” oscillator. Thus one would expect that
the two approaches would yield the same results, with neither
approach exhibiting an obvious advantage over the other. In
this paper, we are able to show that this is, indeed, the situation.

Building our group’s previous results [9], [17], [19], and
drawing from the work of Samori et al. [7], we re-derive the
general result using phasor-based analysis, which does not
rely on the ISF. In doing so, we reconcile the two widely cited
approaches (ISF and phasor-based) and show how they are
fundamentally the same1; both approaches result in equivalent
expressions and suffer the same limitations. We focus on the
negative-gm LC model (see Fig. 1), for which we present simple
equations that quantify output noise resulting from phase fluc-
tuations. Moreover, we derive a closed form expression for
output noise arising from amplitude fluctuations, something
the ISF approach has so far failed to do. Finally, we show how
the analysis can be extended to account for topologies, such as

1As applied to phase fluctuations in LC oscillators.
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the voltage-biased oscillator, for which the general result is not
applicable. This enables us to gain insight into tank loading and
derive equations to quantify degradation.

Section II introduces the negative-gm model, and outlines our
approach.

II. OSCILLATOR PRELIMINARIES

A. Negative-gm Oscillator

A nearly-sinusoidal LC oscillator can be modeled as a lossy
resonator in parallel with an energy-restoring nonlinearity, as
shown in Fig. 1. Assuming oscillation conditions are satisfied,
Leeson [1] describes the output noise PSD resulting from phase
fluctuations as

(1)

where is the quality factor of the resonator, is the oscilla-
tion frequency, and is a frequency offset from . The noise
factor , left unspecified by Leeson, is the focus of this work.
Leeson assumes that output noise arising from amplitude fluc-
tuations, , is negligible.

Phase noise is defined as the total single-sideband output
noise normalized to the power in the oscillator’s sinusoidal
output, i.e.,

(2)

where is the oscillation amplitude.2

Employing the quasi-sinusoidal approximation [20], any
single-phase nearly-sinusoidal LC topology can be redrawn
(by means of a Norton or Thevenin transformation) in the
form of this negative-gm LC model. This approximation also
allows us to refer every noise source (cyclostationary or sta-
tionary) to an appropriate current noise source that appears
differentially across the model’s resonator. These manoeuvres
are permissible because tones and noise at other frequencies
are significantly attenuated by the resonator and so do not
contribute to the output.3

Given this simplification, our approach is as follows: two
transfer functions are derived that map a small AM or a PM
resonator-referred current source to the oscillator’s output (see
Section III). We then show, in Section IV, how an arbitrary cy-
clostationary white noise source can be decomposed into its AM
and PM components, which can make use of these transfer func-
tions. In Section V, we apply this theory to the negative-gm LC
model to generate expressions for output noise; in doing so, we
quantify and rederive the Bank’s general result [14]. These

2Output noise consists of two components: output noise due to phase fluctu-
ations and output noise due to amplitude fluctuations. As such, the term “phase
noise” is somewhat of a misnomer as it is a measure of normalized output noise.
However, this ambiguity is generally unimportant, since noise resulting from
amplitude fluctuations is generally small at close-in offsets.

3This approach is similar to that adopted by Kouznetsov and Meyer [16].
However their work considers only stationary noise sources, which is a serious
limitation.

expressions are applied to well-known topologies in Section VI.
Section VII deals with topologies where the general result is not
applicable.

We conclude this section by looking at the energy conserva-
tion requirement of an LC oscillator, which will be used to sim-
plify later analysis.

B. Constraints From Energy Conservation

To sustain oscillation, the average power dissipated in the
lossy tank must equal the average power delivered to the tank
by the nonlinearity, i.e.,

(3)

where is the instantaneous power dissipated in the
lossy tank, and is the instantaneous power dissipated in
nonlinearity. The instantaneous conductance of the nonlinearity
is defined as

(4)

Using this expression, and assuming the output is of the form
, the current drawn by the nonlinearity can

be described as

(5)

and the average power dissipated by the nonlinearity is

(6)

If we switch the order of the integrals, we may write

(7)

It is assumed that the nonlinearity is purely resistive and thus
memoryless. Any memoryless nonlinear resistance excited by a
zero-initial-phase cosine wave, as in this case, will produce an
output that is a real and even function of time. Accordingly, the
above expression may be written as

(8)



MURPHY et al.: PHASE NOISE IN LC OSCILLATORS 1189

Fig. 2. (a) Sideband magnitudes do not reveal modulation type. (b) PM side-
bands: sum is orthogonal to carrier. (c) AM sidebands: sum is colinear with
carrier. (d) A single sideband around can be decomposed into equal PM and
AM sidebands.

where describes the Fourier series coefficients of the in-
stantaneous conductance, .4 As per (3), sustained oscil-
lations mandate that . Combining this
requirement with (8), and noting that
leads to the identity

(9)

which is the effective conductance derived by Samori et al.
[7]. The mixing action of the ideal sinusoidal output with the
time-varying conductance ensures that only components at dc
and the second harmonic ultimately contribute to . This
energy-conservation requirement (i.e., power dissipated in the
tank is equal to power returned by the nonlinearity), is central
to our rederivation of the Bank’s general result. It is interesting
to note the similarity between the of the time-varying
conductance derived above and the of the time-varying
capacitance derived in [20].

III. “NOISELESS” OSCILLATOR INJECTED WITH A SMALL

CURRENT SOURCE

We now analyze the effect of a small external current injected
differentially into a “noiseless” negative-gm oscillator. We as-
sume that noise does not shift the average frequency of oscilla-
tion but merely spreads the spectrum across symmetrical noise
sidebands. This analysis leads to transfer functions that maps
a small differentially-referred current source to the oscillator’s
output.

A. Recognizing Phase and Amplitude Modulating Sidebands

Consider a pair of sidebands around a large carrier, as in
Fig. 2(a). Assume the magnitudes of the sidebands are equal
and small with respect to the carrier. If the relative phases of
the sidebands are such that their sum is orthogonal at all times
with the carrier, phase modulation results. This modulation is
shown in the phasor plot, Fig. 2(b). Alternatively, if the sum
is always colinear to the carrier, amplitude modulation results,
as shown in Fig. 2(c). A single-sideband around a carrier can
always be decomposed into equal PM and AM sidebands as
shown in Fig. 2(d) [21].

4This work uses the complex exponential form of the Fourier series that
defines the coefficients in terms of the double-sided frequency spectrum, i.e.,
���� � ����� .

Fig. 3. Response of the nonlinearity to an AM and PM signal. (a) Nonlinearity
modeled as a memoryless conductance followed by a bandpass filter. (b) Re-
sponse of the band-limited nonlinearity to phase modulated carrier. (c) Response
of the band-limited nonlinearity to amplitude modulated carrier.

B. Response of the Nonlinearity to AM/PM Modulated
Carriers

To properly quantify noise in the negative-gm model, a cor-
rect understanding of the response of the nonlinearity to both
AM and PM modulated carriers is required. The most general
explanation we have encountered is that presented by Samori et
al. [7].5 Essentially, Samori et al. model the nonlinearity as an
arbitrary nonlinear conductance followed by a bandpass filter,
as shown in Fig. 3(a). The bandpass filter, which is simply the
oscillator’s tank, suppresses terms that do not lie close to the
carrier frequency.

Using this approach, Samori et al. demonstrate that, in the
case of a phase modulated signal, the sideband-to-carrier ratio
at the input is identical to the sideband-to-carrier ratio at the
output, i.e.,

(10)

The above expression differs in notation from Samori et al.; a
complete proof and discussion of the above expression is given
in [17]. Extending this analysis to the case of an AM signal,
Samori et al. show that the sideband-to-carrier ratio at the input
is related to the sideband-to-carrier ratio at the output as follows:

(11)

5The narrowband response of a nonlinearity to a noisy signal has been in-
vestigated by many others (see discussion in [17]). Indeed, using an analysis
method developed for mixers [22], we previously quantified such a response for
the specific case of the current-biased topology [9].
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Fig. 4. Noiseless negative-gm oscillator excited by an external current source.

The response of the nonlinearity to a PM carrier is visualized in
Fig. 3(b), while the nonlinearity’s response to an AM carrier is
visualized in Fig. 3(c).

C. Response of the Negative-gm Oscillator to an External
Current Source

Consider a current source, , in parallel with a noiseless
negative-gm oscillator, as shown in Fig. 4. Assume the circuit
supports a sustained oscillation and the current source has two
frequency components at . As shown in the previous
section, the nonlinearity can be viewed as a voltage-to-current
transfer function that preserves the frequency and phase (but not
the magnitude) of a carrier and any sidebands, and does not pro-
duce frequency components with significant amplitudes at other
frequencies.6 This simplification coupled with the assumption
of a linear tank, ensures that the output of the oscillator is of the
form

(12)

where denotes the conjugate of complex number
is the PM sideband component,

and is the AM sideband component. This output waveform
excites the following current from the nonlinearity

(13)

Applying KCL to the oscillator in Fig. 4, we can extract an ex-
pression for the phasor , in terms of the injected noise cur-
rent and the nonlinearity current

(14)

The Laplace transform is valid because we are relating the
voltage and current by means of a linear tank. Assuming

and

(15)

We can view the injected current source, , as a signal that
modulates the amplitude and/or phase of the fundamental of

6Since the conductance is, in general, strongly nonlinear, current components
of significant magnitudes are generated at frequencies other than the funda-
mental. These components, however, are far from the oscillation frequency and
are greatly attenuated by the tank.

the current from the nonlinear resistor, . In order to modulate
the phase of , the injected current needs to be of the form:

. Using (12),
(13), and (15) and solving for specific frequencies results in

(16)

Solving for and gives

(17)

where is the impedance of the lossless tank.
Therefore, a current source in parallel with the tank that mod-
ulates the phase of will flow through an impedance defined
by the lossless tank. In doing so, it will generate PM sidebands
around the output carrier. External current of this form cannot
cause AM sidebands. The impedance seen by this “phase mod-
ulating” injected current is shown in Fig. 5(a).

Similarly, it can be shown that a current source that modu-
lates the amplitude of (i.e.,

), will generate the following sideband
components:

(18)

Thus an “amplitude modulating” injected current will see the
impedance shown in Fig. 5(b). External current of this form will
generate AM sidebands only. In the extreme case of a linear
oscillator (i.e., the conductance of the energy-restoring mech-
anism is linear, and ) ampli-
tude noise will flow into the lossless tank and produce side-
bands equal in magnitude to that produced by an equivalent
PM current source. While a truly linear oscillator is unrealiz-
able, it can be approximated using automatic gain control (as
discussed in [16]). However, in more conventional circuits, AM
sidebands at close-in offsets are generally negligible compared
to PM sidebands.

While the calculations presented so far are somewhat tedious,
the results are remarkably simple and shown as follows.

• An injected current that modulates the phase of the fun-
damental of the nonlinearity current will be shaped by the
impedance of the lossless tank and generate PM sidebands
around the output carrier.

• An injected current that modulates the amplitude of the
fundamental of the nonlinearity current will be shaped by
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Fig. 5. Differential current source acting on a “noiseless” oscillator. (a) Phase
modulating case: (i) PM current injected into oscillator; (ii) Impedance seen by
PM current source. (b) Amplitude modulating case: (i) AM current injected into
oscillator; (ii) Impedance seen by AM current source.

Fig. 6. Squared impedance seen by phase and amplitude modulating currents.

the lossy resonator of Fig. 5(b) and generate AM sidebands
around the output carrier.

The squared impedances “seen” by phase and amplitude modu-
lating currents are plotted in Fig. 6, and given by

(19)

(20)

Fig. 7. Cyclostationary white noise modeled as a white noise source modulated
by a periodic waveform.

where is calculated with respect to a zero-initial-phase
cosine output voltage. Since we will ultimately deal with current
noise, the above equations can be viewed as transfer functions
that map the AM and PM components of resonator-referred dif-
ferential noise current to output noise.

Our analysis can be viewed as an extension of the work of
Samori et al. [7] and Kouznetsov and Meyer [16]. The approach
is similar in spirit to that presented by Samori et al. [7], although
he did not frame the theory in terms of generalized transfer func-
tions; Kouznetsov and Meyer [16] derived a transfer function
that maps a stationary current noise to output noise, but did not
consider correlated sidebands (i.e., AM/PM sidebands).

The exact approach, however, is a generalized version of that
we have previously laid out in [17], which was itself a refine-
ment of [9]. Indeed, in the limiting case of a “hard-switching”
linearity, the above analysis degenerates into what we have pre-
sented in [9].7

IV. DECOMPOSITION OF A RESONATOR-REFERRED

CYCLOSTATIONARY WHITE NOISE SOURCE

In the previous section, we derived transfer functions (19)
and (20) that facilitate the mapping of small AM and PM current
sources (referred across the tank) to the oscillator’s output. In this
section,weshowhowtoadecomposeanarbitrarycyclostationary
white noise source [18] into its AM and PM components. These
AM/PMcomponentscan thenbeapplieddirectly to (19)and(20).

Consider again the noiseless oscillator shown in Fig. 4. In
this instance, assume that the external current source, , is a
noise source that is cyclostationary at the oscillation frequency.
We can model this current source as a stationary white noise
source, , modulated by an arbitrary periodic real-valued wave-
form, [18]. Accordingly, will have a time-varying power
spectral density equal to

(21)

The modulation of and is shown in Fig. 7. The Fourier
coefficients of the -periodic signal are shown in Fig. 8.
The cyclostationary spectrum is found by first modelling white
noise as an infinite number of sinusoids separated in frequency

7[9] was based on previous work on mixers [22] and used ABCD parameters
to deal with carrier sidebands. In [17], the approach was simplified by adopting
complex phasor notation, and further refined using results from [23] and Samori
et al. [7].
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Fig. 8. Frequency spectrum of arbitrary waveform ����.

Fig. 9. Phasor diagrams. (a) Positive frequencies (� component of each
phasor is not shown, but is assumed). (b) Negative frequencies (� com-
ponent of each phasor is not shown, but is assumed).

by 1 Hz and uncorrelated in phase [21]. Consider one such si-
nusoid located close to th harmonic of the periodic modulation
waveform (see Fig. 8)

(22)

where and is an arbitrary constant, and is an arbitrary
phase. Mixing with the waveform results in the fol-
lowing components around the fundamental:

(23)

The output voltage, excites a current
from the nonlinearity whose fundamental component is

. Knowing this, we can construct the phasor
diagrams shown in Fig. 9, which enables us to decompose the

resulting sidebands into AM and PM sidebands. As a result of
, the total power8 of the phase modulating sidebands around

the fundamental is calculated as

(24)

Substituting the values for and from (23) gives

(25)

Summing from to accounts for noise around all har-
monics at both and

(26)

Substituting into the above expression gives the
PSD of the noise current that modulates the phase of the funda-
mental of the nonlinear current

(27)

To simplify further, we recognize that

(28)

and therefore, we may write as follows:

(29)

where is the Fourier series component of the square of
the noise shaping function, . Using a similar derivation and
employing the same assumptions, it can be shown that the AM
component is given by

(30)

Thus, if we know the noise shaping waveform (i.e., ), we
can easily decompose a noise source into its AM/PM compo-
nents. This decomposition, coupled with the transfer functions
described by (19) and (20), allow us to quantify a given source’s
contribution to output noise.

8Defined in terms of the single-sided frequency spectrum.
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V. NOISE FACTOR OF THE NEGATIVE-GM MODEL

In this section, we use the preceding analysis to derive an
expression for noise in the negative-gm oscillator (see Fig. 1).
In doing so, we are using our phasor-based approach instead of
Bank’s ISF analysis to rederive his general result [14], [15]. Our
approach also enables us to quantify, for the first time, noise due
to amplitude fluctuations.

A. Noise From Resonator Losses

Decomposing the noise associated with the tank resistance,
, is a trivial case of the noise analysis presented in the pre-

vious section; the noise current, , is simply a
white noise source, modulated by the constant window .
Accordingly,

(31)

Therefore

(32)

which is half the total resistor current noise.

B. Noise From the Nonlinearity

The noise from the nonlinearity is modeled as a cyclosta-
tionary white noise current source, , in parallel with the tank.
We assume, further, that the time-varying PSD of this current
source is proportional to the instantaneous conductance of the
nonlinearity itself,9 i.e.,

(33)

where

(34)

is an arbitrary stationary white noise source, is an arbitrary
noise intensity constant, and is the instantaneous con-
ductance. Accordingly, the noise current, , is simply the white
noise source, , modulated by the window .
In general, a memoryless nonlinearity excited by a zero-ini-
tial-phase cosine wave will generate a waveform that
is a real and even function of time. We further assume that

at all times.10 Therefore

(35)

and thus we can deduce from (29) and (30) that

(36)

9As will be shown in Section VI, this is typically the case for CMOS oscil-
lators when only channel noise is considered. It is also a good approximation
for high-beta bipolar oscillators where collector shot noise typically dominates.
However, if noise due to gate resistance (in CMOS oscillators) or noise arising
from parasitic base resistance (in bipolar oscillators) dominates, the resultant
conductance noise will be proportional to � ���. The latter case is examined
in [7].

10This is not always the case (see Section VII), and is merely a criterion of
the general result.

since . Recognizing that the PM component
is directly proportional to the effective conductance of the non-
linearity defined in (9) we write

(37)

Amazingly, given the above assumptions, the component of
that is responsible for phase modulation of the carrier current
(and thus phase noise) is completely independent of the shape
of the nonlinear characteristic. Put another way: a hard-limiting
and soft-limiting nonlinearity will inject exactly the same PM
noise into the oscillator.

C. General Result and Implications

The phase modulating components of the resistor and nonlin-
earity noise will be shaped by (19), while the amplitude mod-
ulating components will be shaped by (20). Thus the output
voltage noise that causes phase fluctuations is

(38)

which evaluates to

(39)

Equating this expression with (1), we see that the noise factor
depends only on the noise intensity constant and is given by

(40)

Equivalently, the output noise due to amplitude fluctuations is

(41)

which evaluates to

(42)

where is calculated with respect to a zero-initial-phase
cosine output voltage. As stated before, at
close-in offsets and can be ignored. Therefore, in a nearly
sinusoidal LC oscillator, if the energy restoring nonlinearity
is memoryless, possesses an instantaneous small-signal con-
ductance that is negative throughout the oscillation, and has a
noise current whose PSD is proportional to the instantaneous
small-signal conductance, then that oscillator’s noise factor
will be independent of the nonlinear characteristic.

Although presented in a different form, this is the general re-
sult derived by Bank [14] and Andreani and Mazzanti [15].11

Indeed, there appears to be no quantitative difference between
the phasor-based approach and the ISF approach, as it applies

11In [15], the noise factor is presented as � � � � ���� , where � is an
intensity factor, � is a feedback factor, and � is a gain factor. By redrawing in
the form of the negative-gm model, we do not make these distinctions, and so
� � ���� .
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Fig. 10. Generic negative-gm oscillator simulations. (a) Simulated IV characteristics. (b) NR1—AM and PM sidebands. (c) NR2—AM and PM sidebands. (d)
NR3 - AM and PM sidebands.

to output noise resulting from phase fluctuations in nearly si-
nusoidal LC oscillators. This is discussed in greater detail in
Appendix A. Output noise resulting from amplitude fluctuations
has not yet been quantified using the ISF approach.

Many popular CMOS LC oscillators—notably the standard
current-biased nMOS/CMOS and Colpitts topologies—satisfy
Bank’s general result, and thus quantifying the output noise of
a given oscillator becomes a simple matter of determining the
noise intensity constant .

D. SpectreRF Simulations

The generic negative-gm LC oscillator, shown in Fig. 1, was
simulated using SpectreRF. The negative-gm resistor was mod-
eled in Verilog-A, and the tank components were chosen as

5 nH, and 5 pH. Three different I-V
characteristics, shown in Fig. 10(a), were simulated as follows.

• NR1: Hard-limiting ( standard topology, see Fig. 11).
• NR2: Asymmetric [ Colpitts topology, see Fig. 13(a)].
• NR3: Soft-limiting12 ( linear, or ALC-assisted).

In each case, the associated noise current, , had a PSD equal
to , with . The predicted and simulated
output noise (in dBm/Hz) due to AM and PM for the three os-
cillators are plotted in Figs. 10(b)–(d). We see the following.

• All nonlinearities lead to the same output noise (in
dBm/Hz) due to phase fluctuations.

12The characteristic is a piecewise approximation of a linear resistance. Con-
vergence issues set the limit as to how much the characteristic deviates from a
straight line.

• The output noise (in dBm/Hz) due to amplitude fluctua-
tions varies considerably depending on the nonlinearity.

• The oscillator employing the linear negative resistance
(NR3) exhibits the largest component. Since NR3
possesses a very weak nonlinearity, it struggles to sup-
press amplitude disturbances; and

.
• The oscillator employing NR1 has a very small com-

ponent. In this case, , the nonlinearity
contributes no AM noise current, and the AM noise current
due to the resistor flows into the lossy resonator only.

The choice of nonlinearity (e.g., hard-limiting or soft-lim-
iting) has no effect on output noise resulting from phase fluctua-
tions. However, it does make a difference to output noise arising
from amplitude fluctuations, oscillation amplitude for a given
current, and potentially other attributes such as frequency sta-
bility and harmonic content [9].

All these observations relate to absolute noise (dBm/Hz) but
not relative phase noise normalized to the oscillation amplitude
(dBc/Hz); oscillation amplitude depends on the I-V character-
istic, and will affect the phase noise measurement when quoted
in dBc/Hz.13

13It can be shown that, for a given power budget, the largest oscillation ampli-
tude will be attained if the restoring current is injected as an impulse at the peak
(or trough) of an oscillation [24]. Mazzanti and Andreani [25] made use of this
fact to develop a topology, which, from a theoretical viewpoint at least, promises
better phase noise performance, for a given current, than any other nMOS-only
topology currently conceived. The improved phase noise performance of the
topologies proposed by Shekhar et al. [26], and Soltanian and Kinget [27] can
also be attributed to this fact.
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Fig. 11. Standard current-biased nMOS LC oscillator. (a) Schematic. (b) Non-
linear negative resistance.

VI. APPLYING THE GENERAL RESULT TO

POPULAR OSCILLATORS

The noise factors derived in this section are already known.
Rael [9] derived the noise factor for the current-biased nMOS
standard topology under hard-switching conditions. Later, An-
dreani et al., using the ISF, derived the same noise factor but
under more general conditions [10], as well as the noise factors
for the Colpitts topology [10] and current-biased CMOS stan-
dard topology [11]. Our intent is simply to show how the general
result, and specifically our interpretation of it, can be applied to
these oscillators.

A. Noise Factor

1) The Standard Current-Biased nMOS Topology: The
standard nMOS LC topology is shown in Fig. 11(a). The
energy-restoring nonlinearity is composed of a cross-coupled
differential nMOS pair, displayed separately in Fig. 11(b).
Assuming an ideal noiseless current source, it is straightfor-
ward (see Appendix B) to show that the conductance of the
differential pair as a function of time is given by

(43)

where and are the instantaneous transconduc-
tance of the transistors and , respectively. Addition-
ally, as shown in Appendix B, the noise current noise associated
with the nonlinearity, , has a time varying power spectral den-
sity equal to

(44)

where is the channel noise coefficient of an nMOS transistor.
As per (33), the noise associated with the differential pair is pro-
portional to its conductance, which is memoryless and always
negative. Therefore, the general result applies, and by mere in-
spection we see that the noise intensity constant, , in (39) is
equal to . Thus, the output power spectral density of the oscil-
lator is equal to

(45)

Fig. 12. Standard current-biased CMOS LC oscillator. (a) Schematic. (b) Non-
linear negative resistance.

Comparing this expression with (2), the minimum possible
noise factor of this topology evaluates to

(46)

What is remarkable about the above derivation is how little we
know about the differential pair. We have said nothing about
the size of the transistors, technology or biasing. In fact, we
haven’t even remarked about matching between the two transis-
tors; the general result suggests that a badly matched pair will
have exactly the same output noise as a perfectly matched dif-
ferential pair!14 The amplitude of oscillation is also irrelevant,
as the noise factor remains constant whether the differential pair
is hard-switched or not (as stated but not shown in [10]).

2) Standard Current-Biased CMOS Topology: A full CMOS
implementation of the standard current-biased topology is
shown in Fig. 12(a). The addition of cross-coupled pMOS
transistors facilitates the commutation of the bias current across
the entire tank (not just half); this doubles the oscillation
amplitude for a given current and results in increased oscillator
efficiency. Assuming a nearly-sinusoidal oscillation, the nega-
tive resistance shown in in Fig. 12(b), will have a time-varying
conductance of

(47)

where , and are the transconductances
of , and , respectively. It can be shown
that this topology injects a noise current, , into the tank whose
PSD is

(48)

Assuming

(49)

14We have verified this in simulation.
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Fig. 13. Colpitts oscillator. (a) Schematic. (b) Simplified schematic—biasing
information ignored. (c) Simplified schematic—conducting transistor mod-
eled as a nonlinear negative resistor. (d) Simplified schematic—negative-gm
equivalent.

Again, by inspection we see that the noise intensity constant is
equal to . Thus, from our analysis above the oscillator’s output
PSD is given by

(50)

with the minimum noise factor again evaluating to

(51)

This is identical to the noise factor of the nMOS only topology;15

the pMOS transistors double the oscillation amplitude without
introducing extra noise into the system. This result was derived
previously under the assumption of hard-switching [11].

However, and this is of practical importance, it was noted in
[11] that this noise factor can only be obtained if the tank capac-
itance appears only between the output terminals. Capacitance,
parasitic or otherwise, from the output terminals to ground of-
fers a path for high frequency noise in the pMOS devices and
this can degrade the phase noise factor significantly.

3) Colpitts Topology: The Colpitts oscillator, shown in
Fig. 13(a), can be analyzed in a similar fashion. To facilitate
such analysis it is first necessary to redraw the circuit in the form
of a negative-gm oscillator. It is assumed that, at the oscillation

15If � �� � , the general result does not apply; the calculation of � is signif-
icantly complicated, and becomes a function of amplitude and transistor sizing.
As shown in [11], however, if the circuit is hard-switched,� � ���� �� ���
is a good approximation when � �� � .

frequency and above, the transistor is not loaded by the capac-
itors, i.e., at the capacitors act as a perfect voltage divider,

and . Under this
assumption, redrawing the circuit becomes a straightforward
task, as shown in Fig. 13. Again, we assume the current source
is ideal and noiseless. The conductance of the nonlinearity in
the redrawn circuit is

(52)

Assuming the transistor is either off or operates in the saturation
region, noise current, between its drain and source has a time-
varying PSD given by . This noise current may be
transformed in an identical manner into a differential current
across the resonator, and results in a noise current with a
power spectral density of

(53)

Since the circuit is now in the form of a general-
ized negative-gm oscillator, we know, by inspection, that

and thus

(54)

and

(55)

Again, it is remarkable that we are able to predict phase noise
with almost no information about the specifics of the transistor
and its biasing. Does relate to by means of a linear, cubic
or higher order polynomial? For what value of does the tran-
sistor switch on? To the first order, it doesn’t matter. Most no-
tably, the above calculations demonstrate that output noise is in-
dependent of the conduction angle. The original derivation [10]
is accompanied with a useful discussion on why this topology
is inferior to the standard LC.

B. Extrinsic Noise

So far we have not addressed noise associated with the bias
currents. Again, the effects of these sources are well-known, and
are easily accounted for using our technique. Consider first the
current-biased nMOS topology with a MOS current source: if
the differential pair is hard-switched the current source noise,

, will be modulated by a square wave of ampli-
tude , and injected across the tank. Therefore will
be a constant of value and will evaluate to .
This gives

(56)
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resulting in a noise factor (including all intrinsic sources) of

(57)

Similarly, the noise factor of the CMOS topology becomes

(58)

The noise associated with the biasing current source in the
Colpitts topology is not modulated, and can be simply referred
across the tank (using a Norton Equivalent transformation) as
a stationary noise source. Including this source the noise factor
becomes

(59)

C. Oscillation Amplitude

Phase noise is always quoted in dBc/Hz, which is simply the
single-sideband output PSD normalized to the carrier power (2).
The amplitudes of above oscillators are well-known, but in the
interest of completeness we give expressions for them. Under
hard-switching the amplitude of the nMOS/CMOS standard
topologies are

(60)

while the amplitude of the Colpitts oscillator [28] (as the con-
duction angle, , tends to zero) is

(61)

VII. DEGRADATION ANALYSIS

There has always been much concern in oscillator design on
how the active elements in the circuit may add to the resonator
loss, particularly at the extremes of large oscillation waveforms
which may push transistors into their triode regions. The term
“loaded ” refers to these hard to quantify effects which may
degrade, sometimes substantially, the inherent resonator .
Here the general result cannot be used because it requires the
conductance of the active nonlinearity to be always negative
and/or the associated noise to be proportional to its instanta-
neous conductance. Our analysis, however, can be extended
to deal very neatly with many interesting cases that do not
fulfill these criteria. In this work, we investigate the standard
voltage-biased nMOS LC oscillator and also the standard cur-
rent-biased CMOS oscillator when subjected to tank loading
[11]. “Loaded ” acquires a quantitative meaning.

A. Arbitrary Nonlinearity That Contributes Loss

Let’s consider the negative-gm model when the conductance
is not always negative. We redraw the circuit, as shown in

Fig. 14. Generic negative-gm LC oscillator model.

Fig. 14, where the nonlinearity is decomposed into two non-
linear resistances: one that is always positive, , and one
that is always negative, . Further, we assume that we can
associate a noise current with each of these resistors that has a
PSD proportional to its instantaneous conductance:16 the noise
intensity constants assigned to and are and

, respectively. Calculating the PM contribution (29) of each
noise current source and multiplying by (19), the output noise
of the oscillator is calculated as

(62)

where and .
We can simplify further, by noting in Fig. 14 that the energy
conservation requirement is now

(63)

and so, depending on whether it is easier to calculate or
, we may write the noise factor as

(64)

We now have method for investigating topologies in which the
nonlinearity contributes loss to the system for some portion of
the oscillation period.

B. Standard Voltage-Biased nMOS Topology

Let us apply the preceding theory to the standard voltage-
biased oscillator topology shown in Fig. 15(a) that was used
in early CMOS LC oscillators [29] for its large output ampli-
tude. In this circuit, the transistors conduct in all three regimes:
triode, saturation, off. We employ a number of simplifications to
make the problem tractable. We assume the transistors adhere to
the square law model, and exhibit no second-order effects such

16Of course, since the nonlinearity is memoryless, it can be decomposed into
an arbitrary number of real-valued nonlinear resistances. However, as will be
shown shortly, decomposing the nonlinearity into a positive and a negative re-
sistance (with the associated proportional noise sources) has some physical sig-
nificance.
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Fig. 15. Voltage-biased standard nMOS LC oscillator. (a) Schematic. (b) Sim-
plified negative-gm model.

as velocity saturation. Further we assume the PSD of channel
noise, , across all three regions is17

(65)

1) Noise Factor: The nonlinearity in this topology arises
simply from the cross-coupled differential pair. The I-V char-
acteristic and conductance of this differential pair are plotted in
Fig. 16(a). It is straightforward to show that the instantaneous
conductance of the nonlinearity is given by

(66)

where and
. The associated noise

current is given by

(67)

Since the conductance of the nonlinearity is not always neg-
ative, and since its associated noise (67) is no longer propor-
tional to the conductance (66), the general result cannot be ap-
plied. However, the nonlinearity can be decomposed into a pos-
itive nonlinear resistive component, , and a negative non-
linear component, , which possess the characteristics shown
in Fig. 16(b). This allows us to redraw the circuit in the form of
the simplified negative-gm model shown in Fig. 15(b), which is
in the same general form as Fig. 14.

Intuitively, it is now possible to see why the voltage-biased
oscillator is a noisy oscillator: the nonlinear positive resistance
contributes loss and noise to the system; additionally the effec-
tive conductance of the system needs to be larger to overcome
these losses, and therefore the noise due to also increases.

Referring to (64) and (65), we note that and .
Thus the output noise is

(68)

where takes the place of in (64). The noise factor
is given by

(69)

17This is a good approximation of the default SPICE2 noise model used in
the BSIM3 model. As we have done throughout this work, we omit the contri-
bution of � , and assume it can be accounted for in the value of � . The more
sophisticated charge based model available in BSIM3 (which is the default in
the BSIM4), while more accurate, is not suitable for hand calculations.

Fig. 16. Standard voltage-biased nMOS LC oscillator: typical plots. (a) Current
and conductance characteristics. (b) Conductance characteristic decomposed as
positive and negative nonlinear resistances, i.e., � � � �� .

We must now calculate . Assuming square-law transistors

otherwise
(70)

where and . The ef-
fective positive conductance contributed by the differential pair
is, therefore, calculated as

(71)

Fig. 17 compares the noise factor versus oscillation ampli-
tude for a typical voltage-biased oscillator [using (69) and (71)]
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Fig. 17. Predicted noise factors of the voltage-biased and the current-biased
oscillators.

and the current-biased oscillator. The noise factor of the cur-
rent-biased oscillator remains constant with oscillation ampli-
tude, while the noise factor of the voltage-biased topology rises
dramatically.

2) Oscillation Amplitude: Unlike the other oscillator topolo-
gies addressed in this work, the noise factor of the voltage-bi-
ased topology depends on the oscillation amplitude; in order to
calculate , one must first calculate , which depends on

. A simple method to predict the oscillation amplitude of the
voltage-biased topology, adapted from [30], is now presented.

In general, the amplitude of any LC oscillator is of the form

(72)

where is the first harmonic of the current drawn by the
nonlinearity. How accurately we can predict the oscillation am-
plitude depends on how accurately we can quantify the I-V char-
acteristic of the nonlinearity, and thus . In the case of the
voltage-biased topology, the I-V characteristic is accurately rep-
resented using the fifth-order polynomial18

(73)

with always being negative. For near sinusoidal oscillation,

(74)

Substituting this value into (72) and solving for gives

(75)

18The coefficients of the polynomial are found by noting that the slope of the
characteristic at ��� � � and �� is, respectively, �� � � and �� .

Simulation results suggest that this expression is a good approx-
imation for both square law and short channel transistor models.

3) Effective, or Loaded, : The literature sometimes ac-
counts for a higher than expected noise in an oscillator by
pointing to an empirically fitted “effective” and param-
eters, denoted as and , respectively. Given the above
derivation, we are able to quantify these parameters. If we rewrite
(68), in the form of the ideal current-biased oscillator (45)

(76)

then we must define and as

(77)

4) SpectreRF Simulations: The phase noise performance of
the voltage-biased nMOS topology predicted by analysis was
verified in SpectreRF. The oscillator was simulated using 90 nm
CMOS models and a 1 V supply. An ideal linear tank with a
of 13 and resonant frequency of 500 MHz ( 10 nH,
10.1 pF, ) was used, while the dimensions of each
finger in the differential pair were 3 m, 0.5 m.
The amplitude was controlled by varying the number of tran-
sistor fingers from 4 to 25. Noise measurements were taken at
a 100 kHz offset. Two simulations were run: one used the un-
altered BSIM3v3 model card, which utilized the charge-based
noise model; in a second simulation, we toggled the NOIMOD
parameter of the model card to switch to the SPICE2 noise
model, and increased the VSAT parameter to infinity to elim-
inate velocity saturation effects. Fig. 18(a) and (b) plot the sim-
ulated and predicted output PSD and phase noise of the oscil-
lator versus amplitude. Both sets of simulation results are in
good agreement with the model. As a reference, the predicted
noise performance of an equivalent current-biased oscillator is
also plotted. The oscillation amplitude used in theoretical pre-
dictions was obtained using (75). Notice that there is a phase
noise optimum, after which, any improvement in phase noise
due to a larger carrier, , is negated by an increase in the noise
factor, .

C. Standard Current-Biased CMOS Topology

We now quantify, for the first time, a tank loading mechanism
that can occur in all current-biased CMOS RF oscillators [11].
We demonstrate how the complementary FETs load the LC tank
to the detriment of the noise factor and oscillation amplitude.

1) Noise Factor: Consider the standard current-biased
CMOS topology as it is generally represented in Fig. 19(a). In
the presence of a large oscillation the pMOS pair will be hard
switched; for a small time around the zero-crossing both pMOS
transistors will be saturated, while elsewhere one transistor will
be off and the other transistor will be driven into deep triode.
In this situation, current through the pMOS transistor in triode
has no path to ground other than through the corresponding
hard-switched nMOS transistor (via the tank). This induces a
common mode oscillation on the output, which ensures that
the current through both the pMOS and nMOS transistors is
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Fig. 18. Standard voltage-biased nMOS LC oscillator: simulation results.
(a) Output noise PSD. (b) Phase noise.

exactly equal to (see Fig. 19(a)). Additionally, since
the current through the pMOS transistor is set by , the
transistor contributes no noise while in this regime. In this case,
the conductance of the nonlinearity is given by (47), the noise
factor is given by and the oscillation amplitude is
given by .

However, if the tank capacitance does not appear across the
tank, but rather as two single-ended capacitors connected to
ground [see Fig. 19(b)], the oscillator will behave very differ-
ently [11]. This is, in fact, generally the situation at RF, when
the resonator is made up of an on-chip spiral inductor tuned
by the capacitances to ground at the drain junctions and at the
pMOS gates, with only the nMOS gates offering a small portion
of the total capacitance that floats in parallel with the inductor. If
the single-ended capacitors are sufficiently large, they can sup-
press the common mode oscillation, as shown in Fig. 19(b), and
the current through a hard-switched pMOS transistor will have
two paths to ground: through the corresponding hard-switched
nMOS transistor and through the capacitors. In this instance,
the oscillator is more appropriately viewed as a voltage-biased
pMOS pair [as in Fig. 15(a)], in parallel with the hard-limiting

Fig. 19. Standard current-biased CMOS LC oscillator. (a) Fully differential
capacitor arrangement. (b) Single-ended capacitor arrangement.

nonlinearity provided by the current-biased nMOS pair. Now
the time-varying conductance is given by

(78)

Here we have three nonlinear conductances: a negative con-
ductance, , due to the current-biased nMOS differen-
tial pair, a negative conductance, , due to the transcon-
ductance of the pMOS transistors, and a positive conductance,

, due to the drain-source conductance of the pMOS tran-
sistors. If we lump together and as a single neg-
ative nonlinear resistor, the noise factor of the oscillator can be
obtained in the same way as the noise factor of the voltage-bi-
ased topology (see in Section VII-B). Working through the cal-
culations the output PSD is found to be

(79)

where the effective conductance, , responsible for tank
loading, is given by

(80)
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Again, this expression assumes the tank capacitance is
single-ended and the common-mode oscillation is completely
suppressed. The noise factor then equals

(81)

and this depends on both biasing and technology.
2) Oscillation Amplitude: When the tank capacitors are tied

to ground, the oscillation amplitude is no longer given by
. Instead, we derive the amplitude by calculating

the fundamental of the current drawn by the nMOS pair and the
voltage-biased pMOS pair, summing the result, and multiplying
by . The current-biased nMOS pair draws a differential cur-
rent whose fundamental component is approximately

(82)

while the voltage-biased pMOS pair draws a differential current
whose fundamental component is

(83)

where , and is conductance of the
differential pMOS pair measured at DC. This ex-
pression is derived by modeling the pMOS nonlinearity as a
5th-order polynomial19, as was done in Section VII-B. The os-
cillation amplitude is therefore calculated by finding the appro-
priate root of the implicit equation

(84)

Numerical methods are required to solve for .
3) SpectreRF Simulations: The predicted noise performance

of the CMOS voltage-biased topology, for the two capacitor ar-
rangements discussed, was verified in SpectreRF. The oscillator
was simulated using 90 nm models, a 1.2 V supply, and an ideal
noiseless current source. An ideal linear tank with a of 19 and
a resonant frequency of 500 MHz ( 5 nH, 20.2 pF,

) was used. The dimensions of the differential
nMOS and pMOS pair fingers were 1.5 m, 0.2 m.
The nMOS transistors had 50 fingers while the pMOS transistor
had 225. Fig. 20 plots the simulated and predicted phase noise
of the two topologies, measured at a 100 kHz offset. The sim-
ulated and predicted amplitudes are plotted in Fig. 21 and are
in good agreement. The predicted and simulated results diverge
once the amplitude of oscillation reaches the rail voltage.

The results presented here show a substantial degradation in
both amplitude and noise-performance, while the extent of this
degradation depends on the size, biasing and technology param-
eters of the pMOS transistors.

19If there were no grounded capacitors, the differential current drawn by the
pMOS transistors would equal ������� .

Fig. 20. Phase noise performance of the CMOS standard current-biased LC
topology with a differential capacitor arrangement and a single-ended capacitor
arrangement.

Fig. 21. Amplitude of the CMOS standard current-biased LC topology with a
differential capacitor arrangement and a single-ended capacitor arrangement.

VIII. CONCLUSION

Using a phasor-based analysis method, we have re-derived
the general result presented by Banks [14], and Mazzanti and
Andreani [15]. With only a few steps, this can predict phase
noise in a range of popular oscillator circuits and guide their
optimal design. The phasor-based analysis also leads to simple
expressions for amplitude noise in LC oscillators. The analysis
sheds new light on the loaded of oscillators, in particular on
the widely used fully differential CMOS LC oscillator.

We show that the two competing methods of phase noise anal-
ysis today, ISF and phasor-based, are, in fact, equivalent.

APPENDIX A
RECONCILING THE ISF AND PHASOR-BASED APPROACHES

To truly reconcile the two approaches, we consider a small
single-tone current, shaped by an arbitrary waveform, and
injected into the negative-gm model (see Fig. 4). We assume the
injected tone is of the form ,
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and is modulated by the function . Using the approach laid
out in this work, the power in the resulting PM sideband is

(85)

This is simply the PM component of [see (25)], multiplied
by the PM transfer function given by (19). On the other hand,
Hajimiri and Lee’s approach shows that the power in the re-
sulting PM sideband is given by

(86)

where and is the ISF.
Hajimiri and Lee’s noise-transfer function (NTF) is the same as
our noise-shaping function . Andreani and Wang [31] make
the approximation that, in a nearly-sinusoidal oscillator, if the
output is of the form , the ISF is given by

. Using this approximation, the effective ISF
Fourier coefficients are given by

(87)

Therefore

(88)

which is exactly the same as the expression obtained using the
phasor-based approach (85). Again, unlike the phasor approach,
the ISF has not yet been used to develop a closed form expres-
sion for AM sidebands.

Given the above analysis, the parallels between the two ap-
proaches are as follows: our noise-shaping function is iden-
tical to Hajimiri and Lee’s NTF; the phasor decomposition of
the sidebands around the carrier frequency (see Section IV) per-
forms the same operation as the ISF, ; and
the preservation of the PM sideband-to-carrier ratio through the
nonlinearity (Section III-B), takes the place of the unit step in
Hajimiri and Lee’s phase impulse response function.

APPENDIX B
NMOS DIFFERENTIAL PAIR: CONDUCTANCE AND NOISE

Consider the differential pair in Fig. 11(b). If we assume
square law models, and is small enough that both transis-
tors remain in saturation, we can write

(89)

where
and is the

source voltage of each transistor. Further

(90)

Solving for in terms of and results in (43).
If the is large enough that the pair is fully-switched, the
transconductance of each transistor (and the conductance of
the differential pair) drops to zero and (43) remains valid.
Furthermore, since the pair will be fully-switched before at
least one transistor drops into triode, (43) is valid for all regions
of operation.

When both transistor are saturated, we can associated the
noise currents and to the
appropriate transistors. The resulting differential noise current
is

(91)

which is equivalent to (44). When fully-switched, the pair con-
tributes no noise and so (44) remains valid in all regions.

A similar analysis can be carried out for the CMOS differen-
tial pair, which results in (47) and (48).
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