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The decision-making on approval of environmental impact assessment (EIA) is an intrinsically complex
multi-dimensional process because it does not only consider the scientific facts but also reflect subjective
values. The use of decision-support methods to balance facts and values can be beneficial for decision
makers. This paper attempts to propose an integrated decision-support framework that employs fuzzy
logic (FL) to manipulate the subjectivity as decision makers do in appraising the facts and values, signif-
icance-acceptability transformation (SAT) to incorporate standards and decision makers’ risk attitude
into decision-making process, and fuzzy analytic network process (FANP) to manage the dependences
among environmental factors and suggest an overall acceptability of the proposal. Finally, the proposed
approach will be applied to the EIAs of construction projects, exemplified in a case study of the Taiwan
High-Speed Rail project.
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1. Introduction

Environmental impact assessment (EIA) can be defined as the
systematic identification and evaluation of the potential impacts
(effects) of proposed projects, plans, programs, or legislative ac-
tions relative to the physical–chemical, biological, cultural, and
socioeconomic components of the total environment (Canter,
1996). The EIA process essentially involves scoping, studying base-
line conditions, identifying potential impacts, predicting signifi-
cant impacts, and evaluating them (Shepard, 2005). Scoping
determines which components are to be included in the EIA and
alternatives to be considered. A baseline condition, namely the
existing environment, is recognized as a benchmark by which the
future conditions of project alternatives are compared. Historically,
several methodologies have been developed for the identification
of impacts on the baseline condition, including the ad hoc, overlay,
checklist, matrix, and networks methods. The purpose of impact
prediction is to forecast the effects of an identified impact through
methods such as subjective judgment, case studies, quantitative
mathematical models, statistical models, pilot models and experi-
ments. Once an impact has been forecasted, it is necessary to eval-
uate it’s significance on environmental effects. Eventually, decision
makers (EIA review committee) have to decide whether to accept
the proposal or not.

The decision-making on approval of EIA reports is an intrinsi-
cally complex multi-dimensional process because it does not only
ll rights reserved.
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consider the scientific facts (environmental, ecological and socio-
economic impacts) but also reflect subjective values (judgment,
preference, value and concern). Fig. 1 delineates a flowchart of
EIA process; wherein, the use of decision-support methods to bal-
ance facts and values can be beneficial for decision makers. Several
decision-support methods have been proposed in literature.
Among them, two categories are noteworthy. The utilization of
analytic hierarchy process (AHP) (Saaty, 1990) and its variants
have become the first remarkable category due to their capability
for facilitating multi-criteria decision-making. For example,
Tsamboulas and Mikroudis (2000) devoted themselves to the com-
bination of the AHP with cost-benefit analysis methods to develop
an overall assessment of the impacts of transport initiatives over
different geographical regions and time periods. Ong, Koh, and
Nee (2001) used the AHP method to assess the environmental im-
pact of materials process techniques by deriving a single environ-
mental score based on process emissions for each of the products
or alternatives evaluated. In order to compare three large industrial
development alternatives in an orderly manner, Sólnes (2003) ap-
plied the AHP to calculate the environmental quality index of each.
Readers are referred to Ramanathan’s (2001) discussion on the
advantages and shortcomings of using the AHP for environmental
impact assessment. Tesfamariam and Sadiq (2006) applied fuzzy
AHP to deal with the selection of drilling fluid/mud for offshore
oil and gas operations, which incorporated decision maker’s risk
attitude and associated confidence on the estimates of pairwise
comparisons. Srdjevic (2007) proposed a methodology for combin-
ing multi-criteria decision-making and social choice theory in a
group decision-making process and used it to select the most
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Fig. 1. A decision-making process for environmental impact assessment.
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desired long-term water management plan. Brent, Rogers,
Ramabitsa-Siimane, and Rohwer (2007) focused on the application
of the AHP technique in the context of sustainable development to
establish and optimise health care waste management systems in
rural areas of developing countries. Liu (2007) outlines a new inte-
gration of fuzzy logic and fuzzy AHP to perform the evaluation of
environmental sustainability in 146 countries. The analytic net-
work process (ANP) (Saaty, 2001) relieves the independence limi-
tation inherent in the AHP so that several researchers have been
able to manipulate the dependence property of environmental fac-
tors. For example, according to data on the land cover, population,
roads, streams, air pollution and topography of the Mid-Atlantic
Region of the United States, Tran, Gregory, O’Neill, and Smith
(2004) conducted an integrated environmental assessment by
combining principal component analysis and the ANP. Cheng and
Li (2005) introduced the use of the ANP to develop a decision mod-
el for evaluating potentially adverse environmental impacts of
alternative construction plans. Although Mikhailov and Madan
(2003) have proposed a fuzzy extension of the ANP called fuzzy
analytic network process (FANP), which allows fuzzy weights for
dealing with imprecise human comparison judgments, there is still
no published literature reporting the use of the FANP to appraise
environmental impacts.

The second category exploits the fuzzy logic method to infer-
ence the environmental impacts or significances. For instance,
Borri, Concilio, and Conte (1998) introduced a fuzzy rule-based
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methodology for environmental evaluation which provided a ro-
bust tool to directly cope with linguistic models of human inter-
pretation of environmental systems. Van der Werf and Zimmer
(1998), as well as Roussel, Cavelier, and Van der Werf (2000),
endeavored to use fuzzy expert systems to calculate an indicator
‘‘Ipest” which reflects an expert perception of the potential envi-
ronmental impact of the application of a pesticide in a crop field.
Marusich and Wilkinson (2001) conducted two EIA cases with fuz-
zy logic and concluded that fuzzy logic analysis can make a valu-
able contribution to the environmental assessment of complex
projects but it offers no significant benefits in the case of simple
projects. González, Adenso-Díaz, and González-Torre (2002) uti-
lized fuzzy logic to avoid the need for in-depth environmental
knowledge and extremely accurate data to implement the assess-
ment, thus making life-cycle assessment more applicable to small
and medium-sized enterprises. Siqueira Campos Boclin and Mello
(2006) used a fuzzy logic computational approach to operating fuz-
zy and crisp variables and make inferences from resultant values of
the systemic indicator as well as environmental, cultural, social
and economic thematic indicators.

After investigating these relevant papers, we summarize three
properties of EIA depicted below.

� Dependences among environmental factors: The environmental fac-
tors involved in EIA can be roughly grouped into three categories:
environmental pollution, ecological alteration and socioeconomic
disturbance. The developments of human society and economics
produce environmental pollution leading to further changes in
the ecology. However, environmental pollution and destroyed
ecology also increasingly impair human socioeconomic progress.
These environmental factors are obviously interdependent; i.e.,
they can partially influence each other to various extents. In this
paper, ‘dependence’ is synonymous with ‘influence.’

� Subjectivity in EIA: Three sources of subjectivity in EIA originate
in estimating the relative importances of environmental factors,
evaluating the impacts induced by a project and incorporating
decision makers’ risk attitude (tolerance). All are concerned with
balancing economic developments, environmental risk and soci-
etal values, in which considerable subjective judgment is
required because expertise, in addition to political values and
social acceptability, has a significant role. Therefore, the subjec-
tivity is inevitable in EIA, as Kontic (2000) stated: ‘The influence
of personal value systems and beliefs is unavoidable when cre-
ating an expert evaluation and interpretation (p. 431).’

� Imprecision accompanied by subjectivity: Imprecision arises from
the qualitative nature of human thinking. In EIA, concepts, val-
ues and judgments are usually expressed as linguistic terms that
are inherently imprecise, vague, ambiguous or fuzzy.

To consider these three properties of EIA simultaneously, this
study attempted to propose an integrated decision-support frame-
work that combines fuzzy logic and fuzzy analytic network process
to help decision makers in EIA. Furthermore, this framework also
consider decision makers’ risk attitude. More specifically, this
study sought to fulfil environmental impact evaluations in terms
of the following decision support methods (see Fig. 1):

� fuzzy set theory to model the imprecision of the subjectivity,
� fuzzy logic (FL) to manipulate the subjectivity as decision mak-

ers do in balancing the facts and values,
� significance-acceptability transformation (SAT) to incorporate

standards and decision makers’ risk attitude into decision-mak-
ing process, and

� fuzzy analytic network process (FANP) to manage the depen-
dences among environmental factors and suggest an overall
acceptability of the proposal.
The details of this framework is discussed in Section 2. Finally,
the proposed approach was applied to the EIAs of construction pro-
jects, exemplified in a case study of the Taiwan High-Speed Rail
project.
2. Decision-support methodologies

2.1. Overall decision-support framework

An integrated decision-support framework for EIA of public
infrastructure projects during construction is depicted in Fig. 2.
This framework considers the overall acceptability of a proposal
determined by three major clusters: environmental pollution, eco-
logical alteration and socioeconomic disturbance. The environ-
mental pollution contains five indicators: air ðI1Þ, water ðI2Þ, soil
ðI3Þ, noise ðI4Þ and solid waste ðI5Þ; the ecological alteration con-
tains two indicators: terrestrial ðI6Þ and aquatic ðI7Þ; the socioeco-
nomic disturbance includes three indicators: economics ðI8Þ,
society ðI9Þ and culture ðI10Þ. When assessing these ten indicators,
the concept of ‘significance’ of an environmental impact is adopted
from previous literature (Canter & Canty, 1993; Cloquell-Ballester,
Monterde-Diaz, Cloquell-Ballester, & Santamarina-Siurana, 2007;
Duinker & Beanlands, 1986; Dzidzornu, 2001). Significance is a
complex concept that relates not only to impact magnitude but
also to other considerations such as effects upon environmental,
ecological and socioeconomic aspects. Thus, determining the sig-
nificance of environmental impacts may be viewed as highly sub-
jective judgment because it has to ruminate over the science facts
and societal values. As shown in the part (a) of Fig. 2, the fuzzy lo-
gic is applied to infer the significances because it can imitate hu-
man thinking process. The level of significance is represented as
a score ranging from 0 (i.e., insignificant) to 100 (i.e., completely
significant). The significance determination of impacts related to
these indicators is based on their respective subindicators. Air pol-
lution evaluation refers to the appraisal of emission of carbon mon-
oxide (CO), sulfur dioxide ðSO2Þ, nitrogen dioxide ðNO2Þ and total
suspended particulates (TSP); water pollution evaluation involves
the conditions of dissolved oxygen (DO), biochemical oxygen de-
mand (BOD), suspended solids (SS) and ammonia nitrogen
ðNH3 �NÞ in surface and ground water; soil pollution evaluation
denotes liquid and gaseous chemical residues in soil; noise pollu-
tion evaluation indicates noise and vibration induced by construc-
tion equipment; solid waste evaluation implies rubbish and
industrial waste from construction sites. The evaluation of threats
to terrestrial species considers the threatened percentages of ter-
restrial animals, plants and endangered species; moreover, a simi-
lar evaluation focusing on aquatic species examines the threatened
percentages of aquatic animals, plants and endangered species.
Economic evaluation encompasses disturbances in land-use and
development, life quality and economic activities. Societal evalua-
tion considers inaccessibilities in public facilities and transporta-
tion, and disconnection in communities. Cultural evaluation
encompasses destroyed cultural heritage and landscapes. The use
of fuzzy logic to estimate the significances of the indicators is out-
lined in Section 2.2.

Acceptability is another core concept of EIA, which is more ab-
stract than significance (Shepard, 2005). In this paper, the degree
of acceptability is depicted as a score ranging from 0 (i.e., unac-
ceptable) to 100 (i.e., completely acceptable). The second part
of the framework is to transform the impact significance into
the acceptability (see the part (b) of Fig. 2). The acceptability of
an indicator is not only derived from its significance but also
relevant standards and decision makers’ risk attitude. Standards
will be jurisdiction specific and provide an objective, technical
means of determining acceptability; decision makers’ risk
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Fig. 2. An integrated decision-support framework for EIA of public infrastructure projects during construction.

5122 K.F.R. Liu, J.-H. Lai / Expert Systems with Applications 36 (2009) 5119–5136
attitude reflect the confidence on the estimates of significances.
The significance-acceptability transformation (SAT) is described
in Section 2.3.

The third part of the framework is to provide decision makers
the overall acceptability of a proposal. While the assessments of
the significance and acceptability for each single environmental
factor is informative, the suggestion of the overall acceptability
of a proposal can be of value to decision makers. An evaluation
of the overall acceptability of the environmental impact based on
these ten indicators involves three properties. First, the ten indica-
tors crossing three clusters exist dependences to a certain extent.
For example, a lower acceptability of water pollution can directly
threaten terrestrial and aquatic habitats and somewhat restrain
economic development, resulting in lower acceptabilities of eco-
logical and economic conditions. Conversely, unacceptable eco-
nomic developments usually cause more water pollution, which
in turn leads to threatening natural habitats. Second, due to a lack
of complete understanding of the interaction between indicators, it
is difficult to accurately formulate the mechanism of dependence;
therefore, expert subjectivity plays a significant role in assessing
dependences among indicators. Third, fuzziness originates from
the qualitative nature of human thinking. The degrees of depen-
dences among indicators are usually expressed as in linguistic
terms that are inherently fuzzy. To consider these three properties,
this study utilized the fuzzy analytic network process (Mikhailov &
Madan, 2003) to evaluate the environmental impact on the basis of
the ten indicators shown in the part (c) of Fig. 2 and discussed in
2.4.
2.2. Fuzzy logic: to bridge the gap between facts and values

Fuzzy logic (Zadeh, 1996) can be treated as a tool having the
ability to compute with words for modeling qualitative human
thought processes in the analysis of complex systems and deci-
sions. In fuzzy logic, qualitative perception-based reasoning is rep-
resented by ‘IF-THEN’ fuzzy rules. The rule set concerning the
significance of air pollution can be exemplified as
Rule 1:
 IF CO concentration is high AND
SO2 concentration is high

AND NO2 concentration is high AND
TSP concentration is high

THEN significance of I1 is very strong:
Rule 2:
 IF CO concentration is high AND
SO2 concentration is high

AND NO2 concentration is high AND
TSP concentration is medium
.

THEN significance of I1 is strong:
.
..
 ..
Rule 80:
 IF CO concentration is low AND SO2 concentration is low

AND NO2 concentration is low AND
TSP concentration is medium

THEN significance of I1 is weak:
Rule 81:
 IF CO concentration is low AND SO2 concentration is low

AND NO2 concentration is low AND
TSP concentration is low

THEN significance of I1 is very weak:
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where ‘CO concentration,’ ‘SO2 concentration,’ ‘NO2 concentration,’
‘TSP concentration’ and ’strong of I ’ are linguistic variables; ‘high,’
1

‘medium,’ ‘low,’ ‘very strong,’ ‘strong,’ ‘weak’ and ‘very weak’ are their
possible fuzzy values, as defined by membership functions in fuzzy
set theory (as shown in Fig. 3).

When assuming that four factual statements (i.e., Fact 1:
CO concentration is 5:6 ppm; Fact 2: SO2 concentration is 9:1 ppb;
Fact 3: NO2 concentration is 31:8 ppb; Fact 4: TSP concentration
is 199:3 lg=m3) are fed into this inference mechanism, fuzzy rea-
soning (Zadeh, 1975) proceeds. The theory of fuzzy reasoning is de-
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tailed in Appendix A and it can be easily explained by a graphical
representation as shown in Fig. 4. In this figure, four major steps
in reaching a conclusion using fuzzy reasoning are described as
follows:

Step 1: Computing compatibilities. Compatibility designates the
similarity of an antecedent referring to a fact having the same lin-
guistic variable or the suitability of a specific rule regarding sev-
eral facts corresponding to the respective antecedents. For rule
80, the compatibility of Fact 1 with ‘CO concentration is low’ is
0.888; for Fact 2 with ‘SO2 concentration is low,’ 0.975; for Fact
3 with ‘NO2 concentration is low,’ 0.912; for Fact 4 with
‘TSP concentration is medium,’ 0.664. It should be noted that
‘product’ is chosen as the t-norm operator instead of another
more widely used t-norm operator, ‘min,’ because the t-norm
operator ‘product’ makes the conclusion sensitive to every input;
whereas, only one input will control the conclusion in the case of
the t-norm operator ‘min.’ The overall compatibility of Rule 80
with the four facts is computed by 0:888 � 0:975 � 0:912 � 0:664,
thereby obtaining 0.524. Similarly, the compatibilities of Rules
81 with the same facts are 0.352. The compatibilities of other
rules are also calculated in the same way.
Step 2: Truncating conclusions. Once the compatibility for each
rule has been calculated, the degree to which the antecedents
have been satisfied for each rule is known. As shown in Fig. 4,
a trapezoid conclusion is then inferred by truncating the trian-
gular conclusion of each rule with its corresponding compatibil-
ity. The use of implication operator ‘min’ results in the
truncations of each conclusion; whereas, a conclusion will be
scaled if the implication operator ‘product’ is selected.
Step 3: Aggregating truncated conclusions. Several inferred con-
clusions having the same linguistic variable should be aggre-
gated. Aggregation is the process by which the fuzzy sets
representing the truncated conclusions of triggered rules are
combined into a single fuzzy set. In Fig. 4, the final conclusion
is aggregated by using the union of all truncated conclusions.
Step 4: Defuzzifying overall conclusion. In many cases, the final
output of an inference system should be a single number.
Defuzzification is a method to justifiably convert a fuzzy set
into a precise value. This study utilized the center-of-gravity
method, which takes the center of the area under the curve of
the membership function of a fuzzy set as the answer. Fig. 4
indicates that the score of significance for air pollution is 18.0.

For evaluating the significances of the ten indicators, 10 rule-
bases containing 252 fuzzy rules were produced: 81 rules for air
ðI1Þ; for water ðI2Þ, 27; soil ðI3Þ, 9; noise ðI4Þ, 9; solid waste ðI5Þ, 9;
terrestrial ðI6Þ, 27; aquatic ðI8Þ, 27; economics ðI8Þ, 27; society
ðI9Þ, 27; culture ðI10Þ, 9. These 10 rule-bases and their correspond-
ing fuzzy inference systems are implemented with MATLAB Fuzzy
Logic Toolbox.
2.3. Significance-acceptability transformation (SAT): to incorporate
standards and decision makers’ risk attitude

Although it is intuitive to consider that impact significance and
acceptability are the contrary notions, relevant standards and deci-
sion makers’ risk attitude still have key roles in determining the
acceptability of a impact in the light of its significance appraisal.
The first portion of SAT is to incorporate the standards into SAT.
An assumption is that each subindicator has a standard value when
evaluating significance. Air, water or noise-quality standards have
no difficulty in such assumption; however, an appropriate techni-
cal standard for other subindicators will not be available, especially
for ecological, social and economic impacts. This study utilized
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human experts to calibrate standard values for those subindicators
which do not have regulatory standards. All standard values for
these subindicators are listed in the right part of Table 1; the asso-
ciated significances for 10 indicators inferred by fuzzy logic are
represented in the left part of which. For all indicators, the lower
bound (i.e., 0) of significance is designated to correspond to the
upper bound (i.e., 100) of acceptability; on the contrary, the upper
bound (i.e., 100) of significance corresponds to the lower bound
(i.e., 0) of acceptability; most of all, the significance values of stan-
dards keep to the acceptability score, 60. The first portion of SAT
which incorporates the standards is formulated as
ac0i ¼
100� 40 sii

sdi
; sii 6 sdi;

60� 60 sii�sdi
100�sdi

; sii P sdi;

8<: ð1Þ

where ac0i is the level of acceptability for indicator Ii; sii is the signif-
icance value inferred by fuzzy logic for Ii and sdi is the significance
value of standards for Ii. Eq. (1) is also illustrated in Fig. 5a.

The second portion of SAT is undertaken by including the deci-
sion makers’ risk attitude into SAT. The confidence of decision
makers on the estimates of significances denoted as the risk index
ðriÞ, which is defined as



Table 1
Significances of standards through fuzzy logic

Indicator ðIiÞ Significance of Ii Subindicator Standard value Unit

Air ðI1Þ 45.0 CO 35.0 ppm
SO2 250.0 ppb
NO2 250.0 ppb
TSP 250.0 lg=m2

Water ðI2Þ 28.3 DO 6.5 mg/L
BOD5 3.0 mg/L
SS 20.0 mg/L
NH3–N 0.5 mg/L

Soil ðI3Þ 28.5 Liquid chemical residue 20.0 0–100
Gaseous chemical residue 20.0 0–100

Noise ðI4Þ 33.0 Noise 70.0 dB
Vibration 55.0 dB

Solid waste ðI5Þ 37.9 Rubbish 20.0 0–100
Construction waste 20.0 0–100

Terrestrial ðI6Þ 19.8 Threatened terrestrial animals 20.0 %
Threatened terrestrial plants 30.0 %
Threatened endangered terrestrial species 5.0 %

Aquatic ðI7Þ 19.8 Threatened terrestrial animals 20.0 %
Threatened terrestrial plants 30.0 %
Threatened endangered terrestrial species 5.0 %

Economics ðI8Þ 24.7 Land-use and development obstacle 20.0 0–100
Life-quality decline 20.0 0–100
Economic activity disturbance 20.0 0–100

Society ðI9Þ 24.7 Public facility inaccessibility 20.0 0–100
Transportation inaccessibility 20.0 0–100
Community disconnection 20.0 0–100

Culture ðI10Þ 28.5 Cultural heritage destruction 20.0 0–100
Landscape demolition 20.0 0–100
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aci ¼ 100
ac0i
100

� �ri

ð2Þ

where aci is the final acceptability for Ii, ac0i is the level of acceptabil-
ity for Ii and ri is the risk index. When ri is 1, it is a neutral situation;
the larger ri, the more pessimistic risk attitude; adversely, the smal-
ler ri, the more optimistic risk attitude. Eq. (2) is also illustrated in
Fig. 5b. The decision makers’ risk attitude is roughly categorized as
‘very optimistic,’ ‘optimistic,’ ‘slightly optimistic,’ ‘neutral,’ ‘slightly
pessimistic,’ ‘pessimistic’ and ‘very pessimistic,’ which are charac-
terized by risk indexes 0.63, 0.71, 0.83, 1, 1.2, 1.4 and 1.6, respec-
tively. For example, the value 0.63 of ri can be termed as ‘very
optimistic risk attitude’ which elevates acceptability 60 to 72.5;
whereas, the value 1.6 of ri can be labeled as ‘very pessimistic risk
attitude’ which declines acceptability 60 to 44.2. Eqs. (1) and (2) can
be consolidated as

aci ¼
100 1� 0:4 sii

sdi

� �ra
; sii 6 sdi;

100 0:6� 0:6 sii�sdi
100�sdi

� �ra
; sii P sdi:

8><>: ð3Þ

The illustrations of SAT for significance of standard = 30, 40, 50 and
60 are displayed from Fig. 5c to f, respectively.

2.4. Fuzzy analytic network process: to suggest an overall acceptability

The analytic hierarchy process (AHP) (Saaty, 1990) is a notable
multi-criteria decision-making tool, which assumes that a deci-
sion-making problem can be continuously decomposed into a mul-
ti-leveled hierarchy, where the elements in each level are
independent from each other. The AHP can help decision-makers
prioritize the alternatives on a pairwise comparison basis. The ana-
lytic network process (ANP) (Saaty, 2001) extends the hierarchy
structures in the AHP to networks so that dependence relation-
ships among criteria can be manipulated. Similar to the AHP, the
priorities in the ANP heavily rely on pairwise comparison, used
to determine the influence of all criteria on a specific criterion.
While comparing criteria, a natural way to represent comparison
ratios is to use linguistic terms, thus reflecting the difficulty in
expressing the preference of criteria by accurate numbers. Hence,
the fuzzy analytic network process (FANP) (Mikhailov & Madan,
2003) has been developed to tolerate fuzzy judgments in a pair-
wise comparison process, which can be summarized in seven steps
(see Fig. 6).

Step 1: Developing a decision hierarchy. A hierarchical structure
including the decision goal, clusters, criteria, subcriteria and
lower elements is configured. In Fig. 6, the goal ‘overall accept-
ability of a proposal’ is decomposed into three clusters (envi-
ronmental pollution, ecological alteration and socioeconomic
disturbance) and the acceptabilities of ten indicators (air ðI1Þ,
water ðI2Þ, soil ðI3Þ, noise ðI4Þ, solid waste ðI5Þ, terrestrial ðI6Þ,
aquatic ðI8Þ, economics ðI8Þ, society ðI9Þ and culture ðI10Þ), where
wi is the relatively global weight of Ii with respect to the overall
acceptability after considering the dependences among indica-
tors. It should be noted that the global weights represent their
relative influences; thus an indicator with a high global weight
signifies high influences on other indicators. Conversely, an
indicator is influenced largely by other indicators if it has a
low global weight.
Step 2: Identifying dependences: influence network. The depen-
dences among all components of the previous structure are
identified; thus, the hierarchical structure becomes an influence
network. The dependences within the same clusters are termed
inner dependences; whereas, those crossing over different clus-
ters are outer dependences. In Fig. 7, an arch from indicators Ii

to Ij denotes that Ij is influenced by Ii; its attachment wij, an
influence weight, represents the degree of influence which Ii
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Fig. 5. Significance-acceptability transformation (SAT): (a) incorporation of standards into SAT, (b) incorporation of decision makers’ risk attitude into acceptability, (c) SAT
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exerts on Ij. For example, w26 and w28 represent the influence
weights of water pollution with respect to terrestrial species
and economic development, respectively. Conversely, w82 is
the influence weight of economic development with respect
to water pollution.
Step 3: Constructing influence matrices: to weight dependences.
To weight the dependences, a pairwise comparison of the
components with fuzzy ratio judgments is applied. For exam-
ple, to determine the influence weight wi2 of indicator Ii with
respect to water pollution I2, a fuzzy influence matrix eA2 of
pairwise comparison is constructed in Table 1. The entry ~aik

of eA2, in fuzzy form, represents the relative influence of indi-
cator Ii compared to indicator Ik on water pollution I2. For
example, in Table 1, ~a51 is ~5, thereby indicating that the



Step 3: Constructing influence matrices: to weight dependences

Fuzzy influence matrix A =[a ]j ik

(Pairwise comparison to represent the relative influence of I
compared to I on I )

i

k j

~

Step 1: Developing a decision hierarchy

Indicator I , j=1~nj

Step 2: Identifying dependences : influence network

Influence weight w , i,j=1~nij

(Degree of influence which I exerts on I )i j

Step 4: Deriving influence weights

interval matrix A w ( =1.0) (i=1~n)

interval matrix A w ( =0.9) (i=1~n)

Fuzzy matrix A

Interval matrix A w ( =0.1) (i=1~n)

j i j

j i j

j

j i j
=0.1

=0.9

FPP

FPP

FPP

w =ij

w ( )ij
*

*

(i=1~n)

dec om positio n aggregation

Step 5: Constructing a super matrix

supermatrix A=[w ]ij

Step 6: Extracting global weights

Global weight wi

When a sufficiently large power A =[w ] is stable, w = wm
ij i ij

j=1

j<n

j=n

new j=old j + 1

Step 7: Synthesis

Final score ac = w acii = 1

n

~

~

~

~

~
=1.0α

α

α

α

α

α

α

α

αΣα

Σαλ

λ

Σ

Fig. 6. Seven steps for fuzzy analytic network process.

K.F.R. Liu, J.-H. Lai / Expert Systems with Applications 36 (2009) 5119–5136 5127
influence of solid waste on water pollution is about five times
that of air pollution.
Step 4: Deriving influence weights. A fuzzy preference program-
ming method (Mikhailov & Madan, 2003) for calculating prior-
ities from fuzzy pairwise comparison judgements is employed
to derive influence weights from a fuzzy influence matrix,
which is detailed in Appendix B. By an a-cut technique, this
method decomposes a fuzzy influence matrix into a series of
interval matrices; thus, a fuzzy linear programming approach
is applied to solve the influence weights wijðakÞ for each ak-
cut level. Finally, all sets of influence weights are aggregated
by Eq. (1) as
wij ¼
P

awijðaÞk�aP
ak�a

; ð4Þ

where k�a is the consistency index for influence weights wijðaÞ.
Therefore, the influence weights wi2 of indicator Ii with respect
to water pollution I2 can be obtained on the basis of information
from Table 1, the details of which are listed in Table 2.
Step 5: Constructing a supermatrix. By reiterating step 4, all influ-
ence weights can be acquired to ultimately form an unweighted
supermatrix, as presented in Table 3. The weighted supermatrix
A is produced by adjusting the unweighted supermatrix so that
the sum of the entries in each column is equal to one. In this
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Table 2
Influence matrix for water pollution

Water I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

Air ðI1Þ 1 e1
35

e1
5

~2 e1
5

~1 e2
3

~2 ~2 ~2

Water ðI2Þ f35 1 ~7 f65 ~7 f35 f25 f65 f65 f65

Soil ðI3Þ ~5 e1
7 1 f10 ~1 ~5 ~4 f10 f10 f10

Noise ðI4Þ e1
2

e1
65

e1
10 1 e1

10
e1
2

e3
10

~1 ~1 ~1

Solid waste ðI5Þ ~5 e1
7

~1 f10 1 ~5 ~4 f10 f10 f10

Terrestrial ðI6Þ ~1 e1
35

e1
5

~2 e1
5 1 e2

3
~2 ~2 ~2

Aquatic ðI7Þ e3
2

e1
25

e1
4

e10
3

e1
4

e3
2 1 ~3 ~3 ~3

Economics ðI8Þ e1
2

e1
65

e1
10

~1 e1
10

e1
2

e1
3 1 ~1 ~1

Society ðI9Þ e1
2

e1
65

e1
10

~1 e1
10

e1
2

e1
3

~1 1 ~1

Culture ðI10Þ e1
2

e1
65

e1
10

~1 e1
10

e1
2

e1
3

~1 ~1 1
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study, the unweighted and weighted supermatrices are
identical.
Step 6: Extracting global weights. To elicit the global weights wi,
the weighted supermatrix is limited by raising it to a suffi-
ciently large power so that it converges into a stable superma-
trix (all columns being identical), also called a limiting
supermatrix. Table 4 constitutes the limiting supermatrix after
the power of 19, showing that the global weights from w1 to w10

are 0.077, 0.109, 0.107, 0.107, 0.275, 0.029, 0.025, 0.086, 0.108
and 0.077, respectively, being the results of considering depen-
dences and influences among indicators. Solid waste ðI5Þ, espe-
cially referring to construction waste, obtains the highest global
weight (0.275) because the production of construction waste
implies more TSP, SS, noise, soil pollution, and more destruction
of terrestrial and aquatic habitats. However, aquatic ðI7Þ has the
lowest global weight (0.025) due to low influence.
Step 7: Synthesis. The final score ac of the overall acceptability is
computed by a weighted summation and formulated as

ac ¼
Xn

i¼1

wiaci; ð5Þ

where n is the number of indicators.

2.5. Sensitivity analysis

In this paper, sensitivity analysis for the decision-support
framework intends to examine the variation of its output (i.e.,
the score of acceptability) by gradually increasing (or decreasing)
its inputs (i.e., the values of the 28 subindicators). Before proceed-
ing to the following discussions, the term ‘deterioration-gradient’
of the inputs of the framework is defined as one-percentage change
(i.e., increase or decrease) of scales for all inputs with the same goal
of deteriorating the output. In other words, ‘deterioration-gradient’
of the inputs means 1% decrease of scale for inputs in which high
values correspond to high levels of output, and 1% increase of scale
for other inputs in which low values correspond to high levels of
output. As shown in Fig. 8, the output change of the decision-sup-
port framework of EIA with respect to ‘deterioration-gradient’ of



Table 3
Ten sets of derived influence weights and the aggregation result

ak-cut Aggregation

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

w12ðakÞ 0.018 0.018 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 w12 ¼ 0:019
w22ðakÞ 0.679 0.681 0.682 0.683 0.685 0.686 0.686 0.688 0.691 0.691 w22 ¼ 0:688
w32ðakÞ 0.114 0.112 0.110 0.109 0.107 0.106 0.106 0.103 0.102 0.102 w32 ¼ 0:105
w42ðakÞ 0.018 0.018 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 w42 ¼ 0:019
w52ðakÞ 0.102 0.102 0.101 0.101 0.101 0.101 0.101 0.101 0.100 0.100 w52 ¼ 0:101
w62ðakÞ 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 w62 ¼ 0:010
w72ðakÞ 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 w72 ¼ 0:028
w82ðakÞ 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 w82 ¼ 0:010
w92ðakÞ 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 w92 ¼ 0:010
w102ðakÞ 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 w102 ¼ 0:010

k�k 0.974 0.974 0.974 0.973 0.973 0.972 0.972 0.972 0.971 0.971

Table 4
Unweighted supermatrix

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

Air ðI1Þ 0.736 0.019 0.019 0.010 0.020 0.110 0.089 0.028 0.010 0.010
Water ðI2Þ 0.019 0.688 0.100 0.010 0.020 0.149 0.249 0.033 0.010 0.010
Soil ðI3Þ 0.046 0.105 0.491 0.010 0.100 0.130 0.110 0.030 0.010 0.010
Noise ðI4Þ 0.010 0.019 0.010 0.872 0.010 0.050 0.050 0.028 0.010 0.010
Solid waste ðI5Þ 0.063 0.101 0.300 0.048 0.771 0.119 0.109 0.030 0.010 0.010
Terrestrial ðI6Þ 0.010 0.010 0.031 0.010 0.029 0.353 0.010 0.030 0.010 0.010
Aquatic ðI7Þ 0.010 0.028 0.019 0.010 0.020 0.010 0.304 0.030 0.010 0.010
Economics ðI8Þ 0.086 0.010 0.010 0.010 0.010 0.010 0.010 0.671 0.069 0.099
Society ðI9Þ 0.010 0.010 0.010 0.010 0.010 0.059 0.059 0.060 0.788 0.099
Culture ðI10Þ 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.060 0.073 0.732
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(d) Sensitivity analysis for standard = 60
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(b) Sensitivity analysis for standard=40
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(a) Sensitivity analysis for standard = 30
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(c) Sensitivity analysis for standard = 50

Fig. 8. Sensitivity analysis of the decision-support framework: change of acceptability due to deterioration-gradient of subindicators (a) with significance of standard = 30,
(d) with significance of standard = 40, (e) with significance of standard = 50 and (f) with significance of standard = 60.
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subindicators is a winding curve, which reflects the non-linearity
characteristic of human thinking process.

3. Application to Taiwan High-Speed Rail project

3.1. Case description

Taiwan, located 160-km southeast of Mainland China, is in a
subtropical island with beautiful and splendid natural scenery.
Its total area is 35;961 km2, more than 70% of which is mountain-
ous terrain, more than half having an altitude above 1000 m. The
population is 23.0 million, 95% of which inhabits the Western Cor-
ridor. The major metropolises are Taipei in the north, with a pop-
ulation of 6.15 million, and Kaohsiung in the south, with a
population of 2.71 million. Other cities along the Western Corridor
are Taoyuan, Hsinchu, Taichung and Tainan. In 1987, in view of the
deteriorating quality and saturation of transportation in the Wes-
tern Corridor, the Taiwan Transportation Bureau was appointed
by the Executive Yuan to undertake a ‘Feasibility Study for a
High-Speed Rail System in the Western Corridor.’ The aim of this
study was to improve the transportation service in this area and
coordinate with the metropolitan rapid transport system plan for
constructing a complete transportation network.

After almost 13 years of preparation and planning, the construc-
tion work on the Taiwan High-Speed Rail (THSR) system began on
March 27, 2000. The THSR project, the route of which is mapped in
Fig. 9, is not only one of the most challenging infrastructure pro-
jects in the world to date but also the largest private-sector-in-
Taipei
NangangTaoyuan

Banciao
Hsinchu

Miaoli

Taichung

Changhua
Yunlin

Chiayi

Tainan

Zuoying
Kaohsiung

Operational
Planned for 2012

Northern section (90 kms)

Central section
(130 kms)

Southern
section
(125 kms)

Fig. 9. Route of Taiwan High-Speed Rail project.
vested public construction project concurrently. The total
construction investment needed is approximately USD 15 billion.
The planned system is 344.68 km in length, including 252 km of
overpasses and 48 km of tunnels, for which revenue service is pro-
jected to commence by the end of 2006. The THSR line runs from
Taipei to Kaohsiung, passing 14 major cities and counties and 77
townships and regions. In the earliest phase, eight stations located
in Taipei, Banciao, Taoyuan, Hsinchu, Taichung, Chiayi, Tainan and
Zuoying, will be operational. Five additional stations (Nangang,
Miaoli, Changhua, Yunlin Stations and Kaohsiung) will be built in
a later phase.

For preventing a lateral impact on the adjacent environment
along the THSR line within the construction and operation stages,
the Taiwan Transportation Bureau conducted an environmental
impact assessment report concerning the natural, biological, social
and economical impacts, including 20 subjects within the years
from 1990 to 1994. The Environmental Protection Administration
of the Executive Yuan approved this EIA report on September 12,
1994. According to the information provided in this EIA report,
the integrated decision-support framework consisting of fuzzy lo-
gic, SAT and FANP demonstrates its use.

3.2. Evaluation results and discussion

The following sections discuss the assessment of the signifi-
cance for each indicator through fuzzy logic, the fulfillment of sig-
nificance-acceptability transformation, and the evaluation of the
overall acceptability of the project by the FANP. All are restricted
to the construction phase of the THSR.

3.2.1. Fuzzy inference of significances for indicators
In this study, the THSR line was divided into three sections (see

Fig. 9): northern, from Taipei to Hsinchu, about 90 km; central,
from Hsinchu to Yunlin, about 130 km; and southern, from Yunlin
to Kaohsiung, about 125 km. For each THSR section, three condi-
tions are discussed: the baseline condition (BC) before the
construction of the THSR, prediction of the impact without mitiga-
tion measures (PIWOM) and prediction of the impact with mitiga-
tion measures (PIWM) (see Table 5).

First, fuzzy reasoning for the significance of air pollution is illus-
trated. The 81 fuzzy rules for evaluating air impact produced in
Section 2.2 are triggered by measured and predicted concentra-
tions of air pollutants in the EIA report, the results of which are
presented in Table 6. The concentrations listed in the four middle
columns in Table 6 represent the average values over all measure-
ment points within the respective sections. The significance of the
air-quality standard is 45.0. For the baseline condition, with the
exception of total suspended particulates (TSP), the other air pollu-
tants (CO, SO2 and NO2) were far below the air-quality standard,
thereby inducing the significances of 18.0, 17.3 and 19.3 in the
northern, central and southern sections, respectively. The concen-
trations of CO, SO2 and NO2 were predicted not to cause increases
in the construction phase of the THSR; however, a large amount of
dust could be generated due to ground excavations, handling
materials, truck haulage on unpaved site roads, as well as construc-
tion of stations, bridges, and tunnels. The exceedances of TSP for a
24-h average were predicted at 100 air-sensitive receivers, thereby
causing a increase in significances, i.e., 19.4, 18.8 and 19.7 in the
northern, central and southern sections, respectively. The number
of air-sensitive receivers could be reduced to 54 and the incre-
ments of TSP concentrations eliminated by 60% by performing cer-
tain mitigation measures, such as spraying water to keep the
hauling roads in a wet condition, reducing vehicle speeds and lim-
iting vehicular movements in unpaved areas, providing wheel- and
body-washing facilities at exits from the site, cleaning public roads
wherever necessary, and covering all dusty vehicle loads with



Table 5
Liminting supermatrix

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

Air ðI1Þ 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077
Water ðI2Þ 0.109 0.109 0.109 0.109 0.109 0.109 0.109 0.109 0.109 0.109
Soil ðI3Þ 0.107 0.107 0.107 0.107 0.107 0.107 0.107 0.107 0.107 0.107
Noise ðI4Þ 0.107 0.107 0.107 0.107 0.107 0.107 0.107 0.107 0.107 0.107
Solid waste ðI5Þ 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275 0.275
Terrestrial ðI6Þ 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029
Aquatic ðI7Þ 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025
Economics ðI8Þ 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086 0.086
Society ðI9Þ 0.108 0.108 0.108 0.108 0.108 0.108 0.108 0.108 0.108 0.108
Culture ðI10Þ 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077

Table 6
Fuzzy inference of significance of air pollution

Subindicator (Unit) CO
(ppm)

SO2

(ppb)
NO2

(ppb)
TSP
(ppb)

Significance
(0–100)

ST 35.0a 250.0a 250.0a 250.0b 45.0

Northern section
BC 5.6 9.1 199.3 31.8 18.0
PIWOM 5.6 9.1 277.7 31.8 19.4
PIWM 5.6 9.1 230.7 31.8 18.6

Central section
BC 5 14 174.5 35.4 17.3
PIWOM 5 14 257.1 35.4 18.8
PIWM 5 14 207.6 35.4 18.0

Southern section
BC 5.75 7 271.4 38.8 19.3
PIWOM 5.75 7 340.2 38.8 19.7
PIWM 5.75 7 298.9 38.8 19.6

Note: ST: standard; BC: baseline condition; PIWOM: prediction of impact without
mitigation measures; PIWM: prediction of impact with mitigation measures.

a One-hour average value.
b Twenty-four-hour average value.

Table 7
Fuzzy inference of significance of water pollution

Subindicator (Unit) DO
(mg/l)

BOD5

(mg/l)
SS
(mg/l)

NH3—N
(mg/l)

Significance
(0–100)

ST 6.5 3.0 20 0.5 28.3

Northern section
BC 5.3 13.9 33.2 4.4 48.2
PIWOM 5.3 13.9 39.3 4.4 50.7
PIWM 5.3 13.9 35.6 4.4 49.2

Central section
BC 6.6 31.1 76.5 1.2 63.4
PIWOM 6.6 31.1 105.8 1.2 70.6
PIWM 6.6 31.1 88.2 1.2 67.7

Southern section
BC 3 14.4 37.7 5.3 58.6
PIWOM 3 14.4 42.8 5.3 60.2
PIWM 3 14.4 39.8 5.3 59.3

Note: ST: standard; BC: baseline condition; PIWOM: prediction of impact without
mitigation measures; PIWM: prediction of impact with mitigation measures.

Table 8
Evaluation results of significances

Indicator I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

ST 45.0 28.3 28.5 33.0 37.9 19.8 19.8 24.7 24.7 28.5

Northern section
BC 18.0 48.2 11.2 27.8 25.2 10.0 17.8 14.4 15.5 16.3
PIWOM 19.4 50.7 11.7 32.3 74.0 28.0 19.4 22.6 17.2 26.8
PIWM 18.6 49.2 11.4 31.2 33.2 19.1 18.6 21.0 16.6 24.7

Central section
BC 17.3 63.4 11.2 28.0 24.5 10.0 19.3 16.3 19.3 16.6
PIWOM 18.8 70.6 11.7 31.6 77.4 25.6 20.5 19.8 21.0 28.7
PIWM 18.0 67.7 11.4 30.6 29.7 18.7 19.7 19.0 20.3 26.9

Southern section
BC 19.3 58.6 11.2 27.9 23.9 10.0 18.8 16.6 22.2 16.7
PIWOM 19.7 60.2 11.7 31.6 46.4 26.3 19.7 20.3 24.3 28.4
PIWM 19.6 59.3 11.4 30.7 28.4 17.5 19.3 19.1 23.5 26.7

Entire line
BC 18.2 57.7 11.2 27.9 24.5 10.0 18.7 15.9 19.4 16.6
PIWOM 19.3 61.6 11.7 31.8 65.3 26.5 19.9 20.7 21.2 28.1
PIWM 18.7 59.8 11.4 30.8 30.1 18.4 19.3 19.6 20.5 26.3

Note: ST: standard; BC: baseline condition; PIWOM: prediction of impact without
mitigation measures; PIWM: prediction of impact with mitigation measures.

Table 9
SAT results of transforming significances into acceptabilities (with neutral risk
attitude)

Indicator I1I2 I3 I4 I5 I6 I7 I8 I9 I10

ST 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60.0

Northern section
BC 84.0 43.4 84.3 66.3 73.4 79.9 64.0 76.6 75.0 77.1
PIWOM 82.8 41.3 83.7 60.8 25.1 53.9 60.8 63.4 72.1 62.3
PIWM 83.4 42.5 84.0 62.2 65.0 61.3 62.3 66.0 73.1 65.3

Central section
BC 84.6 30.6 84.3 66.1 74.1 79.9 61.0 73.7 68.7 76.7
PIWOM 83.2 24.6 83.6 61.7 21.8 55.6 59.5 67.9 66.1 59.8
PIWM 84.0 27.0 84.0 62.9 68.7 62.2 60.1 69.2 67.2 62.2

Southern section
BC 82.8 34.6 84.3 66.2 74.8 79.9 62.0 73.2 64.1 76.5
PIWOM 82.5 33.3 83.6 61.7 51.8 55.1 60.2 67.1 60.7 60.1
PIWM 82.5 34.0 84.0 62.8 70.0 64.6 61.1 69.1 61.9 62.4

Entire line
BC 83.8 35.4 84.3 66.2 74.2 79.9 62.1 74.3 68.7 76.7
PIWOM 82.8 32.1 83.6 61.5 33.5 55.0 60.1 66.5 65.7 60.5
PIWM 83.3 33.6 84.0 62.7 68.2 62.8 61.0 68.3 66.8 63.1

Note: ST: standard; BC: baseline condition; PIWOM: prediction of impact without
mitigation measures; PIWM: prediction of impact with mitigation measures.

K.F.R. Liu, J.-H. Lai / Expert Systems with Applications 36 (2009) 5119–5136 5131
tarpaulins for transportation to, from and between site locations.
With these mitigation measures, the significances improved to
18.6, 18.0 and 19.6 in the northern, central and southern sections,
respectively. In contrast with air pollution, water pollution obtains
much higher significances in all conditions via the reasoning of the
27 fuzzy rules formulated in Section 2.2 mainly because this pollu-
tion was severe at the time of testing (see Table 7). I.e., 40% of the
rivers that the THSR would cross were severely polluted; 32%,
moderately polluted; 16%, slightly polluted; whereas, only 12%
were acceptable.
The significances for the other eight indicators are also inferred
through respective sets of fuzzy rules. Table 8 shows the outcomes
of fuzzy reasoning; however, the implication of an significance va-
lue is indecipherable if without comparing it with standard. There-
fore, the SAT process intermingles significance with standards into
acceptability in the following section.
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3.2.2. SAT of significance into acceptability
The first part of SAT is to incorporate the standards into SAT

through Eq. (1). In the casPe of the neutral risk attitude ðri ¼ 1Þ,
the acceptabilities for all indicators in the respective THSR sections
are obtained in Table 9. In the northern section, water ðI2Þ did not
reach minimum acceptance (60), and noise ðI4Þ, terrestrial ðI6Þ and
aquatic ðI7Þ are not very acceptable, even when the mitigation
measures were performed. In central and southern sections had re-
sults similar to those of the northern section. Moreover, the conse-
quences of the entire line sums weighted the conclusions for the
three sections in light of the rail-length proportion. It should be
noted that a comprehensive plan for construction waste manage-
ment, including 29 landfills, can successfully solve the problem
of 18:62 million m3 and transform the unacceptable PIWOM situa-
tion into an acceptable PIWM condition.

The section part of SAT is to incorporate the decision makers’
risk attitude into SAT, as formulated in Eq. (2). In order to examine
the distributions of the results varying on the decision makers’ risk
attitude, the acceptabilities for ‘very optimistic risk attitude’
ðri ¼ 0:63Þ, ‘neutral risk attitude’ ðri ¼ 1:0Þ and ‘very pessimistic
risk attitude’ ðri ¼ 1:6Þ are viewed as the maximum, the median
and the minimum values of the band values, as shown in Fig. 10.
The range of a band value signifies the uncertainty of the results
arising from the incomplete confidence of decision makers on the
estimates of significances. Apparently, the adoption of the decision
makers’ risk attitude will greatly affect the evaluation results. For
example, for PIWM in the northern section, nine out of ten indica-
tors acquire higher acceptabilities than the minimum acceptance
when an optimistic risk attitude is taken; whereas, with pessimis-
tic risk attitude, only three indicators surpass the minimum
acceptance (see Fig. 10a). In central and southern sections, the pes-
simistic risk attitude makes the evaluation results worse, two indi-
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Fig. 10. The distributions of the acceptabilities for 10 indicato
cators remain acceptable (see Fig. 10b, c). Fig. 10d demonstrates
the results of the entire line which sums weighted the conclusions
for the three sections in terms of the rail-length proportion.

3.2.3. Overall evaluation via FANP
The overall acceptability of a proposal can be calculated by a

weighted summation (Eq. (5)), where the global weights from w1

to w10 derived by FANP (Section 2.4) are 0.077, 0.109, 0.107,
0.107, 0.275, 0.029, 0.025, 0.086, 0.108 and 0.077, respectively,
being the results of considering dependences and influences
among indicators. Finally, the overall acceptability of a proposal
for ‘very optimistic risk attitude’ ðri ¼ 0:63Þ, ‘neutral risk attitude’
ðri ¼ 1:0Þ and ‘very pessimistic risk attitude’ ðri ¼ 1:6Þ (the maxi-
mum, the median and the minimum values of the band values,
respectively) are delineated in Fig. 11. The results suggest that
the proposal is acceptable with risk attitudes towards from very
optimistic to pessimistic; however, it should be rejected if very
pessimistic risk attitude is taken.

3.2.4. Cluster analysis
Cluster analysis identifies and classifies objects or variables on

the basis of the similarity of their characteristics. Moreover, this
analysis seeks to minimize within-cluster variance and maximize
between-cluster variance. The results of cluster analysis constitute
a number of heterogeneous clusters with homogeneous contents.
Substantial differences exist between these clusters, but the objects
within a single cluster are similar. Thus, if the classification is suc-
cessful, the objects within-clusters will be proximate when plotted
geometrically; whereas, different clusters will be peripheral.

In this study, the decline in the acceptability of the PIWM when
compared to the BC was of particular concern because this decline
reveals the level of environmental impact due to the construction
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BC
PIWOM
PIWM

100

90

80

70

60

50

40

30

20

10

0
Northern Central Southern Entire
section section section line

Ac
ce

pt
ab

ilit
y

Fig. 11. The distributions of the overall acceptabilities for THSR project: from very
optimistic to very pessimistic risk attitudes.
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work. To interpret the impact, a non-hierarchical clustering tech-
nique, similar to importance–performance analysis (Martilla &
James, 1977), was implemented on the basis of the influences of
indicators (i.e., global weights) and the decline in levels of PIWM
acceptabilities relative to the BC. The clustering began with the
manual selection of a seed point (i.e., a hollow circles in Fig. 12)
for each potential cluster, usually located at the centroid of all ob-
jects within the cluster. Each object must belong exclusively to a
cluster whose seed point is nearest to this object.

Fig. 12 geometrically illustrates the three clusters in a coordi-
nate graph where the x-axis represents the influence of the indica-
tor (i.e., global weight) and the y-axis indicates the decline in
acceptability due to the THSR project. Cluster Ai indicates the indi-
cator with less influence but severe decline in acceptability. Terres-
trial species, with low influences on other indicators, will receive a
greater impact because of the destruction of their habitats. Besides,
culture will also be subjected to a higher impact. The THSR project
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should devise a superior plan to preserve the terrestrial species,
cultural heritage and landscape. The rest of indicators converge
into cluster Bi, representing low decline in acceptability and low
influence. Even some indicators such as air, water, soil, aquatic
and society will have a slight decline in acceptability. Cluster Ci de-
notes the indicator with low decline in acceptability and high influ-
ence. Despite this lower decline, construction waste heavily
influences other indicators, thereby rendering it noteworthy.

4. Conclusion

A decision-support framework considering air, water, soil,
noise, solid waste, terrestrial, aquatic, economics, society and cul-
ture has been developed to evaluate environmental impacts of con-
struction projects during the construction phase. The framework is
composed of the fuzzy logic, significance-acceptability transforma-
tion and fuzzy analytic network process, providing the following
benefits:

� enabled to handle dependence problems among environmental
factors through the FANP to derive their relative influences
(i.e., global weights);

� empowered with subjective assessment modeled by fuzzy logic
to bridge the gap between scientific facts and the fulfillment of
social values and beliefs;

� equipped with the concept of risk via the inclusion of decision
makers’ risk attitude (tolerance).

Although the proposed approach has been demonstrated by a
case study of the Taiwan High-Speed Rail project, further investiga-
tion is needed in the future, including the involvement of addi-
tional specialists to refine fuzzy rules and the use of statistics
instead of experts’ judgments to define the dependence among
environmental factors.
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Appendix A. Fuzzy logic

An example of fuzzy reasoning, in which a new fuzzy value is
derived on the basis of a fuzzy rule (i.e., the ith rule in a fuzzy
rule-base) with three antecedents and three fuzzy facts, is repre-
sented as follows:
IF X1 is eF i1 AND X2 is eF i2 AND X3 is eF i3 THEN Y is eGiX1 is eF 01 AND X2 is eF 02 AND X3 is eF 03
Y is eG0i ; ðA1Þ
where Xj and Y are linguistic variables; eF ij and eF 0j are fuzzy sets of
Uj; eGi and eG0i are fuzzy sets of V. In the framework of the
compositional rule of inference (Zadeh, 1975), eG0i is computed
byeG0i ¼ ðeF 01 ^ eF 02 ^ eF 03Þ � ððeF i1 ^ eF i2 ^ eF i3Þ ! eGiÞ; ðA2Þ

where ^ denotes a t-norm operator, � is a composition operator and
! indicates an implication operator.

Selection of operators is an important issue for calculating eG0i. If
‘sup-min’ is chosen as the composition operator (Zadeh, 1973), the
membership function of eG0i is computed by
leG 0
i

ðvÞ ¼ max
u1 ;u2 ;u3

min½leF 0
1
^eF 0

2
^eF 0

3

ðu1;u2;u3Þ;leF i1^eF i2^eF i3!eGi
ðu1; u2; u3; vÞ�:

ðA3Þ

Furthermore, if ‘min’ is treated as the t-norm operator (i.e.,
a ^ b ¼ minða; bÞ) and Mamdani’s implication operators are used
(i.e., a! b ¼ minða; bÞ), Eq. (A3) becomes the well-known ‘Mamda-
ni’s fuzzy reasoning’ (Mamdani, 1977), which can be expressed as

leG 0
i

ðvÞ ¼ max
u1 ;u2 ;u3

min½leF 01 ðu1Þ;leF 02 ðu2Þ;leF 03 ðu3Þ;leF i1
ðu1Þ;

leF i2
ðu2Þ;leF i3

ðu3Þ;leGi
ðvÞ�: ðA4Þ

Eq. (A4) can be further depicted in another form

leG 0
i

ðvÞ¼min½max
u1

leF 01^eF i1
ðu1Þ;max

u2
leF 02^eF i2

ðu2Þ;max
u3

leF 03^eF i3
ðu3Þ;leGi

ðvÞ�;

ðA5Þ

where ðeF 0j ^ eF ijÞ denotes the intersection of fuzzy sets eF 0j andeF ij; maxuj
leF 0

j
^eF ij
ðujÞ is the highest degree of membership of the inter-

section and can be interpreted as the compatibility Cij between eF 0j
and eF ij; minfmaxu1leF 01^eF i1

ðu1Þ;maxu2leF 02^eF i1
ðu2Þ;maxu3leF 03^eF i1

ðu3Þg

can be viewed as the overall compatibility Ci between the facts

and the rule; and Ci is used to truncate eGi to obtain eG0i. Moreover,

if eF 0j is a precise value (i.e., say uj), Eq. (A5) becomes

leG 0
i

ðvÞ ¼minfleF i1
ðu1Þ;leF i2

ðu2Þ;leF i3
ðu3Þ;leGi

ðvÞg ðA6Þ

where ðminfleF i1
ðu1Þ;leF i2

ðu2Þ;leF i3
ðu3ÞgÞ can be viewed as the overall

compatibility Ci between the facts and the rule; Ci is used to trun-

cate eGi to obtain eG0i.
If ‘product’ substitutes for ‘min’ as the t-norm operator (i.e.,

a ^ b ¼ a � b), Eq. (A5) is modified as

leG 0
i

ðvÞ ¼ max
u1 ;u2 ;u3

min½leF 01 ðu1Þ � leF 02 ðu2Þ � leF 03 ðu3Þ;leF i1
ðu1Þ

� leF i2
ðu2Þ � leF i3

ðu3Þ;leGi
ðvÞ�: ðA7Þ

Likewise, if eF 0j is a precise value (i.e., uj), Eq. (A7) evolves into

leG 0
i

ðvÞ ¼minfleF i1
ðu1Þ � leF i2

ðu2Þ � leF i3
ðu3Þ;leGi

ðvÞg ðA8Þ

where ðleF i1
ðu1Þ � leF i2

ðu2Þ � leF i3
ðu3ÞÞ can be viewed as the overall

compatibility Ci between the facts and the rule; Ci is used to trun-

cate eGi to obtain eG0i.
In this paper, ‘product,’ ‘sup-min,’ and ‘min’ are selected as the

t-norm, composition and implication operators, respectively. It
should be noted that ‘product’ is chosen as the t-norm operator
instead of another more widely used t-norm operator, ‘min,’ be-
cause the t-norm operator ‘product’ makes the result of eG0i sensitive
to every input; whereas, only one input will control eG0i in the case
of the t-norm operator ‘min’.

Appendix B. Fuzzy preference programming method (Mikhailov
& Madan, 2003)

Consider a pairwise comparison matrix eAa
j consisting of interval

judgment aik ¼ ðlik;uikÞ, where lik and uik are the lower and the
upper bounds of the corresponding interval judgment. When those
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judgments are consistent, there are many priority vectors w ¼
ðw1jðaÞ; . . . ;wnjðaÞÞ, whose elements satisfy the inequalities

lik 6
wijðaÞ
wkjðaÞ

6 uik; ðB1Þ

where i ¼ 1 � n� 1 and k ¼ 2 � n because the upper triangular part
of eAa

j is considered.
In the inconsistent cases, however, there is no such priority w

vector satisfying all interval judgments simultaneously. But it is
reasonable to try to find a vector that satisfies all judgments ‘as
well as possible’. This means that a good enough solution has to
satisfy all judgments approximately, keeping the violations close
to zero, or

lik ~6
wijðaÞ
wkjðaÞ

~6uik; ðB2Þ

where the symbol ~6 denotes the statement ‘fuzzy less or equal to.’
In order to represent the prioritization problem as a linear func-

tion of all decision variables, the double-side inequalities (B2) is
transformed into a set of single-side linear fuzzy inequalities

wijðaÞ � uikwkjðaÞ~60;

�wijðaÞ þ likwkjðaÞ~60:
ðB3Þ

The above set of nðn� 1Þ fuzzy constraints is given in a matrix form
as

Rw ~60; ðB4Þ

where the matrix R 2 Rm	n; m ¼ nðn� 1Þ.
The rth row of (B4), denoted by Rw ~60 represents a fuzzy linear

constraint and might be defined by a linear membership function
of the type

mrðRrwÞ ¼
1� Rr w

dr
; Rrw 6 dr ;

0; Rrw P dr;

(
ðB5Þ

where dr is a tolerance parameter, defined by the decision maker,
which corresponds to the admissible interval of approximate satis-
faction of the crisp inequality Rrw 6 dr; r ¼ 1;2; . . . ;m.

The membership function (B5) represents the decision-makers’
satisfaction with the fulfillment of the single-side constraints (B3).
The value of mrðRrwÞ is equal to zero when the corresponding crisp
constraint Rrw 6 dr is strongly violated. The degree of membership
takes values between zero and one when the crisp constraint is
approximately satisfied and it is greater than one if the constraint
is fully satisfied.

The solution to the prioritization problem by the FPP method is
based on two additional assumptions. The first one requires the
existence of non-empty fuzzy feasible area eP on the simplex hyper-
plane Q n�1

Q n�1 ¼ ðw1jðaÞ; . . . ;wnjðaÞjwijðaÞ > 0;
Xn

i¼1

wijðaÞ ¼ 1

( )
: ðB6Þ

The membership function of the fuzzy feasible area is expressed as
the intersection of all interval membership functions (B5), i.e.

meP ðwÞ ¼ ½minfm1ðR1wÞ; . . . ;mmðRmwÞjw 2 Q n�1� ðB7Þ

The second assumption of the FPP method specifies a selection
rule, which determines a priority vector having the highest degree
of membership in the aggregated membership function (B7). It can
easily be proved that eP is a convex set, so there is always a
priority vector w in Qn�1 that has a maximum degree of member-
ship k

k ¼ meP ðw�Þ ¼max½minfm1ðR1wÞ; . . . ;mmðRmwÞjw 2 Q n�1�: ðB8Þ
The maximin prioritization problem (B8) can be represented as the
following fuzzy programming problem:

maximize k;

subject to drkþ Rrw 6 dr;Xn

i¼1

wijðaÞ ¼ 1;

wijðaÞ > 0; i ¼ 1;2; . . . ;n;

r ¼ 1;2; . . . ;m; m ¼ nðn� 1Þ:

ðB9Þ

The optimal solution to the above problem is a vector ðw�; k�aÞ,
whose first component represents the priority vector that maxi-
mizes the degree of membership in the fuzzy feasible area, whereas,
the second one gives the value of the maximum degree, k�a ¼
meP ðw�Þ. The value of k�a measures the degree of satisfaction and is
a natural indicator for the inconsistency of the decision-makers
judgments, so it is called a consistency index. When the human
interval judgments are consistent, k�a is greater than or equal to
one. For inconsistent judgments, the consistency index takes a value
between one and zero, depending on the degree of inconsistency
and the values of the tolerance parameters dr . It can be shown that
the corresponding maximizing solution w� represents a point in the
feasible area for which some of the ratios ðRrw=drÞ are equal to k�a.
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