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Context Aware Computing, Learning and Big Data
in Internet of Things: A Survey
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Abstract—Internet of Things (IoT) has been growing rapidly
due to recent advancements in communications and sensor
technologies. Meanwhile, with this revolutionary transformation,
researchers, implementers, deployers, and users are faced with
many challenges. IoT is a complicated, crowded, and complex
field; there are various types of devices, protocols, communication
channels, architectures, middleware, and more. Standardization
efforts are plenty, and this chaos will continue for quite some
time. What is clear, on the other hand, is that IoT deployments
are increasing with accelerating speed, and this trend will not
stop in the near future. As the field grows in numbers and
heterogeneity, “intelligence” becomes a focal point in IoT. Since
data now becomes “big data”, understanding, learning, and
reasoning with big data is paramount for the future success of
IoT. One of the major problems in the path to intelligent IoT is
understanding “context”, or making sense of the environment,
situation, or status using data from sensors, and then acting
accordingly in autonomous ways. This is called “context aware
computing”, and it now requires both sensing and, increasingly,
learning, as IoT systems get more data and better learning
from this “big data”. In this survey, we review the field, first,
from a historical perspective, covering ubiquitous and pervasive
computing, ambient intelligence, and wireless sensor networks,
and then, move to context aware computing studies. Finally, we
review learning and “big data” studies related to IoT. We also
identify the open issues and provide an insight for future study
areas for IoT researchers.

Keywords—Internet of things, Context Awareness, Machine
Learning in IoT, Big Data in IoT, Data Management and Analytics
.

I. INTRODUCTION

Internet of Things (IoT) is the umbrella phrase covering
all sorts of things connected to internet. These “things” in-
clude everything from dummy sensors, like motion sensors,
temperature measuring devices, etc., to various types of smart
things such as smart phones, smart meters, autonomous cars,
buildings, etc. The idea is that all these “things” will collect
data, share data and information, and at the end everything in
this ecosystem (systems, people, etc.) act accordingly in smart
ways so that our lives are easier, better and in harmony.

The IoT paradigm started with Radio Frequency Identifica-
tion (RFID) and sensor network technologies. In 1999, this
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term was first mentioned by Kevin Ashton [1]. However, the
definition has been changing with the evolving technology, and
lately, it has become “The Internet of Things allows people
and things to be connected Anytime, Anyplace, with Anything
and Anyone, ideally using Any path/network and Any service”
[2]. In other words, intelligent devices (things) sense their
surrounding environment, understand changes, interact with
each other, and analyze the results by using existing Internet
infrastructure and standards. Today, IoT is widely used in
different areas such as transportation, healthcare, and utilities.

The projected impact of IoT devices usage is tremendous.
The US National Intelligence Council (NIC) predicts that
“by 2025 Internet nodes may reside in things that we use
everyday, food packages, furniture, paper documents, and
more” [3]. In the future, almost all active devices will have
an Internet interface. This vision enforces data scientists to
provide solutions for the inevitable challenge of how to process
the large amount of data coming from things, and how to make
sense of the raw extracted data. The IoT paradigm covers a vast
amount of different areas and poised to attack various existing
and upcoming problems, such as hardware, power, security,
reliability, interoperability, and data sharing problems. Several
different architectures and middleware solutions are proposed
for attempting to solve these aforementioned problems. In ad-
dition, there are also other study areas like context awareness,
semantic and cloud computing, reasoning and processing, and
data and service management, associated with the IoT concept.

To better understand the studies and technologies regard-
ing the IoT, it might also be beneficial to examine related
areas, such as ubiquitous computing, pervasive computing,
ambient intelligence (AmI), smart homes and cities, machine
to machine (M2M) communication, wireless sensor networks
(WSNs), semantic sensor networks (SSNs), web of things
(WoT), context awareness, semantics and big data, machine
learning, and data mining.

Ubiquitous computing, pervasive computing, and AmI were
proposed before the era of IoT studies and technologies. In the
late 1980s, researchers studied the human-to-human interface
using technology, and as a result, ubiquitous computing was
formed. Mark Weiser, the father of the idea, defined ubiquitous
computing and the smart environment as “the physical world
that is richly and invisibly interwoven with sensors, actuators,
displays, and computational elements, embedded seamlessly
in the everyday objects of our lives, and connected through a
continuous network” [4][5]. This vision supporting the inter-
connection of embedded devices and computers was a pioneer
in the development of the Internet. Moreover, the ubiquitous
computing idea provided an inspiration showing that comput-
ing is not limited only to one platform, but is embedded with
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any device, anywhere, and anytime. These are the key terms
of the IoT.

Pervasive computing is a term that is defined as “Con-
nected computers and sensors are communicating with each
other to understand the surrounding environment”. In the late
1990s, researchers proposed another term called “ambient
intelligence” that was expressed as “electronic devices support
people for everyday activities by sensing and responding to
them according to the environmental changes”. AmI most
frequently focuses on home consumer electronics and their
implementations. In the 2000s, companies began to focus on
smart home and home automation. Their applications and
products were mostly based on the communication of home
appliances, and responding to people via wired and wireless
technology. Smart home technologies generally focus on home
appliances. On the other hand, M2M technologies propose
more comprehensive solutions in such a way that the machines
can communicate with each other directly using wired or
wireless technologies. These solutions and terms form the basis
of the IoT.

In the 2000s, the researchers began to study WSN, which is
considered to be the ancestor of the IoT. In a WSN, different
types of sensors, such as temperature, pressure, sound, each
behaving as a unique node, create networks together to pass
data through the network. WSNs can consist of hundreds
or thousands of nodes. The size of a WSN depends on the
application area and purpose of the application. SSN is a
particular type of WSN that combines the semantic web and
sensor network. The data and descriptions from the sensors are
encoded, defined, and expressed comprehensively via semantic
web languages. WSN and SSN are the subset areas of IoT. In
“Related Areas” section, all related terms and studies on these
subjects will be explained in detail.

In this paper, we also cover “the extended IoT” research ar-
eas, namely Web of Things (WoT) and Semantic WoT (SWoT).
WoT extends IoT with standard Web protocols such as the
standard URL access to things, HTTP communication protocol
with things, and other standard Web protocols such as JSON
for data format. This way IoT will be more integrated with
the ubiquitous Web. In 2007, several researchers (Dominique
Guinard and Vlad Trifa are among them) proposed the WoT
and published the first manifesto of the WoT [6] [7]. SWoT on
the other hand further extends WoT by using standard Semantic
Web protocols, so that data obtained in IoT is semantically
meaningful and more interoperable within the ecosystem.
Things are encoded through semantic web languages (RDF,
OWL, etc.) to handle the interoperability problem between
ontologies and data [8] [9]. The overall goal of these efforts
is to make all IoT components more interoperable.

Some of the IoT research areas have overlaps with other
fields such as context awareness, big data analytics, machine
learning, and data mining. Context awareness is a term that is
used for representing the case where computer and embedded
devices sense and react according to the changes in their
environment. First introduced by Schilit in 1994 [10], a context
aware system acquires, understands, recognizes the context,
and takes an action according to that particular context. For
the IoT side, Perera et al. [2] completed a survey on context-

aware computing in IoT with a comparison of 50 different
projects. In the “Context Awareness” section, all related terms
and studies on this subject will be covered in detail.

Big data is another overlapping study area where the corre-
sponding methodologies for processing large data sets, which
cannot be processed through traditional data processing tech-
niques, are examined. In real life, IoT data sets can easily have
large volumes, varieties, and velocities due to the nature of
data. In addition, IoT has the following features: “intermittent
sensing, regular data collection, and sense-compute-actuate
(SCA) loops” [11]. Hence, IoT converges to Big Data to
analyze data and make inferences from collected datasets.
According to a paper published by Zaslavsky et al., it is
expected that the total amount of data on earth will reach up
to 35 zettabytes (ZB) in 2020 [11]. In “Big Data” section, all
related studies on this subject will be discussed in detail.

Besides these topics, machine learning and data mining
also have some common studies that overlap with IoT. In
1950s, Arthur Samuel defined machine learning as a “field of
study that gives computers the ability to learn without being
explicitly programmed” [12]. While analyzing the IoT data,
in order to get better results and higher overall performance,
it might be necessary to include some predictive analytics
within the system. Machine learning algorithms have been
studied extensively in the last few decades and research shows
that these algorithms provide better predictions and decisions
with more available data collected from different sources. In
addition to machine learning, data mining also supports better
predictions and decisions through using appropriate learning
algorithms. In the “Machine Learning” and “Data Mining”
sections, all related terms and studies on these subjects in
conjunction with the IoT will be explained in detail.

This survey paper focuses on the IoT related subjects: “con-
text awareness”, “inferences from context”, “context reason-
ing”, “learning algorithms” to make predictions, profiling, and
data analysis using big data. When the literature is reviewed,
IoT related survey papers can be grouped into the following
categories:
• IoT general purpose surveys and open issues [4] [13]

[14] [15] [3] [16] [17] [18]
• Survey of IoT platforms and frameworks [19] [20] [21]

[22],
• Survey of context awareness [23] [24] [25] [21] [26]

[27] [28] [29],
• Survey of machine learning on specific topics (Human

Activity Recognition, Mobile Phones Sensing, Body
Sensor Networks, Wireless Sensor Network) [24] [30]
[31],

• Survey of data mining [31] [32] [27],
• Survey of IoT related areas (Sensor Network, Social IoT,

Mobile Phone Sensing) [33] [34] [35] [36],
• Survey of big data analytics [37] [38].
This survey article covers the IoT related literature from both

historical and conceptual perspectives for context awareness,
machine learning, and big data. None of the existing survey
papers covers these closely-related fields all together from a
fully-functional framework or system of systems perspective.
However, recent advancements in sensors, IoT technologies,
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Fig. 1. Different Visions Intersection: Internet of Things, Adapted From [3]

and big data systems created the opportunities for the emer-
gence of machine and deep learning-based, real-time predic-
tive, and preventive maintenance and analytics systems. To the
best of our knowledge, no single survey paper has covered
these topics together even though they are highly related. In
addition, this survey paper consists of a comparison of IoT
platforms and frameworks. Furthermore, IoT machine learning
and big data topics are also examined and surveyed together
because IoT big data and streaming data are analyzed using
machine learning methods.We also review new and recent
advancements in IoT. Open Issues and future directions for
IoT machine learning and IoT big data are also discussed.

The rest of this paper is organized as follows: In Section II,
we introduce IoT under the following headlines: IoT paradigm
and definition, IoT potential and application domains, IoT
characteristics and features, and IoT research trends, areas,
and open issues. In Section III, related areas and history of
IoT technologies, in regard to ubiquitous computing, pervasive
computing, AmI, WSNs, WoT, and social internet of things,
are presented. In Section IV, context awareness is analyzed
in the following subsections: Context and context awareness;
Context aware features and context types; and Context life
cycle in IoT. In Section V, machine learning algorithms for IoT
are categorized as supervised, unsupervised, and reinforcement
learning. In addition to these topics, proposals and studies in
the literature are compared and analyzed. In Section VI, IoT
data processing is evaluated through the vision of big data.
In Section VII, open issues in context awareness, machine
learning and big data analytics in IoT are evaluated. We then
conclude in Section VIII.

II. INTERNET OF THINGS (IOT)

A. IoT Paradigm and Definition

The IoT is a network of internet connected physical objects
- embedded devices, vehicles, sensors, computers; and these
objects exchange data among themselves and other systems
[39]. Another definition of IoT is “The Internet of Things
allows people and things to be connected Anytime, Anyplace,
with Anything and Anyone, ideally using Any path/network
and Any service” [2]. In fact, IoT stands for “a world-wide
network of interconnected objects uniquely addressable, based
on standard communication protocols” [40]. The number of
such addressable objects is growing rapidly.

The IoT paradigm is also defined as an intersection of
three vision areas: Internet oriented vision, things oriented
vision, and semantic oriented vision [3]. Figure 1, which
is adapted from [3], shows these vision areas and their in-
tersections. Sensors, actuators, sensor networks, RFID, near
field communications (NFC), electronic product code (EPC)
technologies, wireless sensor, and actuator networks (WSAN)
are classified as part of the things oriented vision. Semantic
technologies (web, languages, execution environment, and so
on), reasoning over data, are classified as a semantic oriented
vision. Finally, Internet technologies and the WoT are located
in Internet oriented vision. There are also some technologies in
the overlapped regions of these visions. For example, semantic
sensor networks are in the intersection area of the things and
semantic oriented visions. The intersection of all three vision
areas is the IoT.
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B. IoT Potential Application Domains
The IoT has a huge market potential with an increasing

growth rate in recent years. In 2014, it was estimated that
there were 1.5 billion Internet-enabled computers and 1 billion
Internet-enabled mobile phones. By 2020, the number of
Internet connected IoT devices will be somewhere between
50 to 100 billion [2] and the total amount of data generated
by humans and devices on earth will reach 35 zettabytes (ZB)
[11] [41]. According to BBC Research, the global market for
sensors was $56.3 billion in 2010 [11], and reached $101.9
billion in 2015. It is expected that the market will reach $113.2
billion by 2016 and $190.6 billion by 2021 [42]. According to
the Gartner Research report, the number of IoT devices will
reach 25 billion in a few years [27] [43].The IoT is used in
many different application domains. An alphabetically sorted
short list follows below [44] [3] [45] [27]:

• Aerospace and aviation (manufacturing: detection of
suspected unapproved parts),

• Education (remote education, enhanced reality for learn-
ing),

• Energy (smart metering, coordination of generation and
storage),

• Entertainment and sports (gaming, sports, cinema, smart
gym),

• Environment (chemical detection, temperature, and hu-
midity monitoring),

• Finance and banking (POS terminals, remotely located
ATMs, on-line desktop, and mobile device banking),

• Food and farming (controlling and monitoring facilities,
monitoring of produce, livestock, defect management,
protecting chemical and environmental conditions, au-
tomation of ordering service, automation of delivery
process and accounting),

• Government (real-time environmental monitoring, re-
mote service delivery, asset tracking, smart cities, city
and building management and security),

• Healthcare (remote treatment and surgery, remote diag-
nostics and examinations, remote patient monitoring and
tracking, medical asset tracking),

• Home automation (smart appliances, home security, and
monitoring),

• Information and communication technologies (security
and monitoring, remote management, device tracking,
and automation),

• Logistics (mobile ticketing),
• Manufacturing and heavy industry (process monitoring

and management, equipment monitoring, shipping track-
ing, remote servicing, monitoring employees, suppliers,
inventory management),

• Pharmaceutical industry (drugs tracking, pharmaceutical
products, security and safety),

• Public safety and military (surveillance network, remote
asset control and tracking, disaster management),

• Retail and hospitality (anti-theft and fraud, facilities
monitoring and management),

• Transportation (smart roads, rails, runways, assisted
driving, traffic signals, augmented maps, intelligent
transportation systems),

• Vehicles (smart bus, planes, boats, trains, automobiles),
• Water (system pressure, reservoir levels, water quality).

C. IoT Characteristics and Features
The IoT has different characteristics when compared to

sensor networks. According to [21], there are seven main
characteristics: architecture, complex system, everything as a
service, intelligence, size considerations, space considerations,
and time considerations.

Although there are different architectures for the IoT, two
main architectures are more relevant: event-based and time-
based. Event-based architectures are triggered with events
(e.g., motion detection, window open). On the other hand,
time-based architectures produce data continuously (e.g., hu-
midity and pressure sensors) [55].

In the IoT world, there are billions of devices. Some of them
have high-level architectures with large memory capacities,
high CPU speed, and high reasoning capabilities (e.g., mobile
phones). Meanwhile, some of them, on the contrary, have low-
level architectures, limited memory, and computing capabilities
(e.g., temperature sensors). The interconnections between these
devices make the IoT a very complex system, in general.

Cloud computing is expected to play an important role in
the IoT ecosystem. With cloud computing, IoT storage and
computing capacities can be increased in a scalable manner.
Moreover, sensors can be used everywhere and processing
sensor data can be accomplished through cloud computing
services. Everything as a service, proposed by [56] is a cloud
computing term that all services (Main services: infrastructure
as service, software as service, platform as service. Others:
desktop-as-service, storage-as-service, database-as-service) are
collected in one hand. These services fulfill the needs of the
IoT, including infrastructure, sensing-as-service [11] and more.

In the IoT infrastructure, data knowledge extraction can
be implemented by collecting, modeling, and reasoning over
the massive amounts of data collected from devices. This is
simply described as the intelligence of IoT. Context awareness
is further added to the picture with the fusion of sensor data,
modeling, and reasoning about context. It is predicted that
the number of Internet connected IoT devices will be 50
to 100 billion by 2020 [2]. The interaction of billions of
interconnected devices will therefore cause problems leading to
size considerations for IoT environments and big data problems
that can be solved with cloud computing, as mentioned above.

Another important characteristic of IoT is space consid-
eration, including time and location. While extracting and
evaluating context awareness information from sensor data, the
location, time, and duration of data become important factors
for IoT processing. The number of IoT devices is increasing
rapidly in time, and tracking these devices will be more and
more difficult [2].

According to [14], there are also system-level features
that IoT should support. Heterogeneity of devices, scalability,
data exchange through wireless technologies, energy saving,
tracking capabilities, self-organization capabilities, security
and privacy-preserving, semantic interoperability, and data
management are some of the noteworthy features.
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TABLE I. IOT RESEARCH AREAS, BRIEF INFORMATION AND RECOMMENDATION

IoT Research Areas Brief Information - Recommendation

Addressing and Naming Devices
Reaching specific devices efficiently in IoT world is an issue to be solved [3] [16]. Social IoT Networks are
proposed [46]

Big Data
Big Data storage, streaming, processing and analytics are the subtopics of this issue. Related research topics are
data mining, knowledge discovery, data quality and uncertainty, transaction handling, semantic event processing
and semantic enrichment [32].

Context Aware Computing Context aware computing is about sensing the environment and context, and adapting the behaviour accordingly in IoT systems [21].
Data Management Management of large, distributed, and heteregenous IoT data is challenging task [16] [22].

Device Management
Remotely configuring, monitoring, updating and controlling IoT devices are the subtopics of this issue.
New frameworks and solutions are developed.

Energy Management
Energy usage and battery lifetimes are the main problem of the resource constrained IoT devices.
There are research studies on the development of enery optimized solutions [14] [36] [22].

Hardware Development
Development of IoT devices, sensors, RFID tags is an important research area that researchers and engineers study.
There are new researches and studies on IoT devices and scenarios such as smart home, health care, biomedical sensing,
environmental monitoring, tranportation [47] [48] [49] [50] [51] [52].

Information Centric Network (ICN)
ICN is a new approach for Internet architecture. It uses content for addressing data instead of using Ip address.
There are new researches and studies on ICN-IoT application and scenarios [53] [54].

Interoperability and Heterogeneity
Many different kinds of IoT devices are produced and developed in recent years. Communication of these devices cause
interoperability problems. Semantic solutions are trying to resolve this issue [14] [36].

M2M Communication
Routing, end to end reliability, development of new network protocols are the research areas in the communication
of the IoT devices [16].

Machine Learning and Artificial Intelligence Machine Learning is required to design self organized, managed, adapted, processed IoT devices [16] [36] [22] [26].
Resource Management In IoT world, there is limited access to resources. Resource management is needed to design and develop efficient IoT systems.

Security and Privacy
Security and privacy are central and important topics in IoT systems. Secure authorization and authentication, security of IoT data,
secure access are the sub research areas of these issues [16] [14] [3].

Service Management
IoT devices are distributed and located everywhere. Service Oriented Architecture (SOA) is required to manage and
discover devices.

Standardization Activities New IoT standarts and protocols are still emerging and continue to be developed [14] [3] [22] [26].

System and Network Architecture
Researchers are trying to develop scalable, efficient, robust, cost-efficient IoT system and network
architectures [16] [14].

D. IoT Standards

There are many IoT related standardization activities in
literature. A number of standards organizations such as
IEEE, International Organization for Standardization, In-
ternational Telecommunication Union, International Electro-
technical Commission, European Committee for Electro-
technical Standardization, China Electronics Standardization
Institute, and American National Standards Institute are work-
ing on the IoT standardization activities [13]. For example,
IEEE lists a long list of their IoT related standards in their web
site1. Standardization activities in this area can be classified
as RF layer, lower layer, communication layer, data protocols
layer, semantic and higher layer standardization activities. IoT
technologies mostly use these standards.

RF layer and near field communication interface and proto-
col (NFCIP) are standardized (ISO 18092, 21481, 22536 and
23917; ECMA 340, 352, 356 and 365; ETSI TS 102 190)
by various authorities, such as the International Organization
for Standardization (ISO), European Computer Manufacturers
Association (ECMA), Global System for Mobile Communica-
tions Association (GMSA), and European Telecommunications
Standards Institute (ETSI) [14].

Lower layer (PHY, MAC) is standardized by IEEE (IEEE
802.16 Wireless Broadband Standards, IEEE 1547 Standard

1http://standards.ieee.org/innovate/iot/stds.html

for Interconnecting Distributed Resources with Electric Power
Systems, IEEE 1609 IEEE Wireless Access in Vehicular Envi-
ronments (WAVE), IPv6 over low-power WPAN (6LoW-PAN);
the routing over low-power and lossy networks (ROLL), Eth-
ernet) by The Institute of Electrical and Electronics Engineers
Standards Association (IEEE-SA) and Internet Engineering
Task Force (IETF) [14].

Communication layer is also standardized by IEEE (IEEE
802.15 Wireless Personal Area Network, IEEE 802.15.1
WPAN / Bluetooth, IEEE 802.15.4 Low-rate wireless personal
area networks, IEEE 802.15.6 Wireless Body Area Network).
Zigbee (standardized with IEEE 802.15, IEEE 802.15.4).
Other IoT related standards and technologies are listed as
follows: Zwave (Standard: Z-Wave Alliance ZAD12837 / ITU-
T G.9959), Insteon, NFC, Narrow-Band IoT (NB-IoT), LTE-
Machine Type Communication (LTE-MTC).

Data Protocol layer is also standardized by a number of
organizations. Data protocol standards related to IoT technolo-
gies can be listed as follows: Message Queuing Telemetry
Transport (MQTT)2, MQTT For Sensor Networks (MQTT-
SSN), Constrained Application Protocol (CoAP)3, The Sim-
ple Text Oriented Messaging Protocol (STOMP)4, Exten-

2http://mqtt.org/
3https://datatracker.ietf.org/doc/rfc7252/
4https://stomp.github.io/implementations.html
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sible Messaging and Presence Protocol (XMPP)5, XMPP-
IoT, Advanced Message Queuing Protocol (AMQP)6, Data-
Distribution Service for Real-Time Systems (DDS), Java Mes-
sage Service (JMS), Lightweight local automation protocol
(LLAP), Lightweight M2M (LWM2M), Simple Sensor Inter-
face (SSI), Representational State Transfer (REST), Simple
Object Access Protocol (SOAP), Websocket.

IoT related technologies also use semantic standards such as
IOTDB7, SensorML, Semantic Sensor Net Ontology, RESTful
API Modeling Language(RAML)8, Media Types for Sensor
Markup Language(SENML), Lemonbeat smart Device Lan-
guage (LsDL).

Higher level IoT layer is standardized by ETSI, Object
Management Group (OMG), AllSeen Alliance, World Wide
Web Consortium (W3C), Semantic Sensor Network Incubator
Group, OneM2M Partners, Industrial Internet Consortium,
Open Interconnect Consortium - Open Connectivity Foun-
dation. OneM2M9 is a high level standardization activity
on IoT devices, working on an interoperability framework
towards a common M2M or IoT Service Layer for all types
of devices and framework. OneM2M organization consists of
eight leading standards bodies from different countries and
over 200 members. AllSeen Alliance is developing an open
source software framework, called AllJoyn10, that provides IoT
device communication and management functions. In addition
to these, there are also high level frameworks and solutions
such as IoTivity, IEEE P2413, Thread, IPSO Application
Framework, OMA LightweightM2M v1.0, and Weave.

E. IoT Research Trends and Areas

IoT is in the intersection of many different visions and
disciplines. Thus, it contains several subtopics and research
areas. Many articles in the literature classify and study these
research areas and trends in many different subtopics. We list
the major IoT related research areas in Table I with a brief
explanation and relevant references.

According to [3], research topics and open issues can
be classified into standardization activities, addressing and
networking issues, and security and privacy. In the litera-
ture, many different standards are mentioned, such as the
Internet Engineering Task Force (IETF), European Telecom-
munications Standards Institute (ETSI) standards, and others.
However, there is no single integrated framework to combine
all different standards. Therefore, there are several devices
working with different standards and frameworks within their
domain, and this leads to interoperability problems between
heterogeneous systems. This problem could be solved with a
joint and unified set of standards and frameworks.

According to [15], research areas for IoT are categorized
as massive scaling, architecture and dependencies, creating

5https://xmpp.org/
6http://www.amqp.org/
7https://iotdb.org/
8http://raml.org/
9http://www.onem2m.org/
10https://allseenalliance.org/framework

knowledge and big data, robustness, openness, security, pri-
vacy, and humans in the loop. The number of internet con-
nected devices is increasing rapidly, hence current existing
solutions, protocols, and research, in terms of meeting expec-
tations and requirements need to be re-evaluated continuously.
Massive scaling, architecture, and dependencies focus on these
problems. With ever increasing devices, collected data also in-
crease and create big data that is not immediately semantically
meaningful. Meanwhile, it is expected that knowledge can be
extracted from this massive data. These problems can be solved
with data mining and machine learning algorithms in scalable
architectures. Another research area is openness. Traditionally,
all devices and vehicles, which have sensor-based systems,
have closed loop systems, and that is no longer convenient
for many real-world IoT scenarios. These systems should be
open for interoperability to solve the security problems as well.

Authors of [13] collected research trends under these sub-
headings: Integrating IoT solutions to social networking, de-
veloping green technologies, developing context aware IoT
middleware solutions, using artificial intelligence techniques
to create intelligent things, combining cloud computing and
IoT. Different research areas and paradigms emerged over the
years. One of them was integrating social networking with IoT
solutions. Atzori et al. [46] proposed the SIoT paradigm that
connects IoT devices with each other using social networks.
Other paradigm is the WoT [57] [58] [8] that connects devices
by using existing and well-known web standards. SIoT and
WoT will be discussed in detail in Section III. Another issue
is the reduction of power consumption for IoT devices and
sensors. Energy efficient techniques should be developed to
save energy [59]. Billions of IoT sensors and devices connect
to the Internet and other systems and require semantically
meaningful and context awareness capabilities. Most IoT mid-
dleware solutions do not have context aware capability [13].
The European Union hopes that context aware solutions will
be proposed in the time frame of 2015-2020 [60]. Some of the
context aware studies in IoT are summarized in [27]. Another
research area is the addition of artificial intelligence to IoT
devices and systems. Bringing artificial intelligence to the IoT
was proposed by Arsnio et al [61]. Futuristic ideas for IoT are
also emerging and defined as self-configurable, self-optimized,
self-protected, and self-healed IoT devices and systems [62]
[63]. Combining cloud computing and the IoT accelerate IoT
computing capabilities. Sensing as a cloud service structure is
an example solution of combining cloud computing and the
IoT [4][64].

As previously mentioned, there are many research areas and
open issues, however, we focus on context awareness, draw-
ing inferences from context, context reasoning, and learning
algorithms to make predictions and profiling, and also data
analysis using big data. The main research areas, studies, and
issues will be reviewed in Section IV for context awareness,
Section VI for big data, and Section V for machine learning.
Open issues and possible future directions for research are
discussed in Section VII.
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TABLE II. IOT PLATFORMS (DEVICE M: DEVICE MANAGEMENT, DATA M: DATA MANAGEMENT, RT ANALYTICS: REAL TIME ANALYTICS, BD
ANALYTICS: BIG DATA ANALYTICS, LT: LEARNING TOOL)

Platforms Web Sites Device M. Data M. RT Analytics BD Analytics LT
AllJoyn https://allseenalliance.org/framework D D
AirVantage https://airvantage.net/ D D D
Arkessa http://www.arkessa.com/ D D D
ARMmbed https://www.mbed.com/ D
Brillo https://developers.google.com/brillo/ D D
Carriots https://www.carriots.com/ D D D
Devicehub.net https://www.devicehub.net/ D D
Everyware Device Cloud http://www.eurotech.com/ D D D
EvryThng https://evrythng.com/ D D D
Exosite https://exosite.com/ D D D
GroveStreams https://grovestreams.com/ D D D
Ericsson IoT-Framework https://github.com/EricssonResearch/iot-framework-engine D D
IFTTT https://ifttt.com/ D
IoTivity https://www.iotivity.org/ D D
Intel IoT Platforms https://software.intel.com/ D D D
LinkSmart https://linksmart.eu/redmine D
NinjaBlock https://ninjablocks.com/ D
OpenIoT http://www.openiot.eu/ D
OpenMTC http://www.open-mtc.org/ D D D
Open.Sen.se http://open.sen.se/ D D
Pentaho http://www.pentaho.com/internet-of-things-analytics D D D
realTime.io https://www.realtime.io/ D D D
SensorCloud http://www.sensorcloud.com/ D D
SkySpark http://skyfoundry.com/skyspark/ D D
Statistica http://software.dell.com/products/statistica/ D D D
Tellient http://tellient.com/index.html D D
TempoIQ https://www.tempoiq.com/ D D
The thing system http://thethingsystem.com/ D
ThingSpeak https://thingspeak.com/ D D D
ThingSquare http://www.thingsquare.com/ D D D
ThingWorx https://www.thingworx.com/ D D D
Sense Tecnic WoTkit http://sensetecnic.com/ D D
Watson IoT Platform http://www.ibm.com/internet-of-things/iot-solutions/watson-iot-platform/ D D D D D
Xively https://xively.com/ D D
Vitria http://www.vitria.com/iot-analytics D D
Weave https://developers.google.com/weave/ D

F. IoT Platforms, Frameworks, Services and Middleware
There are many IoT platforms, frameworks, services, and

middleware that can collect, process, and analyze sensor data.
Our aim is not to review and survey existing platforms and
frameworks. Articles [65] [20] [19] surveyed existing IoT
platforms, frameworks, systems, prototypes, middleware, and
different approaches. Some of the important IoT platforms
are listed in Table II. They are listed with their device
management, data management, real-time analytics, big data
analytics, and learning capabilities. It is clear that many exist-
ing platforms have limited analytics and learning capabilities.

G. IoT Security and Privacy
IoT networks all over the world consist of billions of

devices. Security and privacy issues are raised due to the
large number of devices and lack of unified standardization
studies on IoT security. Every internet connected device can
easily cause security problems. Hence, these studies should not
be ignored. In recent years, Denial-of-service (DoS) attacks
have shown that research and implementation of IoT security

solutions are very important. In this paper, we do not aim to
review and survey all IoT security issues and research areas.

In literature, there are many papers covering IoT security
issues [66][67][68][69]. Abomhara et al. [66] surveyed differ-
ent types of threats related to IoT in terms of intruder model,
denial-of-service attacks, physical attacks, eavesdropping and
passive monitoring, traffic analysis, and data mining. They
also examined the security and privacy challenges in IoT with
the following subheadings: user privacy and data protection,
authentication and identity management, trust management and
policy integration, authorization and access control, end to
end security, attack resistant security solutions. In addition,
Mahmoud et al. [67] defined security principles that should be
enforced to achieve security between IoT devices and people in
regards to confidentiality, integrity, availability, authentication,
lightweight solutions, heterogeneity, policies, and key man-
agement systems. They also defined the security challenges in
each layer of IoT devices and IoT security countermeasures
in their survey paper. Zhang et al. [68] summarize ongo-
ing research studies in IoT security with the following top-
ics: object identification, authentication, authorization, privacy,
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lightweight cryptosystems and security protocols, software
vulnerability, backdoor analysis, malware in IoT. Zhao et al.
[69] surveyed security problems in the IoT in terms of node
capture, fake node and malicious data, DoS attack, timing
attack, routing threats, replay attack, side channel attack,
mass node authentication problem, data access permissions,
identity authentication, data protection and recovery, software
vulnerabilities.

H. The Distribution of Publications in IoT

There are many studies and publications that can be catego-
rized under the IoT subject. Table III summarizes the number
of journal articles related to the IoT by year and subject. The
number of journal articles in the table are collected by subject
related search queries on Thomson Reuters Web of Science11.
We further searched “learning” related journals on the same
site with more specific search queries, such as popular learning
techniques, related to the IoT, and these are listed in Table IV.
Both tables show that the number of journal articles has been
increasing in recent years in this area. It is also clear that the
number of journal articles related to machine learning, deep
learning, neural networks with IoT topics are also increasing
recently.

III. RELATED AREAS

The IoT is the end result of many developments in the past
two decades. Here, we review related areas from a historical
perspective. These include, but are not limited to, ubiquitous
computing, pervasive computing, AmI, WSNs, WoT, SIoT, and
Information Centric Networking. Figure 2 shows these areas
and their development in time.

A. Ubiquitous Computing (UbiComp)

Ubiquitous computing is about computing anywhere, on any
device, and in any format. UbiComp covers a wide range
of study areas, including artificial intelligence, context aware
computing, distributed computing, human-computer interac-
tion, mobile computing, and sensor networks. Mark Weiser,
who coined the phrase UbiComp, proposed to classify ubiqui-
tous systems as “tabs” (wearable centimeter sized devices, such
as smartphones), “pads” (hand-held decimeter-sized devices,
such as laptops), and “boards” (meter sized interactive display
devices, such as surface computers) [70][71]. However, this
proposal does not include micro-size computing platforms.
Therefore, it can be expanded to new forms: “dust” (minia-
turized devices without display, e.g., micro electro-mechanical
systems (MEMS)), “skin” (e.g., organic computer devices),
and “clay”(ensembles of MEMS) [72].UbiComp is a transfor-
mation of real world objects to the virtual world nodes/objects.
For instance, a smart meeting room that senses the existence of
people in the room, records their actions and voices, obtains the
writing from the whiteboard, and fuses the data of all sensors
to extract meaningful knowledge [73].

11https://webofknowledge.com/

B. Pervasive Computing

The terms ubiquitous computing and pervasive computing
are used interchangeably. However, they are conceptually
different. UbiComp uses the advantages of mobile computing
and pervasive computing. Mobile computing is expanding as
technology improves and the number of computing devices
increases. This enables mobile computing anywhere and any-
time. However, it does not necessarily change or adapt the
computing models based on context. On the contrary, pervasive
computing treats context as a first-class citizen and adapts com-
puting models based on context. Pervasive computing offers
computing services that are invisible to the user. The objective
of ubiquitous computing is to provide a pervasive computing
environment when users change locations and context [74]
[75].

Pervasive computing acquires context knowledge from the
environment and provides dynamic, proactive, and context
aware services to the user. Smart devices also provide location
data, and therefore, context data. Not every smart device is
suitable for applications requiring mobility due to the shape,
weight, and battery power constraints. Smart devices can be
adapted to the pervasive environment using the internet, web,
and semantic web architectures [75].

C. Ambient Intelligence (AmI)

Ambient intelligence (AmI) is a concept in which the digital
environment (sensor and device network) senses, computes
interactions, and assists people in their daily lives. Ubiquitous
and pervasive computing, sensors, networks, human-computer
interfaces, and artificial intelligence are related to AmI; how-
ever, none of them individually cover AmI. AmI has invisible,
intelligent, and flexible services that aim to benefit users
and meet their expectations [76]. The European Commissions
Information Society Technologies Advisory Group (ISTAG)
supports the development of AmI with funding in the FP6
program [77][78]. ISTAG defines the components in AmI,
including sensors, embedded devices, smart materials, MEMS,
communication between devices, and adaptive software sys-
tems [79].

Smart homes, offices, buildings, and cities are among some
of the examples that utilize AmI technologies. Embedded
devices, sensors, actuators, and computers can communicate
with each other using the network (sensor network, internet,
web, etc.). Moreover, there are smart city IoT implementations
used for daily life activities. SmartSantander12 is an example of
smart city IoT implementation. Authors of [80] also proposed
smart city IoT implementation in their studies. Ambient as-
sisted living (AAL) is another sample application area for AmI
systems. AAL systems support elderly people in their daily
lives and activities. Services and products (health, security,
safety, mobility, social contact, etc.) that increase the quality
of life consist of the primary applications of AAL [81]. There
are also implementations of IoT platforms for AAL. Authors
of [82] proposed a cloud-based IoT platform for AAL.

12http://smartsantander.eu/
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TABLE III. NUMBER OF JOURNAL ARTICLES BY YEAR RELATED IOT AND SUBJECTS IN IOT

Subjects / Years 2002 2004 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 Total
”Internet of Things” 1 2 2 2 2 11 28 68 96 220 361 631 945 2369
”Artificial Intelligence” and “Internet of Things” - - - - - - - - 1 1 1 5 7 15
”Architectures” and “Internet of Things” - - - - - 3 7 21 32 49 88 134 170 504
”Big Data” and “Internet of Things” - - - - - - - - 2 4 17 50 87 160
”Computation” and “Internet of Things” - - - - - - - 2 12 17 36 80 62 209
”Context Awareness” and “Internet of Things” - - - - - - - - 4 14 25 31 19 93
”Machine Learning” and “Internet of Things” - - - - - - - - - - 1 6 14 21
”Security” and “Internet of Things” - - - - 1 4 7 13 16 41 69 121 165 436
”Semantic” and “Internet of Things” - - - - - - 1 3 7 13 29 21 32 106

TABLE IV. NUMBER OF JOURNAL ARTICLES BY YEAR RELATED LEARNING SUBJECTS IN IOT

Subjects / Years 2011 2012 2013 2014 2015 2016 Total
”Artificial Intelligence” and “Internet of Things” - 1 1 1 5 7 15
”Bayesian Network” and “Internet of Things” - 1 1 2 - - 4
”Context Awareness” and “Internet of Things” - 4 14 25 31 19 93
”Deep Learning” and “Internet of Things” - - - - 1 7 8
”Expert System” and “Internet of Things” - 1 1 - 1 3
”Fuzzy Logic” and “Internet of Things” - - 1 - 10 1 12
”Machine Learning” and “Internet of Things” - - - 1 6 14 21
”Neural Network” and “Internet of Things” 1 2 2 2 4 10 21
”Support Vector Machine” and “Internet of Things” - - 1 2 1 - 4
”Decision Tree” and “Internet of Things” - - - - - 2 2

Fig. 2. IoT-related areas and their development in time.

D. Wireless Sensor Networks (WSN)

Low-power, low-cost, multifunctional sensor nodes can be
combined and communicate with each other using wireless
protocols. This is known as WSN. This network can be
composed of hundreds or thousands of autonomous sensor
nodes. Sensing, data processing, and communicating with each
other are the tasks of these sensors in the network. Low-cost,
energy-efficient, wireless, multi-hop, distributed sensing, and
distributed computing are the characteristics and requirements
of the WSN [83]. It is widely used in health, military, surveil-
lance, computing, intelligence, control, reconnaissance, com-
munications, and targeting systems. Wireless sensor standards
are developed according to their power consumptions. IEEE
802.15.4, IEEE 802.15.3, ZigBee, WirelessHART, IETF, and
6LoWPAN are some of the standards [34] [84].

To overcome the complexity of network and data in WSN,
semantic approaches were taken. Hence, semantic sensor net-
works were born.

1) Semantic Sensor Networks (SSN): Managing networks
and data operations such as searching and querying are difficult
tasks in sensor networks with complex structures and hetero-
geneity. Semantics help in declarative description of sensors,
nodes, domains, and networks. SSNs provide these capabilities
(managing, searching, and querying) with semantic definitions
and reasoning over them. OWL (W3C Web Ontology Lan-
guage) and RDF (Resource Description Framework) semantic
languages are used in the definition of the SSN. Classifying
the sensors with respect to their functionalities, output, and
measurement, as well as inferring domain knowledge and
classifying data according to spatially, temporally, accurately,
producing events according to conditions, are potential capa-
bilities of the SSN [85].

The W3C Semantic Sensor Network Incubator group (SSN-
XG) developed SSN ontology that can describe sensors, re-
lationships between sensors, stimulus, observations, accuracy,
and the capabilities of sensors. SSN ontology can be seen in
different perspectives: sensor, observation, system, feature, and
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property. Sensor perspective focuses on “what senses, how
it senses, and what is sensed”. An observation perspective
interests observation data. A system perspective focuses on
“systems of sensors and deployments”. A feature and property
perspective is interested in “what senses a particular property
or what observations have been made about a property” [86].

2) Semantic Sensor Web (SSW): When sensors are con-
nected to the internet and web, they become part of what
is called a semantic sensor web (SSW). Sensors in a SSW
can then discover new sensors, and share semantic sensor
data (time stamp and spatial coordinates) with each other.
The Open Geospatial Consortium (OGC) and semantic web
activity of the W3C enhance the SSN and standardize the SSW.
The sensor web is a specialized area that has a web-centric
information infrastructure (collecting, modeling, reasoning,
storing). The SSW uses ontologies, rules, semantic languages
OWL and RDF for interoperability, reasoning, and analysis of
sensor data from different devices and platforms [8] [87].

E. Web of Things (WoT)

The WoT is a specialized area of the IoT that uses standard
web technologies in all areas. Web technologies include repre-
sentational state transfer (REST), hyper-text transfer protocol
(HTTP), transmission control protocol (TCP), user datagram
protocol (UDP), Internet protocol (IP), JavaScript object nota-
tion (JSON), JavaScript object notation for linked data (JSON-
LD), microdata, and Web sockets for intercommunication, data
processing, and visualization [7]. Sensors and devices in WoT
can be connected to the web directly and their data can be
processed in the cloud. Therefore, it is larger than SSW.

F. Semantic Web of Things (SWoT)

The SWoT is an intersection area that combines semantic
technologies and IoT. It is an evolution of WoT. With se-
mantic technologies, WoT sensors and devices can be defined
semantically with semantic languages, such as OWL and RDF,
that support reasoning, storing (triple store), querying (with
SPARQL RDF Query Language), searching, and monitoring
[9].

G. Social Internet of Things (SIoT)

The SIoT is a term coined to signify that sensors and
devices are connected with each other and with humans via
specialized social networks [36]. Holmquist et al. [88] initially
proposed the idea. In their proposal, smart devices used WSN
as a social network. With the development of the IoT, devices
can use internet instead of WSN. Atzori et al. [46] proposed
the SIoT for the interacting network of sensors and devices
as human social networks. With the SIoT, devices can be
discoverable and reachable. There are different SIoT platforms
and implementations. The SWoT, Evrythng, Paraimpu, Xively,
and Toyota Friend Network (automobile WoT social network)
are some of them [35].

H. Information Centric Networking

Information Centric Networking (ICN) is a type of Internet
architecture that differs from the IP address-centric model. It
can be considered as an Internet structure to be implemented in
the future, for which the development is underway. In the ICN
approach, data is independent of server location, distribution
channel, and application. Content is reachable with unique
ICN names. ICN architecture has the following features: “In-
network caching, content-based naming and security, name-
based content discovery and delivery, and a connectionless
receiver-driven communication model” [53]. There are dif-
ferent ICN approaches, namely data-oriented, content-centric,
publish-subscribe network architecture, and network of infor-
mation. These design models are compared in [89].

In addition, ICN can be used in the IoT world by consid-
ering IoT data as content. Without using the IP request-reply
mechanism, IoT sensor data can be reachable with addressable
content by using ICN, which is helpful for mapping the digital
world to the physical world [53]. Moreover, using ICN is
beneficial in fulfilling the general requirements of the IoT.
Energy efficiency, heterogeneity, mobility, quality of service,
scalability, and security IoT requirements are handled with
ICN features. These are known as anycasting, content-based
security, connection-less mode, data, in-network caching, and
multicasting. Amadeo et al. [53] discussed and summarized
these in their paper.

I. Software Defined Networking

Software Defined Networking (SDN) and Network Virtual-
ization (NV) are two technologies that can assist in the solution
of the fundamental IoT problems such as scalability, inter-
operability of heteregeneous devices, discoverability, security,
management and application specific requirements. With the
usage of SDN and NV, IoT networks can be more dynamic,
elastic and scalable [90]. In literature, there are different papers
that mentioned IoT-SDN-NV relations. Bizanis et al. [91]
surveyed SDN and NV solutions for the IoT devices. They
mentioned SDN and virtualization solutions for mobile and
cellular networks, wireless sensor networks and IoT architec-
tures. SDN based, Virtualization based IoT architectures and
SDN based important frameworks such as UBiFlow, SDIoT,
MINA are mentioned in this survey paper. There are also novel
studies and researches about SDN-IoT architectures. Qin et al.
[92] implemented the extended MINA-SDN prototype for IoT
scenarios such as integration of the electric vehicles, electric
charging sites, smart grid infrastructures. Bedhief et al. [93]
proposed a SDN-Docker based IoT architecture that consists
of Dockers implemented IoT devices.

IV. CONTEXT-AWARENESS

This section discusses the definition of context awareness,
features, and levels of context awareness, context awareness
design principles, context life cycle (context acquisition, mod-
eling, reasoning, and distribution) and context aware solutions
and technology.
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A. What are Context and Context Awareness?
Various definitions of context exist. The word context is

defined as “ambience, attitude, circumstance, dependence,
environment, location, occasion, perspective, phase, place,
position, posture, situation, status, standing, surroundings and
terms” in dictionaries (Thesaurus13). In literature, Abowd et
al. [94] [95], Sanchez et al. [96] defined context as: “any
information that can be used to characterise the situation of an
entity. An entity is a person, place, or object that is considered
relevant to the interaction between a user and an application,
including the user and applications themselves [94].” Abowd
et al. [95] also identified the minimum requirements - five
W’s (what, who, where, why and when) in order to be
able to analyze and understand context. In addition to these
definitions, Sanchez et al. explained the difference between
raw data (unprocessed, directly from sources) and context
information (processed, generated from raw data).

B. Context Aware Features and Context Types
Perera et al. [21] defined the features of context awareness

related with IoT, according to Abowd et al.[94], Schilit et
al.[10], Pascoe [97]. Presentation, execution, and tagging (an-
notation) were the features of context aware systems. Within
that concept, a context aware system decided what information
and which service should be presented to the user. When
the user went for shopping, the system perceived that user
during the shopping process and the shopping list was updated
according to the smart fridge decision. This feature was called
presentation. In an IoT system, devices should execute auto-
matically. When the user has a health problem, such as a heart
attack, the context aware system has to consider the possible
problems with the corresponding wearable IoT devices, and if
necessary, call the nearest hospital for emergency, sending the
user’s location to the smart car for fast transportation. With this
feature, the devices in the system should execute automatically
and synchronously. Tagging (annotation) is another feature of
a context aware system. Single sensor data might not be neces-
sary for interpretation and analysis. As a result, the sensor data
produced by multiple sensors can be used for interpretation
and analysis. Multiple sensor data fusion is an important step
for capturing meaningful information. Tagging, also known
as context annotation, provides particular information about
which data is associated with which sensor and what value is
stored for that sensor. Sensor location and data collection time
are among the other issues that should be tagged for context
awareness.

C. Context Life Cycle in IoT
The context life cycle expresses how sensor data is collected,

modeled, and processed, and how knowledge is extracted from
the collected data. As a result, it is beneficial to develop
frameworks, structures, and solutions for the IoT. Perara et al.
[21] mentioned that there were different context life cycles.
Common characteristics of these life cycles are categorized

13http://www.thesaurus.com/

into four main parts: context acquisition, context modeling,
context reasoning, and context distribution [21] [26]. In the
context acquisition phase, the data is acquired from various
physical and virtual sensors. In the context modeling part, the
data is required to be modeled according to the meaningful
data. In the context reasoning phase, raw data is required to
be processed first, and then, the knowledge is extracted. For
the last category, context distribution, the obtained knowledge
is distributed via servers, query languages, and frameworks.
Figure 3 illustrates Context life cycle in IoT.

1) Context Acquisition: Context acquisition is evaluated
based on five factors: the acquisition process, frequency, re-
sponsibility, sensor types, and source. These five factors are
explained in [21].

2) Context Modelling: Context modeling is defined as the
context representation that provides assistance in the under-
standing of properties, relationship, and details of context. It
varies depending on the domain and features of the context.
Context modeling varies depending on the requirements that
are defined as distributed composition, efficient context pro-
visioning, dependencies and relationships, heterogeneity and
mobility, imperfection, incompleteness and ambiguity, level of
formality, partial validation, reasoning, richness and quality of
information, timeliness, and usability of modeling formalisms
[98] [23]. The most popular classification of context modeling
is defined as key-value, markup scheme, graphical, object
oriented, logic based, ontology based, spatial, uncertainty,
and hybrid context modeling [98],[21],[99] [23] [26]. There
are also different approaches for context modeling, such as
multidisciplinary, domain focused, user-centric, and chemistry
inspired [26].
• Key-Value Modeling: In this model, values are stored

as key-value pairs that provide simplicity, flexibility
and user-friendliness. However, this particular modeling
method is not convenient for complex and hierarchical
structures and relationships. It is hard to retrieve in-
formation and there is no standard tool for processing.
Meanwhile, it is suitable for temporal storage, applica-
tion preferences, and configuration.

• Markup Scheme Modeling: In this model, tagging is
used to store data. XML is probably the most frequently
used markup language for markup scheme modeling that
provides temporarily data storage. However, it does not
support reasoning, and retrieval of information is diffi-
cult. Composite capabilities/preference profiles (CC/PP)
14 is another commonly used markup scheme model.

• Graphical Modeling: In this modeling technique, the
context is modeled with relationships. Unified model-
ing language (UML)15 and and object role modeling
(ORM)16 represent some of the examples of this mod-
eling technique. Relational SQL, NoSql databases, and
XML can be used for graphical modeling. This modeling
is better than key-value and markup scheme modeling
in terms of modeling context.

14https://www.w3.org/TR/2007/WD-CCPP-struct-vocab2-20070430/
15uml.org
16ormfoundation.org
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Fig. 3. Context Life Cycle in IoT

• Object Oriented Modeling: In object oriented modeling,
classes and relationships are used for modeling context
and data. Object oriented, high level languages are suit-
able for this modeling. However, validation is difficult
due to specifications and standardizations. In addition, in
this modeling, reasoning is not convenient for inference.

• Logic-Based Modeling: In this model, context is rep-
resented with rules, logical expressions, and variables.
Logical reasoning can be applied with an implemen-
tation of logic-based modeling. Additionally, high-level
context can be extracted with low-level context, which
can be provided via existing processing tools. However,
validation and standardization are difficult to implement
in this model.

• Ontology Based Modeling: In ontology based modeling,
context is modeled with ontology, and represented with
semantic ontology languages, such as OWL, RDF, and
RDF Schema (RDFS). These languages are used in
semantic technologies (semantic web, databases, Sparql,
etc.) With ontology based modeling, both reasoning and
knowledge extraction can be implemented. In addition,
rich context expressions and strong validation can be

provided. However, information retrieval may be com-
plicated due to the complex representation of ontology
languages. In Section VI, ontology definition, ontology
languages, and review of the papers related to semantic
technologies will be covered.

• Spatial Modeling: In this model, physical space, location
of sensors, and real world entities are modeled and ex-
pressed as context information. Geometric (latitude, lon-
gitude, elevation, etc.) and symbolic (room number, ID
of access point, etc.) coordinates are used by positioning
systems for spatial modeling. Spatial context modeling is
achieved with tiers of spatial ontologies: tier0 (ontology
of the physical reality), tier1 (observations of reality),
tier2 (observations are defined by uniform properties),
tier3 (social reality and relations of all objects) and tier4
(rules are modeled) [100].

• Uncertainty Modeling: The physical world contains
uncertainties and ambiguities. Meanwhile, real world
modeling also causes imperfection and ambiguity issues.
Therefore, in order to solve that particular problem,
quality of context is proposed by researchers. Quality
of context can be measured in terms of attributes, such
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as accuracy, coverage, confidence, frequency, freshness,
repeatability, resolution, and timeliness [101] [102].

• Hybrid Context Modeling: In this model, com-
bined and hybrid modeling techniques are used.
Hybrid fact-based/ontological modeling and markup-
based/ontological modeling are some examples of hy-
brid context modeling [103] [104]. In hybrid modeling,
the advantages of modeling techniques are used. For
instance, ontological modeling is used for rule-based
reasoning.

3) Context Reasoning: Context reasoning can be described
as the extraction of new knowledge from the available context
and extraction of context sets from high level context for better
understanding [105] [106]. Uncertainty and imperfection of
raw data are the requirements for context reasoning. There are
three main steps of context reasoning: context preprocessing,
sensor fusion, and context inference [107] [21]. In the context
pre-processing phase, data are cleaned and formed by defining
the relevant context attributes (dimensionality reduction, fea-
ture subset induction), filling missing data, validating context,
removing outliers, and using data mining techniques for prepa-
ration of processing. In sensor fusion step, multiple sensor
data are combined to produce more dependable, accurate,
reliable, and complete data that cannot be provided by single
sensor data. In the inference phase, recognizing new context,
which is relevant, and mapping lower level context to higher
level context (logical and probabilistic reasoning) are important
steps in producing high level context for inference. Reasoning
approaches for different context awareness problems are listed
in Table V.

There are also different context reasoning and inference
models, in terms of artificial neural networks, decision tree,
fuzzy reasoning, hidden Markov models, k-nearest neighbor,
naive Bayes, ontology-based, rule-based, support vector ma-
chines, etc. In Section V, these learning schemes, decision
techniques and related papers will be compared and surveyed
in the IoT perspective. However, in the following section, main
methods for context reasoning will be mentioned. Context
reasoning can be classified as different categories [21]: fuzzy
logic, ontology-based, probabilistic logic, rules, supervised
learning, and unsupervised learning. Some of the important
papers and solutions are listed and compared in Table VI.

• Fuzzy logic: Fuzzy logic is different from traditional
logic. In traditional logic, everything is represented with
0 or 1. However, in fuzzy logic, partial truth is also
acceptable. In this way, the representation of the real
world with fuzzy logic is more acceptable than using
traditional logic (speed: slightly fast, very slow, etc.).
Fuzzy logic reasoning technique is not used standalone.
Instead, it is most frequently used with other reasoning
techniques with regard to ontological, probabilistic and
rule-based reasoning.

• Ontology-based: Ontology-based logic depends on de-
scription logic, and reasoning can be achieved with on-
tology modeled data. Semantic web languages, such as
RDF, RDFS, and OWL are used to implement ontology-
based reasoning. It can be combined with ontology
modeling, which is the advantage of this reasoning.

However, it is not capable of supplying missing values
and finding ambiguity. Thus, it is mostly used with
rule-based reasoning. Event detection and hybrid rea-
soning are some examples of the application domain of
ontology-based reasoning.

• Probabilistic logic: In this technique, decisions are based
on the calculation of event probabilities and facts.
Different sensor data are combined with probabilistic
logic. Dempster-Shafer and Hidden Markov Models are
used as probabilistic reasoning for predicting the next
event, recognizing activities, and forecasting uncertainty.
Dempster-Shafer uses sensor data fusion to calculate the
probability of events. Hidden Markov Models provide
vision for the next state by using the current state. They
are most frequently used in context awareness.

• Rules: In this technique, reasoning can be acquired with
an If-Else structure. Rules are used with ontological
reasoning. User preferences, event detection, and human
thought can be modeled with rules for use in IoT
applications.

• Supervised learning: Generally, in this technique, sen-
sor data are collected and labeled for training. Then,
functions and algorithms are generated according to the
expected data, and they are applied to all available data.
An ANN is a supervised learning technique used for
finding patterns and modeling complex models between
input and output. The Bayesian network is another tech-
nique that is used for probabilistic reasoning. Directed
acyclic graphs are used in Bayesian networks to express
events and relationships. The decision tree is also used as
a supervised technique to build a tree for classification of
data. Support vector machines are used for recognizing
patterns. In Section V, related papers and solutions will
be reviewed and compared.

• Unsupervised learning: In this technique, clustering is
used to extract meaningful results from unlabeled data.
The k-nearest neighbor clustering technique is used
for context aware reasoning. Low-level, simple actions
and operations (positioning and location) can be re-
solved with a clustering technique. Another unsuper-
vised learning technique is the Kohonen self-organizing
map (KSOM) (unsupervised neural network technique)
that is used for classifying incoming real sensor data and
for context aware applications, such as noise and outlier
detection [21].

4) Context Distribution: Context distribution delivers con-
text to users. Context acquisition methods can also be context
distribution methods, in terms of the user’s changing usage per-
spective [21]. There are other context distribution techniques in
regards to querying and subscription. In the querying method,
users create queries to produce results. In the subscription
method, users subscribe to the context system to periodically
obtain specific sensor data, or when a specific event occurs.
This method is used for real-time processing systems.

V. MACHINE LEARNING

In this section, we focus on machine learning algorithms,
which are used in areas such as ubiquitous computing, AmI,
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TABLE V. REASONING APPROACHES FOR CONTEXT AWARENESS: ADAPTED FROM [108]

Context Reasoning Approaches
Activity ((Driving, Eating, Running, Sitting, Sleeping, Speaking, Walking) Hidden Markov Models, Decision Tree, Bayesian Networks
Availability(Busy, Free) Rules, Decision Tree
Environmental (temperature, humidity, raining, etc.) Direct from sensors
High Level Identity(family member, neighbor, friend, etc.) Social Ontology, Rules
High Level Location(work, office, school, home, etc.) Bayesian network, Decision Tree, Rules, Logic
Low Level Identity Specific Database Lookup
Low Level Location (Coordinates, GPS) Direct from device
Mobility Hidden Markov Models, Dynamic Bayesian Networks
Proximity( close, near, far) Fuzzy Logic
Physiological Biometric (Blood Glucose, Oxygen Saturation, Pulse, etc.) Direct from Bio Sensors
Social Context (What’s their availability?, Who is nearby?) Logic, Rules
Temporal (Time, day, year) Direct from time sources

Fig. 4. IoT Related Machine Learning Algorithms

pervasive computing, mobile computing, context aware sys-
tems, and sensor networks that are all related to IoT. We
review supervised learning, unsupervised learning, and rein-
forcement learning techniques in the following subsections.
Since machine learning has a very wide coverage span, we
review only IoT related and context aware machine learning-
related algorithms and techniques here. Figure 4 illustrates IoT
related (and also general) machine learning algorithms and
their classifications.

A. Supervised Learning
In supervised learning training data, which consists of a

set of samples of labeled data, is used to learn and train a
model. Then this model is later used to predict new sample
data. There are different supervised learning techniques. Main
techniques that are relevant to context reasoning in IoT can be
listed as follows: artificial neural networks, Bayesian networks,
case-based reasoning, decision trees, ensembles of classifiers,
hidden Markov models, instance-based learning, k-nearest
neighbor, and support vector machines. Some of the important
papers that are focused on supervised learning algorithms are
listed and compared in Table VII.

1) Artificial Neural Networks (ANN): ANN mimics a bio-
logical neural network, which provides an autonomous learn-
ing structure. There are different types of ANNs in the su-
pervised learning paradigm: backpropagation, ensemble, multi-
layer perceptron, Hopfield networks, and Boltzmann machines.
There are also other ANN types in unsupervised and reinforce-
ment learning paradigm. Backpropagation neural networks are

used in human activity recognition (walking, running, sitting,
etc.) with wearable sensors [139] [140]. Guan et al. [105]
used 40 sensors for both legs to sense activity recognition and
used backpropagation neural networks for context reasoning.
Saeedi et al. [141] used smartphone sensors (accelerometer,
gyroscope, GPS, magnetometer, and temperature) for personal
navigation that used backpropagation neural networks for the
learning part of the system. In addition, Choi et al. [142]
used neural networks for the learning section of a smart
home application system. Moreover, Mishra et al. [143] used
multilayer perceptron and a fuzzy-neuro genetic algorithm to
process IoT big data in their framework, which is a cognitive-
oriented IoT big data framework.

2) Deep Learning: Deep learning is a type of ANN that
consists of multiple processing layers and enables high level
abstraction to model data [144]. There are different types of
deep learning models, namely, backpropagation (with multiple
hidden layers), Convolutional Deep Neural Networks (CNN),
Recurrent Neural Networks (RNN), deep belief networks,
restricted Boltzmann machines (RBMs), and long short term
memory (LSTM) networks.

In the IoT world, deep learning techniques have been used
in recent years. In literature, the use and implementation of
deep learning techniques for learning from data collected in
the IoT and cloud are still under development. Lane et al. [145]
researched the use of deep learning implementations to process
data from IoT devices, such as wearables and smart phones.
They compared IoT hardware platforms (Snapdragon 800,
Tegra K1, Edison) in terms of energy consumption, execution
time, and other performance metrics, when implementing DNN
and CNN models to process audio and image sensor data.
De Coninck et al. [146] proposed The Big-Little Approach,
implementing DNN in IoT. In their approach, if the little DNN
in a smart device cannot classify input data, this input data is
sent to a remote cloud DNN for classification. Ma et al. [147]
used an RNN and deep restricted Boltzmann machine to fit
a model and predict traffic congestion in China using GPS
data from taxis. Zhang et al. [148] used a deep autoencoder to
process fused IoT data (sensor, social, and background data)
for pollution detection and traffic patterns. Alsheikh et al.
[149] proposed analysis of mobile (human activity recognition)
data using a deep learning neural network. They used Apache
Spark to process mobile big data in parallel. In addition,
deep learning algorithms are used for feature extraction from
sensor data. Plötz et al.[150] used deep belief networks, RBMs
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TABLE VI. CONTEXT REASONING TECHNIQUES AND RELATED PAPERS

References Fuzzy Logic Ontology Based Probabilistic Rules S.Learning U.Learning Logic
Ranganathan et al. [109] D
Mantyjarvi et al. [110] D
Padovitz et al.[111] D D
Bikakis et al.[106] D
Teymourian et al.[112] D D
Song et al.[113] D
Zafeiropoulos et al. [114] D
Zafeiropoulos et al. [115] D
Liu et al. [116] D
Zhang et al. [117] D
Keßler et al. [118] D
Choi et al. [119] D
Barbero et al. [120] D
Konstantinou et al. [121] D
Terada et al. [122] D
Gyrard [9] D D
Lane et al.[33] D
Riboni et al. [123] D D
Korel et al. [24] D D
Huang et al. [124] D
Doukas et al.[125] D
Park et al.[126] D
Brdiczka et al.[127] D D
Tsung-NanLin et al. [128] D
VanLaerhoven et al. [129] D
Shtykh et al. [130] D
Chihani [131] D D
Perera et al. [2] D D
Ranganathan et al. [132] D D
Preuveneers et al. [133] D
Serral et al. [134] D
Beamon et al. [108] D D D
Hong et al. [135] D D
Hagras et al. [136] D D
Riboni et al. [137] D D
Guan et al. [105] D D
Jie et al. [138] D D

and compare the performance of deep learning algorithms
with statistical and fast fourier transform (FFT) based feature
extraction approaches.

3) Bayesian Networks: Bayesian networks are the types of
networks based on directed acyclic graphs. In this method,
sensor data are classified with random variables and statistics.
In addition, a Naive Bayes (NB) classifier is a specific type
of classifier based on the assumption that the representative
features for classification might be considered independent.
Bayesian networks and NB classifiers are used in human
activity recognition [151] and health monitoring areas, such
as monitoring and classifying respiration rate, step count [160]
and heart rate data [152] [153]. In addition to these, Korpipää
et al. [154] used Bayesian networks and NB classifiers to
extract features from audio data and to classify data. In
their studies, they recognized activities according to context.
Ramakrishnan et al. [155] used Bayesian networks to imple-
ment a heterarchical autonomic recursive distributed Bayesian
network (HARD-BN) framework that provides learning and
reasoning using IoT sensor data. Further, Krause et al. [156]
used Bayesian networks and NB classifiers to implement

wearable sensor platform probabilistic reasoning parts that
support inference from collecting data using sensors, such
as armbands, headsets, smart phones, and GPS receivers. In
addition to these, Bayesian networks and NB classifiers are
also commonly used solutions and learning models for home
automation [157] and navigation systems [141].

4) Case-based Reasoning: In this supervised learning
method, new problems are solved using past solutions of
similar problems. It is similar to making analogies. There
are four main steps for case-based reasoning: retrieve, reuse,
revise, and retain [158]. A past problem, which is similar to
the new problem, is retrieved from memory. The solution of
that problem is reused for the new problem. Problem attributes
are revised according to the new case, and the solution is
retained in memory. Paper [159] is one example of case-based
reasoning.

5) Decision Trees: In this method, values and attributes are
implemented with tree hierarchical models and mapped with
nodes and edges. Classification rules are used in traversing
from root to leaf. The C4.5 algorithm (extension of ID3)
is a widely used decision tree algorithm [30] [151]. Human
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TABLE VII. SUPERVISED LEARNING ALGORITHMS - ARTIFICIAL NEURAL NETWORKS (ANN), DEEP NEURAL NETWORKS (DNN), BAYESIAN
NETWORKS (BN), CASE-BASED REASONING (CBR), DECISION TREES (DT), ENSEMBLES OF CLASSIFIERS (EC), HIDDEN MARKOV MODELS (HMM),

INSTANCE-BASED LEARNING (IBL), K-NEAREST NEIGHBOR (KNN) AND SUPPORT VECTOR MACHINES (SVM)

References ANN DNN BN CBR DT EC HMM IBL KNN SVM
Khan et al. [139] D
Altun et al. [140] D D
Guan et al. [105] D D
Saeedi et al. [141] D D
JonghwaChoi et al. [142] D
Bao et al. [151] D D
Tapia et al. [152] D
Lara et al. [153] D
Korpipää et al. [154] D
Ramakrishnan et al. [155] D
Krause et al. [156] D
Bhide et al. [157] D
Aamodt et al. [158] D
TinghuaiMa et al. [159] D
Lara et al. [30] D
Jatoba et al. [160] D D
Ermes et al. [161] D
Huebscher et al. [162] D
Byun et al. [163] D
Brdiczka et al. [164] D
Alpaydin et al. [165] D
Anagnostopoulos et al.
[166]

D
Ravi et al. [167] D D D D
Mannini et al. [168] D D D D D
Oliver et al. [169] D
Chen et al. [170] D D D D
Zhen-YuHe et al. [171] D
Kranz et al. [172] D
Khan et al. [173] D
Schmitt et al. [174] D D D D
Hong et al. [135] D
Sasidharan et al. [175] D
Lane et al. [145] D
Mishra et al. [143] D
Lane et al. [145] D
De Coninck et al. [146] D
Ma et al. [147] D
Zhang et al. [148] D
Alsheikh et al. [149] D

TABLE VIII. UNSUPERVISED LEARNING ALGORITHMS - KOHONENS SELF-ORGANIZING MAP (SOM) , THE RECURRENT SELF-ORGANIZING MAP
(RSOM), NEURAL GAS (NG), ASSOCIATION RULE LEARNING (ARL)-APPRIORI, K-MEANS, DBSCAN (DENSITY BASED SPATIAL CLUSTERING OF

APPLICATIONS WITH NOISE)

References SOM RSOM NG ARL KM DBSCAN
Van Laerhoven et al. [176] D D D
Van Laerhoven et al. [177] D D D
Mayrhofer et al. [178] D D D D
Guo et al. [179] D
Ramakrishnan et al. [155] D

activity recognition papers Bao et al. [151], Jatoba et al. [160]
(used CART, ID3 algorithms), Ermes et al. [161] are among
the examples using decision trees algorithms. In these papers,
human activities (walking, running, sitting, etc.) are determined
with wearable sensor networks (acceleration sensors, etc.)
and embedded devices. In addition, Huebscher et al. [162]
used a relevance-based decision tree learning approach to

implement an adaptive middleware framework for context
aware applications. Moreover, Byun et al. [163] proposed a
solution that provides a dynamic adaptation using decision tree
algorithms. Brdiczka et al. [164] proposed a context model for
an intelligent environment that used decision trees algorithms
for reasoning.
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6) Ensemble Algorithms (Ensembles of Classifiers): In this
method, multiple classifier algorithms and models are used
together to achieve better classification, instead of using a
single classifier and model. There are different methods of
ensembles of classifiers: voting, bagging, and boosting. In
the voting method, each classifier returns a result. The final
classifier is generated with the greatest number of results, that
is called voting. In the bagging method, subsets of the initial
training set are formed by random sampling with replacement.
The base classifier is generated (learned) using each sub-
sample. In the boosting method, sub-samples of the training set
are weighted according to difficulty of the classification. The
boosting method is similar to the bagging method. However,
the learning for the final classifier is achieved through the
weighted votes of the classifiers [165] [166]. Anagnostopoulos
et al. [166] used AdaBoost M1, bagging, voting methods, and
naive Bayes classifiers in their proposed model, for predicting
the location of mobile users. Ravi et al. [167] used decision
trees, k-nearest neighbors, SVM, and naive Bayes algorithms
with voting methods in their study, Activity Recognition from
Accelerometer Data.

7) Hidden Markov Models (HMM): Hidden Markov Models
are simple dynamic Bayesian networks based on the statistical
Markov model (probabilistic mathematical model that defines
future states depending on the current state). The system is
modeled with unobserved hidden layers. HMM is used for
the context reasoning and learning part of the IoT systems.
Manini et al. [168] used HMM for human physical activity
reasoning in their studies. On-body accelerometers collect
sensor data and classify data with ANN, KNN, HMM, naive
Bayes, and SVM. Oliver et al. [169] used HMM to determine
office activities from multiple sensory channels. Chen et al.
[170] used the Bayesian network, SVM, KNN, and HMM in a
proposed context-aware search system for the IoT. In addition
to these, Chen et al. [180] used Markov chains to implement
a collaborative sensing intelligence framework in an industrial
IoT.

8) Instance-Based Learning : In this technique, new in-
stances are compared with other instances in training sets.
Comparison can be achieved with a distance function to
determine the distances of each instance pair causing expensive
results, such as more memory requirements and computation
time. Thus, the learning part should not be implemented on
the mobile side/device. The cloud side is more convenient for
storage and computing. The k-nearest neighbor is one example
of instance-based learning.

9) K-Nearest Neighbor (KNN): KNN is a type of supervised
learning algorithm, such that the values are classified with
majority voting. In this method, new values are categorized
with the greatest number of nearest neighbor values. The KNN
algorithm is used in human activity recognition and context
aware systems. Altun et al. [140] proposed a system that
contains inertial and magnetic sensor units that sense human
activity. In their study, they used the KNN, Bayesian decision
making (BDM), least-squares method (LSM), dynamic time
warping (DTW), support vector machines (SVM), and ANN.
Guan et. al. [105] used KNN and backpropagation neural
networks for context reasoning. They were able to achieve

over 90% reasoning success. In addition, Jatoba et al. [160]
used the KNN for their experiments.

10)Support Vector Machines (SVM): The SVM is a popular
supervised classifier and pattern recognition algorithm that
provides data analysis for classification and regression. Clas-
sification can be achieved with support vectors, which provide
the optimum distance of target class boundaries. The SVM is
used in different areas, such as image, video processing, pattern
recognition, sensor data analysis, and recognition. Zhen-YuHe
et al. [171] used a SVM in a human activity recognition
model to determine the activities of humans. Kranz et al.
[172] used a SVM in their middleware that collects data from
sensors and classifies the data for reasoning. Khan et al. [173]
proposed a method that classifies streaming data from IoT
devices by using simple aggregation approximation, density-
based clustering and a SVM.

B. Unsupervised Learning

The aim of the unsupervised learning technique is to cluster
the unlabeled data. In this technique, there is no classified and
labeled data. Results are returned faster than the supervised
learning approach for hidden patterns and big data. Further, in
this technique, a large stack of heterogeneous data is divided
into easily understandable and manageable smaller homoge-
neous subsets. There are different unsupervised learning ap-
proaches: ANN, association rule learning, and clustering. Some
important papers focused on unsupervised learning algorithms
are listed and compared in Table VIII.

1) Artificial Neural Network: Self-organizing map (SOM)
is a type of unsupervised learning algorithm that uses ANN.
In an SOM algorithm, high dimensional spaces are mapped to
neurons that store the data. It is a type of clustering, vector
quantization algorithm. There are different types of SOM:
Kohonens self-organizing map (KSOM), and recurrent self-
organizing map (RSOM). Neural gas is a type of ANN that is
based on SOM. Finding optimum values, which are based on
the feature vector, can be achieved with neural gas.

Van Laerhoven et al. [176] [177] used KSOM, RSOM, k-
means and Hartigans sequential leader clustering algorithms
to analyze real-time sensor data from wearable sensors for
comparison of unsupervised ANN algorithms. Further, Van
Laerhoven et al. [176] used SOM algorithms for teaching
context to algorithms. In addition, Mayrhofer et al. [178]
used SOM, RSOM and k-means Hartigans sequential leader
clustering, growing k-means clustering, neural gas, neural
gas with competitive Hebbian learning (NG+CHL), growing
neural gas (GNG), and incremental DBSCAN (IDBSCAN), to
recognize and predict context by learning from user behavior
by using sensors.

2) Association Rule Learning: The aim of this method is to
find interesting relations between variables. There are different
association rule learning algorithms, such as apriori, eclat and
FP-growth. Guo et al. [179] used the apriori algorithm and map
reduce model in IoT cloud computing datasets to mine frequent
structures. In paper [155], an adapted apriori algorithm is used
for finding correlations.
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3) Clustering: There are different clustering algorithms in
unsupervised learning techniques: K-means algorithm, fuzzy
clustering, DBSCAN (Density based spatial clustering of ap-
plications with noise), OPTICS (Ordering points to identify the
clustering structure) algorithm. K-means is the most frequently
used clustering algorithm, which provides the minimum dis-
tance between similar data, and maximum difference between
clusters. In the k-means clustering algorithm, N input datasets
divide the cluster sets into k pieces. Mayrhofer et al. [178]
used the k-means clustering algorithm for context reasoning.
Van Laerhoven et al. [176] also used the k-means algorithm
to cluster real-time wearable sensor data.

C. Reinforcement Learning
Reinforcement Learning (RL) is another type of learn-

ing approach used in various areas, such as control theory,
simulation-based optimization, statics, and other fields related
to automatic control. In the RL approach, automatic control
(convergence to the desired state and ideal behavior) is pro-
vided with a feedback signal, which is called the reinforcement
signal. In context awareness studies in WSNs, RL is used to
improve the system performance. The features of the RL are
examined under the following subtitles: state representation,
event representation, action representation, rule representation,
reward representation, agent interaction and control, and ex-
ploration versus exploitation [181].

Q-Learning is the most commonly used RL approach in
context awareness of the WSN [182]. In Q-Learning, the
RL system chooses a subset of actions, which are defined
in rules, then, it determines exploration (random action) or
exploitation (choosing action with best Q-value from Q-table).
After execution of the action, the state, event, and reward are
observed. According to the state of the environment, the Q-
table and rules are updated [181].

VI. BIG DATA

In this section, we are focusing on data issues related to
the IoT. Due to the rapid growth in IoT installations, the
corresponding data problems associated with big data are
becoming more common. Here, the definition and features of
big data, big data generation and acquisition, big data storage,
and finally big data analytics will be reviewed in the context
of IoT. Figure 5 presents IoT big data-related research and
development areas.

A. Definition and Features of Big Data
Big data refers to very large unstructured data as compared

to other types of datasets. Hidden and new information can
be found when analyzing this big data, and that is why it is
becoming more interesting and receives significant attention
from both industry and academics. In the IoT, sensors create
significant data and this will rapidly increase. For example,
the number of RFID tags are expected to reach 209 billion by
2021 [37]. The number of connected IoT devices are estimated
to be in the range of 50 to 100 billion in very near future [2],
and the total amount of data on Earth will reach 35 zettabytes

(ZB) soon [11]. These numbers show that IoT data will be part
of the big data.

Big data differs from the traditional data in terms of “vol-
ume” (great volume and collection), “variety” (various types of
data), “velocity” (rapid production, generation and analysis),
“value” (low density and huge value), “variability” (incon-
sistency of data prevents easy handling and processing), and
“veracity” (quality of data vary greatly) [37] [183]. Traditional
computers and systems were not sufficient to process, analyze,
and manage big data when Internet companies, such as Google,
Yahoo, and Facebook, started collecting huge amounts of data
in the early 2000s. Thus, they developed new systems, new
approaches, and solutions to process big data.

IoT big data has different characteristics when compared
to common big data problems. These characteristics can be
classified into three categories, namely, data generation, data
quality, and data interoperability [32]. In data generation,
velocity (generation of data at different rates), scalability,
dynamics (things are mostly mobile in IoT), and heterogeneity
(different types of sensors) are specific characteristics that
make IoT data different from others. From data quality per-
spective, uncertainty, redundancy, ambiguity, and inconsistency
are the specific characteristics differentiating IoT data. Finally,
in terms of data interoperability, semantics and incompleteness
makes IoT data different [32].

B. Big Data Generation and Acquisition
There are different types of sources of big data, such as

enterprise data (production data, sales data, financial data, etc.),
IoT data (sensors data), bio-medical data (human gene, bio-
measurement data, etc.), and other sources of data (astronomy,
etc.). The IoT is a significant source for big data, which also
has specific features in terms of large scale (e.g., surveil-
lance video, location, historical sensors data), heterogeneity
(different types of sensors and devices), strong space and
time correlation (because of analysis and inference), noise,
and high-volume low-efficiency (small portion of big data
is significant for analysis, e.g., traffic accident part in the
whole data). Subsequent to retrieval of raw data, big data
systems include a second phase, big data acquisition, which
involves big data collection (logs, sensing, etc.), big data
transmission, and big data preprocessing (integration, cleaning,
and redundancy elimination) [37].

Another important issue in IoT data acquisition is streaming.
Data from IoT sensors and devices could be coming in real
time and in continuous mode. IoT streaming also requires real
time data processing. Aggregation, join operations, continuous
queries, and top-k monitoring are some of the significant
queries to be considered in IoT and sensor systems. Aggregate
queries enable the reduction of sensor power consumption with
less querying on sensors. Join queries are helpful in obtaining
multiple sensor data simultaneously. Stream mining provides
methods for clustering, classification, outlier and anomaly
detection, and frequent itemset mining in IoT stream data [32].
Jeffery et al. [184] proposed statistical smoothing for unreliable
RFID (SMURF) data to clean and smooth filter RFID stream
data. However, SMURF does not solve the cross-reads (false
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Fig. 5. Big Data in IoT

read) in the RFID stream data. Liao et al. [185] proposed
KLEAP, which provided a solution for cleaning cross-reads
in RFID data using a density-based method.

C. Big Data Storage
Big data storage methods are different from traditional data

storage methods due to large storage requirements, manag-
ing, and analysis problems. Traditional massive data storage
systems can be classified as direct attached storage (DAS),
network attached storage (NAS), and storage area network
(SAN). They are not suitable for big data storage. In addition
to this, distributed storage systems were proposed to store
massive amounts of data. However, they have critical factors
that should be considered such as [37] [186]:

• Consistency: Multiple distributed storage systems should
work consistently. There are also multiple copies of the
same data to prevent server failure.

• Availability: More servers in the system could cause
more problems and failures. All servers working without
problems is the desire of user.

• Partition Tolerance: Multiple servers in the system are
connected to each other via the network. If there is a
failure on the network, the entire system could not work
properly. All distributed systems should have tolerance
for link, node, and network problems.

Distributed systems are categorized as CA (systems that
have consistency and availability features), CP (systems that
have consistency and partition tolerance features), and AP
(systems that have availability and partition tolerance features)
according to the factors that are defined [32]. These critical
factors are not accomplished simultaneously [187]. Thus, stor-
age mechanisms for big data have been developed over the

years. They are categorized as file systems, databases, and
programming models. File systems are the basis of applications
for big data storage systems. There are different file systems in
big data, such as Hadoop distributed file system (HDFS) [188],
Cosmos (Microsoft development) [189], Haystack (Facebook
development) [190], and Google File System (GFS) [191].
Another development for big data storage is databases. Tradi-
tional relational databases do not meet the requirements of the
storage of big data. NoSQL databases became popular recently
for storing big data. There are four main types of NoSQL
databases: key-value, column-oriented, document-oriented, and
graph-based databases [37].
• Key-value Databases: Data is stored in a key-value

model, such as dictionary and hash. Keys in the model
are unique and values are linked to these keys. Dynamo
(Amazon) [192], Voldemort (Linkedin) [193], Azure
Table Storage, MemcacheDB, and Berkeley DB are
examples of key-value databases. In addition, Redis,
Riak, and Scalaris (Apache), Tokyo Cabinet and Tokyo
Tyrant, Memcached and Memcache DB are examples of
key-value storage systems [37][38].

• Column-oriented Databases: In column-oriented
databases, columns are used to split and store data.
BigTable (Google) [194], Cassandra (Facebook) [195],
HBase17, HyperTable18, and C-Store19 [196] are the
examples of column-oriented databases. Column-
oriented databases are read-optimized systems,
whereas, traditional relational database management
systems (RDBMS) are write-optimized systems. High

17https://hbase.apache.org
18http://www.hypertable.com
19http://db.csail.mit.edu/projects/cstore/
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performance querying can be achieved and developed
in read-optimized systems. This can be an advantage of
using column-oriented systems in the IoT [32]. Tracey
et al. [197] proposed an IoT framework that store
sensor data into an HBase database.

• Document-oriented Databases: In document-oriented
databases, data representation is more complex than key-
value databases due to document complexity. In addition,
the key-value model features are preserved as well.
There are different document-oriented databases. Some
of them are listed as follows: MongoDB (open-source
data-store in binary JSON format) [198], SimpleDB
(web services of Amazon) [199], CouchDB (Apache,
datastore in JSON format) [200]. Preuveneers et al. [133]
used CouchDB to store data from IoT sensors in project
Samurai. Cecchinel et al. [201] developed an architec-
ture of IoT sensors in the SophiaTech campus called
SMARTCAMPUS. They used MongoDB as a storage
of big data for the IoT.

• Graph-based Databases: In this type of database, data
is represented as a graph that is used for tasks such as
network analysis. There are no rows and tables in graph-
based databases. OrientDB20, Neo4J21, and Titan22 rep-
resent some examples of graph-based databases [38].

All big data storage systems mentioned above are related
to IoT data storage and analysis. However, there are also
resource-constrained devices and things in IoT systems. For
the resource-constrained devices in the IoT world, storage and
energy usage become crucial and critical points. Therefore,
new storage systems and databases are proposed, such as
SolarStore (solar-powered storage) [202], and Antelope (DB
system for resource-constrained devices). Antelope is the first
DBMS that provides every sensor a data-store [203]. Another
storage approach is storing data in flash memory for logging,
which is called amnesic storage system [204]. Every sensor
node stores data, such as audio and image, which also enables
compressing, querying, and efficient organizing of data.

D. Big Data Analytics

Owing to the inadequacies of the traditional parallel pro-
cessing models like message passing interface (MPI) and open
multi-processing (OpenMP), some parallel processing models
and engines are developed for the process and analysis of
big data. MapReduce is an important and popular parallel
processing programming model [205]. Hadoop [206] is one
of the big data processing frameworks that implements the
MapReduce programming model. Other significant parallel
processing models and engines for the analysis of big data are
listed as follows: Dryad (general purpose distributed parallel
processing engine) [207], All-Pairs (used for biometrics, bio-
informatics data mining) [37], Pregel (processes large sized
graphs) [208], Spark (works faster than Hadoop because of
memory caching) [38], Storm (processes streaming data in

20http://orientdb.com/
21http://neo4j.com/
22http://thinkaurelius.github.io/titan/

real-time) [38], Flink (batch and stream processing) [38], H2O
(parallel processing engine that contains math and machine
learning libraries) [209][38][37].

For analyzing streaming real-time data, there are IoT data
analysis, processing, and sharing tools. Ericsson’s IoT Frame-
work 23 is one of the tools that can combine virtual streams
with local ones for statistical analysis and prediction. IBM
Watson IoT 24 is another commercial cloud platform for
processing IoT data. Yet another IoT analysis tool is Node-
Red25 that combines IoT data, services and devices which
provide data fusion in IoT data and devices [19].

E. Big Data Learning
A higher level service in IoT big data analysis is data

learning. There are now several machine learning tools and
frameworks that contain many learning algorithms working on
big data and processing in parallel. These include: Mahout
[210], Spark MLlib26 [211], H2O [38], SAMOA (Scalable
Advanced Massive Online Analysis) [212], Flink-ML [38],
Weka [213], Oryx27, and Vowpal Wabbit [38]. Mahout contains
clustering (such as k-means), classification (such as naive
Bayes, hidden Markov models, multilayer perceptron, random
forest, logistic regression), collaborative filtering (recommen-
dation engines) algorithms, modeling tools, and more. Spark
MLlib contains the same tools (classification and clustering
algorithms) as Mahout, but, also includes a regression model
that does not exist in Mahout. Mllib also contains feature
extraction, optimization, and dimensionality reduction tools.
H2O differs from the other tools because it contains many tools
for deep neural networks. SAMOA is a framework that sup-
ports machine learning on streaming data. Flink-ML includes
machine learning algorithms and works on the Flink platform.
Weka began to develop wrappers for distributed processing
on Hadoop and Spark. Oryx has machine learning algorithms
for clustering, classification, and collaborative filtering. Vowpal
Wabbit is different from other tools and frameworks, as it is
designed for fast online learning [38].

In addition to these, big data deep learning is also another
important part of big data learning. Najafabadi et al. [214]
surveyed deep learning applications in big data, and deep
learning challenges in terms of learning from streaming data,
scalability of models, high dimensionality, parallel, and dis-
tributed computing. Further, they mentioned the challenges of
big data analytics as follows: “data quality and validation, data
cleansing, feature engineering, high-dimensionality and data
reduction, data representations and distributed data sources,
data sampling, scalability of algorithms, data visualization,
parallel and distributed data processing, real-time analysis
and decision making, crowd-sourcing and semantic input for
improved data analysis, tracing and analyzing data provenance,
data discovery and integration, parallel and distributed comput-
ing, exploratory data analysis and interpretation, integrating

23https://github.com/EricssonResearch/iot-framework-engine
24http://www.ibm.com/internet-of-things/
25http://nodered.org/
26http://spark.apache.org/mllib/
27https://github.com/cloudera/oryx
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heterogeneous data, and developing new models for massive
data computation” [214]. Moreover, Chen et al. [215] summa-
rized big data deep learning (large-scale deep belief network,
large-scale CNN) and challenges with regards to deep learning
for high volumes of data, high variety of data, and high velocity
of data.

F. Big Data Security
Security of big data is an important topic in big data studies.

Privacy and security of big data topics became popular with the
emergence of cloud computing, social networks, and analytics
engines. In the IoT research area, big data security is also
important due to the usage of storage for the IoT sensors
and devices. However, in the literature, there are not sufficient
studies covering the IoT-related big data security issues specif-
ically. Big data security problems are studied and surveyed in
the literature. These studies are also related to IoT big data
security issues as well. Cuzzocrea [216] surveyed big data
security issues and challanges under the following subtitles:
security issues of big outsourced databases, privacy preserving
big data analytics, big data exchange, privacy preserving big
graph analysis and mining, and querying cloud enabled DBMS.
Security issues are summarized and analyzed by the viewpoint
of IoT usage scenarios as follows:

• Outsourced databases can create security problems in
general for big data resources.

• Big data analytics cause privacy preserving problems
due to the deep analysis of data.

• Data exchange between databases and IoT devices is
extremely important due to security issues.

• Querying and storing encrypted data from distributed big
data stores is a solution for big data systems to prevent
privacy and security breaches.

G. IoT and Big Data Recent Advancements
The IoT is among the most influential topics, which can

directly affect human daily life activities. Hence, many IoT so-
lutions have been proposed and developed. Currently, leading
cloud companies are developing and presenting their customers
with machine learning algorithms to analyze IoT big data.
We discussed and analyzed four leading IoT cloud services,
namely Google Cloud28, Amazon Web Services (AWS)29,
Microsoft Azure30, IBM Watson31. All four IoT cloud ser-
vices have the following features: Device management, data
management, real-time streaming, big data analytics, and learn-
ing ability. Their machine learning models have also similar
general purpose machine learning algorithms (classification,
regression, and clustering algorithms) for anomaly detection,
sensor failure, and analysis of IoT data. All these services
implement machine learning algorithms on their own frame-
works. Further, Google Cloud and IBM Watson use Spark ML

28https://cloud.google.com/solutions/iot/
29https://aws.amazon.com/iot-platform/
30https://www.microsoft.com/en-us/cloud-platform/internet-of-things-azure-

iot-suite
31http://www.ibm.com/internet-of-things/

to implement a learning structure on IoT big data. In addition,
Google cloud uses Tensorflow to analyze IoT data in a deep
learning structure. They also support big data storage and
analytics. However, the infrastructures vary among different
services. Google Cloud uses BigTable, BigQuery Streaming
for storage and streaming. AWS uses DynamoDB for IoT
data storage. Microsoft Azure uses a Hadoop environment for
storage and analytics. IBM Watson uses CouchDb for storage.

In addition to these, open source and academic big data
analytics and learning tools are proposed and developed. These
are mentioned in the Big Data Learning subsection. Apache
Spark MLlib32 is the most recently developed IoT big data
analytics development environment. IoT data analysis appli-
cations can be implemented with an MLlib library that con-
sists of classification (decision tree, random forest, gradient-
boosted tree, multilayer perceptron, logistic regression, and
naive Bayes classifiers), regression (linear, generalized linear,
regression tree, random forest, gradient-boosted tree, survival,
and isotonic regression), clustering (k-means, latent Dirichlet
allocation, bisecting k-means, Gaussian mixture model), col-
laborative filtering, model selection, and feature extraction fea-
ture algorithms. Alsheikh et al. [149] proposed mobile big data
analytics using Apache Spark and deep learning. They imple-
mented a deep learning model using Spark to analyze human
activity recognition. Moreover, deep learning implementation
can be achieved with Spark and other deep learning libraries
and tools. These are listed as follows: SparkNet33, CaffeOn-
Spark34, Sparkling Water35, Deeplearning4J36 and TensorFlow
on Spark37. SparkNet and CaffeOnSpark are projects that can
run with Apache Spark and Caffe, and provides the imple-
mentation of deep learning. SparklingWater integrates H2O
with Apache Spark. Deeplearning4J is a java-based library
that provides the implementation of neural and deep learning
networks running with Apache Spark and Hadoop. TensorFlow
on Spark can handle distributed deep learning implementation
with Apache Spark and TensorFlow.

ICN provides a new perspective of implementing IoT ap-
plications. Amadeo et al. [54] mentioned that ICN will be
used for a vehicular communication application. In their survey
paper, they analyzed and discussed the advantages of the
usage of ICN in vehicular IoT applications. The motivation
of implementing a vehicular IoT application with ICN is
due to the fact that vehicular communication applications
are information-oriented, disregarding the producer identity
and focusing on content, location, and time interval. In the
future, ICN usage for implementing IoT applications will also
contribute to big data-IoT studies for reducing the network load
by discouraging request and packet duplication, and higher
scalability. ICN could manipulate on-the-fly data using filtering
and aggregating functions that reduce network resource usage
and provide data retrieval scalability [54].

32http://spark.apache.org/docs/latest/ml-guide.html
33https://github.com/amplab/SparkNet
34https://github.com/yahoo/CaffeOnSpark
35https://databricks.com/blog/2014/06/30/sparkling-water-h20-spark.html
36https://deeplearning4j.org/
37https://github.com/adatao/tensorspark
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VII. OPEN ISSUES AND FUTURE DIRECTIONS

It is clear that there will be many more developments with
massive deployments of the IoT in the coming years, and
further research and development will be needed in the future.
Below, we try to summarize some of the open issues in the
area.

A. Enhancing IoT Standards
In recent years, there have been more IoT standardization

efforts with the support of companies and research groups.
There is still a lack of standardization in machine learning
implementation and big data processing structures. As seen in
the case of any emerging technology, it might take some time
before a globally accepted industry standard is adopted. During
this standardization process, different vendors and companies
might try to implement their systems through several attempts.
Eventually, the driving technology and underlying economics
might be the ultimate decision maker in this adaptation pro-
cess. Owing to these uncertainties, IoT hardware and software
developers might be careful in their implementation strategies.
However, this can also be viewed as an opportunity for
technological enhancements for the overall industry.

B. Privacy and Security Issues in IoT World
There is a growing concern about security and privacy

issues within the IoT networks that require distributed access,
high-rate streaming data flow, autonomous decision making
capabilities, etc. With the increasing complexities of such
networks, it becomes much more difficult to maintain the
overall security and privacy. Cyber security has become one of
the most important areas due to the aforementioned problems
in the IoT world. Increasing security precautions might degrade
the data processing performance of the IoT/big data analytics
process. However, a security breach in such a system can
have devastating results, because these systems are currently
integrated into several crucial industrial and/or government
applications, such as transportation systems, water/sewage
systems, healthcare, etc. Thus, a trade-off between security and
performance might not be possible. As a result, maintaining
the highest possible security level for such systems and, at
the same time, maintaining the overall system performance
to address real-time data processing necessities are major
challenges. This is probably one of the major open issues
of IoT/big data research. There are also security and privacy
problems in IoT devices and frameworks under development.

C. Using Semantics in IoT World
The semantic web is used in the lower layers of IoT

development, such as SSN ontology, for describing sensors and
sensor data. As the heterogeneity and size of the IoT world is
expanding, interoperability between devices, frameworks, and
systems will become more difficult. OneM2M standard tries
to overcome this, using semantic technologies for abstraction
and interoperability. We will see more efforts in this direc-
tion [217].

D. Developing Learning Systems for IoT
In recent years, many learning systems and solutions have

been developed with context awareness features. They are
mostly designed as rule-based, logic-based, and ontology-
based solutions, and developed using supervised, unsupervised,
and reinforcement algorithms. They can be improved with
mixed or hybrid methods, such as rule and ensemble learning
algorithms for better performance. Neural networks can be
used more extensively with the rapidly growing IoT big data,
and solutions can be enhanced with better reasoning capabili-
ties. Learning frameworks and systems are chiefly designed for
sensor networks with limited data production and usage. New
learning frameworks for larger IoT deployments with much
higher data traffic can be designed and developed with new big
data analytics and reasoning solutions. Moreover, unsupervised
learning and sensor fusion techniques can be improved to
process and analyze IoT data.

E. Implementing and Developing Deep Learning Techniques
on IoT Big Data

In the last few years, deep learning has emerged as a revo-
lutionary technique to provide robust solutions in classification
and/or prediction problems where traditional machine learning
models are failing. One basic characteristic of deep learning
is to use the low-level features (or even raw data itself) and
transform them into meaningful, high level features within
the model via applying unsupervised and supervised learning
through cascaded layers. As a result, better recognition is
achieved in the final stages of the model. Successful implemen-
tation of deep learning generally requires huge data sets, where
the model learns the hidden high-level features from data. This
fits well with the big data and/or IoT concept. As a result, the
number of research and application papers combining deep
learning and the IoT began appearing in literature. Even though
interest in big data and the IoT has been quite visible in recent
years, the integration of deep learning with these fields is still
an ongoing process; hence, the number of research papers
combining these areas is limited. In addition, the combination
of different deep learning models can be improved (RNN-
Reinforcement, RNN-LSTM, LSTM-Reinforcement, etc.).

F. Developing Big Data Solutions for IoT
Big data solutions have emerged with Internet initiatives and

solutions. These big data solutions may not meet the require-
ments of IoT data, in terms of analysis, storage, acquisition,
and learning. Cloud computing solutions can be combined with
the available big data solutions for the IoT. Then, big data
learning and analytics solutions for the IoT can be developed
for better reasoning performance [217], [218].

G. Increasing Autonomy and Implementing Self Organized IoT
Structures

IoT applications can be extended and developed with fully
automated M2M communication, automated reasoning, and
learning systems. Without supplying information and notifica-
tion to humans for interaction and decision, devices can be able
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to perceive, learn, interact, and decide, using IoT systems and
solutions. Digital personal assistants that manage all surround-
ing devices, and communicate with other personal assistance
solutions can be further developed. Distributed knowledge of
IoT structures can be developed and improved. Smart cities
that manage all IoT devices and communicate with other smart
cities, autonomous vehicles, smart road systems, smart grid
and energy production systems, and a smarter planet, can be
future projects and initiatives using IoT solutions, which are
capable of perceiving, learning, interacting, and deciding. The
realization of this vision, autonomous and self-organizing IoT
infrastructures, will be enabled by the ongoing research in the
areas of semantics for interoperability and intelligent cognition,
and learning from big data.

VIII. CONCLUSION

In this survey, we covered IoT studies from both historical
and conceptual perspectives, as the field has evolved into
a number of different dimensions. Related fields, such as
ubiquitous computing, pervasive computing, AmI, WSN and
its variations, have evolved with time and brought us today to
what is called the IoT (section III). As the field has evolved
over time, context awareness has become an essential part
of the IoT. This is because it relates to understanding the
changes in the environment, and provides an opportunity to
act and respond accordingly. This was the first step towards
intelligence in the IoT (section IV). Understanding context and
acting accordingly, requires learning and many machine learn-
ing techniques were developed and adapted in the field (section
V). As the number of sensors and devices increases and
continues to increase at an unprecedented rate, data flowing
from the IoT has become a major issue. Collecting, managing,
processing, and analyzing data requires new methods and
techniques as features of data in volume, variety, and veracity
dimensions are completely different from traditional data. This
is now called the “big data” problem, and the IoT data has
suddenly become the IoT big data. As such, this problem
requires new approaches. We reviewed some existing and
upcoming solutions, and methods in IoT big data, and big
data in general, in section VI. Finally, in section VII, we also
presented the open issues that need to be addressed in the near
future.
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