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Abstract A logarithmic signature for a finite group G is a sequence [A1, · · · , As] of sub-
sets of G such that every element g ∈ G can be uniquely written in the form g = g1 · · · gs ,
where gi ∈ Ai , 1 ≤ i ≤ s. The aim of this paper is proving the existence of an MLS for the
Suzuki simple groups Sz(22m+1), m > 1, when 22m+1 + 2m+1 + 1 or 22m+1 − 2m+1 + 1
are primes. The existence of an MLS for untwisted group G2(4) and the sporadic Suzuki
group Suz are also proved. As a consequence of our results, we prove that the simple groups
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1 Introduction

Magliveras in a pioneering work in 1986 [13], defined a private-key cryptosystem called
permutation group mappings, abbreviated by PGM . The system is constructed from a finite
permutation group G of finite degree, so that each encryption transformation of the system
is a permutation of the message space Z|G|, which coincides with the cipher space. This
cryptosystem is based on the prolific existence of certain kinds of factorisation sets, called
logarithmic signatures, for finite permutation groups. The main algebraic properties of
PGM was reported in [14]. After introducing PGM , the logarithmic signatures used
for presenting some public key cryptosystems like MST1, MST2 and MST3 [18, 20].
Factorizable logarithmic signatures for finite groups are the essential component of the
cryptosystems MST1 and MST3. In a recent paper, Svaba et al. [26], considered the prob-
lem of finding efficient algorithms for factoring group elements with respect to a given
class of logarithmic signatures. They concerned about the factorization algorithms with
respect to transversal and fused transversal logarithmic signatures for finite abelian groups.
The papers [15–17] and references therein are very useful for further information on this
topic.

In order to apply logarithmic signatures in some practical cryptographic schemes effec-
tively, the question of finding logarithmic signatures with shortest length arises naturally.
This paper consider such objects into account. Before we proceed further, we present some
algebraic notions.

All groups in this paper are assumed to be finite. The logarithmic signatures (LS’s) of
groups have several remarkable applications in cryptography and computational group the-
ory. Here, a logarithmic signature for a group G is a sequence α = [A1, · · · , As] of subsets
of G such that every element g ∈ G can be uniquely written in the form g = g1 · · · gs , where
gi ∈ Ai , 1 ≤ i ≤ s. The number

∑s
i=1 |Ai | is called the length of α and denoted by l(α).

Suppose α = [A1, · · · , As] is an LS for a finite group G and |G| = ∏s
i=1 p

mi

i is the
prime factorisation of |G|. It is clear that l(α) has an upper bound |G|. An observation by
González Vasco and Steinwandt [5] shows that l(α) ≥ ∑s

i=1 mipi . A logarithmic signature
α is said to be minimal ( MLS) if l(α) = ∑s

i=1 mipi . In the mentioned paper, the authors
proved that the symmetric group Sn has MLS. The same result for alternating groups first
reported by Magliveras [19].

It is a well-known conjecture that any finite group admits an MLS. González Vasco et
al. [4, Proposition 3.1], proved that any finite solvable group has a logarithmic signature of
minimal length. They also proved that if G is a finite group containing a normal subgroup
K such that K and G

K
both have MLS, then G has an MLS. Suppose that G is a finite group

of minimal order without MLS. If G has a proper non-trivial normal subgroup T then T

and G
T

have MLS and so by the mentioned result of González Vasco et al., G has an MLS,
a contradiction. So, if there is a finite group without an MLS, the smallest counterexample
should be a simple group. Hence, the existence of MLS for any finite group can be reduced
to the existence of MLS for finite simple groups.

González Vasco et al. [4] proved that an MLS exists for all groups of order less than
175,560, the order of Janko’s first sporadic group. An MLS for a group G is called
cyclic, if each Ai can be written as Ai = {xi | 0 ≤ i ≤ |Ai | − 1}, for some x ∈ G.
Singhi and Singhi [24], verified the conjecture for PSLn(q) and Singhi et al. [23], used
a geometrical approach to prove the existence of a cyclic MLS for the classical simple
groups PSp2n(q) and �−

2n(q), �+
2n(q), q is a power of 2. We also refer to two PhD the-

sis written by Nikhil Singhi [21] and Nidhi Singhi [22], for more information on this
problem.
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Lempken and van Trung [11], presented two important techniques for dealing with the
conjecture:
(1) Double Coset Decomposition [11, Theorem 4.1]: Suppose G is a finite group and

H, K ≤ G such that H ∩ gKg−1 = 1, for all g ∈ G. Suppose G = ∪n
i=1HgiK is

the double coset decomposition of G with respect to H and K . Moreover, we assume
that H and K have an MLS. If n = 1, 4 or n is a prime number then G has a minimal
logarithmic signature.

(2) Non-disjoint factorisation: Suppose G = H · K , where H and K are subgroups of
G with this property that H ∩ K �= 1. Then one can construct sometimes an MLS for
G by gluing one of H and one of K .

They used the technique of double coset decomposition to prove existence of an MLS,
for all groups of order smaller than 1010 other than the Tits group, U3(9), J3, 3D4(2),
G2(4), U3(13), U3(17) and McL. They also apply the standard disjoint subgroup factori-
sation to prove that the general and the projective general linear groups have an MLS.
Holmes [7] proved the existence of an MLS for sporadic groups J1, J2, HS, McL, He

and Co3.
It is still an open question that whether all finite simple groups have an MLS. The aim

of this paper is to prove the existence of an MLS for some new simple groups. In the end
of this paper, a gap in the proof of a recently published paper [8] is reported. Our main
result is:

Theorem. The following simple groups have MLS:

(1) The Suzuki group Sz(q), when q = 22m+1, r = 2m+1 and one of q +r +1 or q −r +1
is a prime number.

(2) The untwisted group G2(4) and the sporadic Suzuki group Suz.

Throughout this paper our notation is standard and can be taken from the famous book
of Huppert [10].

2 Main results

The aim of this section is to prove our main theorem. As a consequence of our
result, the existence of an MLS for the simple groups Sz(27), Sz(211), Sz(219),
Sz(229), Sz(247), Sz(273), Sz(279), Sz(2113), Sz(2151), Sz(2157), Sz(2163), Sz(2167),
Sz(2239), Sz(2241), Sz(2283), Sz(2353), Sz(2367), Sz(2379) and the sporadic group Suz are
deduced.

2.1 MLSs for some Suzuki groups

Following Suzuki [25], a group G is called a ZT −group if G acts on a set � in such
a way that, (1) G is a doubly transitive group on 1 + N symbols, (2) the identity is
the only element which leaves three distinct symbols invariant, (3) G contains no normal
subgroup of order 1 + N , and (4) N is even. Suzuki proved that for each prime power
q = 22m+1, there is a unique ZT −group Sz(q) of order q2(q − 1)(q2 + 1) which is
called later the Suzuki group. This group is simple, when q > 2. Suppose that r = 2m+1,
a is a symbol on which G acts and H = Ga . By [25], it follows from the conditions
(1) and (2) that H is a Frobenius group on � \ {a}. Apply a well-known result of Frobe-
nius to deduce that H contains a regular normal subgroup Q of order N such that every
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non-identity element of Q leaves only the symbol a invariant. Suppose b ∈ � \ {a} and
K = Hb. Suppose x ∈ NG(K) is an involution. Then it is well-known that the Suzuki
group are containing two elements y and z such that y is an involution and xyx = z−1xz,
and three cyclic subgroups A0, A1 and A2 of orders q − 1, q + r + 1 and q − r + 1,
respectively.

The Suzuki groups can be defined as a subgroup of GL(4, q). To do this, we assume that
K = GF(q). Define:

S(a, b) =

⎛

⎜
⎜
⎝

1 0 0 0
a 1 0 0
b ar 1 0
ar+2 + ab + br ar+1 + b a 1

⎞

⎟
⎟
⎠ ;M(k) =

⎛

⎜
⎜
⎝

k1+2m
0 0 0

0 k2m
0 0

0 0 k−2m
0

0 0 0 k−1−2m

⎞

⎟
⎟
⎠ ,

where a, b, k ∈ K and k �= 0. Consider S(q) and K(q) to be the subgroups generated by
all S(a, b) and M(k), respectively. Suppose

T =

⎛

⎜
⎜
⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞

⎟
⎟
⎠ .

Then by [25], the Suzuki group Sz(q) has the following properties:

(1) The Suzuki group Sz(q) can be generated by S(q), K(q) and T .

Table 1 Some Values of m such that 22m+1 − 2m+1 + 1 or 22m+1 + 2m+1 + 1 is a Prime Number

m 22m+1 + 2m+1 + 1 22m+1 − 2m+1 + 1

1 � 23 + 22 + 1 = 13 � 23 − 22 + 1 = 5

2 25 + 23 + 1 = 41 � 25 − 23 + 1 = 25

3 27 + 24 + 1 = 145 � 27 − 24 + 1 = 113

5 � 211 + 26 + 1 = 2113 211 − 26 + 1 = 1985

9 � 219 + 210 + 1 = 525313 219 − 210 + 1 = 523265

14 � 229 + 215 + 1 = 536903681 229 − 215 + 1 = 536838145

23 247 + 224 + 1 = 140737505132545 � 247 − 224 + 1 = 140737471578113

36 273 + 237 + 1 � 273 − 237 + 1

39 279 + 240 + 1 � 279 − 240 + 1

56 2113 + 257 + 1 � 2113 − 257 + 1

75 2151 + 276 + 1 � 2151 − 276 + 1

78 � 2157 + 279 + 1 2157 − 279 + 1

81 � 2163 + 282 + 1 2163 − 282 + 1

83 2167 + 284 + 1 � 2167 − 284 + 1

119 2239 + 2120 + 1 � 2239 − 2120 + 1

120 2141 + 2121 + 1 � 2241 − 2121 + 1

141 � 2283 + 2142 + 1 2283 − 2142 + 1

176 2353 + 2177 + 1 � 2353 − 2177 + 1

183 2367 + 2184 + 1 � 2367 − 2184 + 1

189 � 2379 + 2190 + 1 2379 − 2190 + 1

�denotes prime numbers
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Table 2 Generators of the
Subgroup P32 1 bxby3x2by2b−1x3yxa

2 yxz2b−1ywz

3 by2b−1xy(xbx)2(zw)2bz2b

4 zb−2xy2a(b−1y)4x2yb−1

5 xy3b−1xyxz3w

(2) The subgroup S(q) is a 2−Sylow subgroup of Sz(q) of order q2.
(3) The subgroup K(q) is cyclic of order q − 1 and S(q) ∩ K(q) = 1.
(4) If H(q) = NSz(q)(S(q)) then H(q) = S(q) : K(q), where A : B denotes a semidirect

product of A by B.
(5) Sz(q) are having two cyclic subgroups U1 and U2 of orders q − r + 1 and q + r + 1,

respectively.

We notice that from these properties of Suzuki groups, it is immediately proved that
|Sz(q)| = q2(q − 1)(q + r + 1)(q − r + 1).

We are now ready to prove if q−r +1 or q+r +1 are prime then the Suzuki group Sz(q)

has an MLS. To do this, we first prove that (q + r + 1, q − r + 1) = 1 and (q2(q − 1), q ±
r +1) = 1. To do this, we assume that a = (q +r +1, q −r +1), b = (q2(q −1), q ±r +1)

and c = (q − 1, q ± r + 1). Since a is an odd integer dividing 2r , a = 1. But, c is an
odd integer that divides (q + r + 1)(q − r + 1) − (q − 1)(q + 1) = 2. Thus, c = 1 and
(q − 1, q ± r + 1) = (q ± r − 1, q2) = 1. So (q2(q − 1), q ± r + 1) = 1.

Next we show that for each g ∈ Sz(q), U
g

1 ∩ H(q) = U
g

2 ∩ H(q) = 1, and that the
subgroups U1, U2 and H(q) have MLS. To prove, we notice that by (4), |H(q)| = q2(q−1)

and (|H(q)|, |U1|) = (|H(q)|, |U2|) = 1. On the other hand, by [4, Proposition 3.1], every
solvable group has an MLS and so the subgroups U1 and U2 have MLS. On the other hand,
by [7, Condition 2.1], if a group G has a normal subgroup K such that G

K
∼= H and H and

K both have minimal logarithmic signature, then G has a minimal logarithmic signature.
Again by (4), H(q) is a split extension of a solvable group by a cyclic group that implies
that H(q) has an MLS.

Finally, by double coset decomposition, we can assume that |Sz(q)| = ∪m1
i=1H(q)giU1 =

∪m2
j=1H(q)hjU2. Thus, q2(q − 1)(q − r + 1)(q + r + 1) = Sz(q) = m1|H(q)||U1| =

m2|H(q)||U2|. This implies that m1 = q + r +1 and m2 = q − r +1. We now apply double
coset decomposition to deduce that the Suzuki group Sz(q), q + r +1 or q − r +1 is prime,
has an MLS. This completes the first part of our main theorem.

In the end of this section, we first record in Table 1 some values of m, 1 ≤ m ≤ 200,
such that at least one of 22m+1 −2m+1 +1 or 22m+1 +2m+1 +1 is a prime number. Then we
use these information and our result for to find 18 new Suzuki groups with an MLS. Notice
that the existence of an MLS for Sz(23) in [4] and for Sz(25) in [11] were presented. Our
calculations are recorded in Table 3.

Table 3 The Existence of MLS for some New Suzuki Groups

Sz(23) [4] Sz(25) [11] Sz(27) Sz(211) Sz(219)

Sz(229) Sz(247) Sz(273) Sz(279) Sz(2113)

Sz(2151) Sz(2157) Sz(2163) Sz(2167) Sz(2239)

Sz(2241) Sz(2283) Sz(2353) Sz(2367) Sz(2379)
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Table 4 Elements of Set A13
1 Id(G2(4))

2 bx(xy)2b−1x2y3xa(bx)2

3 (bz)2b−1(y2b−1x)2xbyx2a

4 zb2y3xyb−1xz2(bx)2zb−2x

5 xz2(bx)2zw(bx)3by2a

6 yw3b−1(wbzw)2w

7 yxz2w2b2yx2(yb−1)2y2a

8 z2wb2ya(b−1y)3wb2yx2

9 (bx)2y(xb)2x2y3b−1xz3

10 yx4(z2wbz)2zw

11 by3b−1(xb)2x(zbzw)2

12 xya(bx)2zb−1(yb−1x)2xby2b−1

13 x2zw(bx)2y6x2

2.2 MLSs for untwisted group G2(4) and the Sopradic group Suz

Our calculations given this section are done with the aid of GAP [27] and ATLAS of Finite
Group Representations - Version 3 [1]. The aim of this section is to prove the existence of
MLS for untwisted group G2(4) and the sporadic group Suz.

We first consider the untwisted group G2(4) of order 251596800 = 212· 33· 52· 7 ·
13. The group G2(4) is primitive and its point group stabilizers are maximal subgroups
[3, Corollary 1.5.A]. Choose H = G1, the stabilizer of point 1 which is a maximal subgroup
isomorphic of the Janko group J2. This maximal subgroup has a transversal T of size 416
and so G2(4) = H · T . We are looking for a subgroup P32 and a subset A13 such that
T = P32 ·A13. Consider the permutation representation G2(4) = 〈a, b〉 on these 416 points,
see [1]. Set x = ab, y = ab−1, z = ba and w = b−1a. The elements of a generating set for
P32 are recorded in Table 2.

In Table 4, the elements of A13 are recorded. By [3, Theorem 1.4.A], if G is a group
acting on a set �, x, y ∈ G and α ∈ �, then αx = αy if and only if Gαx = Gαy. Hence the
set T is a right transversal of H if each t ∈ T maps point 1 to distinct points. Now a simple
calculation by GAP shows that G2(4) = HP32A13, since 416 elements of T map point 1
to 416 distinct points. By Holmes [7], H has an MLS and since P32 is a 2−group, it has
an MLS. On the other hand, the number of elements of A13 is prime and so G2(4) has an
MLS.

We now consider the sporadic group Suz of order 448345497600 = 213 ·37 ·52 ·7·11·13.
In [7], it is proved that if G2(4) has an MLS then Suz has an MLS. So, by above argument
Suz has MLS.

3 Concluding remarks

In this paper the problem of existence of a minimal logarithmic signature is considered into
account. It is proved that under some conditions the Suzuki group Sz(q) has minimal log-
arithmic signature. We also proved that the untwisted group G2(4) has also MLS. As a
consequence, it is firstly proved that the simple groups Sz(27), Sz(211), Sz(219), Sz(229),
Sz(247), Sz(273), Sz(279), Sz(2113), Sz(2151), Sz(2157), Sz(2163), Sz(2167), Sz(2239),
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Sz(2241), Sz(2283), Sz(2353), Sz(2367), Sz(2379) and the sporadic group Suz have MLS.
We believed our method can be applied for some other classes of simple groups that there is
enough information on their subgroup lattice. An example of such simple groups are simple
unitary groups PSU3(2n), where n > 1 and 2n +1 or 22n −2n +1 are primes. The structure
of maximal subgroups of PSU3(q) are given in [6, 12]. So, by a similar argument as the
case of simple Suzuki groups Sz(q), we can prove that the simple unitary groups PSU3(2n)

under above conditions have MLS. It is merit to mention here that the existence of MLSs
for the unitary group Un(q) and the projective special unitary group PSUn(q) are proved
in a recent paper by Hong et al. [9].

In the end of this paper we would like to report a gap in the proof of some results in a
recently published paper [8]. Notice that it is possible that H ∩ K = 1 and |G| = |H ||K|,
but G �= HK . So, [H, K] is not an LS. On the other hand, if H and K are subgroups of
G such that G = HK and H ∩ K = 1 then [H, K] is an LS for G. In [8, Theorem 4], the
authors first used a result in [2] to prove that there are two maximum cyclic tori T1 and T2
of orders q + √

2q + 1 and q − √
2q + 1, respectively. Then they considered the stabilizer

subgroup Gw and claimed that [T1, T2,Gw] is an LS for Sz(q). To apply the mentioned
result we have to prove that [T1T2 is a subgroup of Sz(q) and T1T2 ∩ Gw = 1] or [T2Gw

is a subgroup of Sz(q) and T1 ∩ T2Gw = 1]. But the structure of subgroups of Suzuki
groups given by Suzuki in [25] shows that T1T2 and T2Gw are not subgroups of Sz(q). This
shows that the problem of existence of an MLS for Sz(q), in general, is still open. In the
same manner, they claimed that all exceptional groups of Lie type have minimal logarithmic
signatures. Hence the problem of existence an MLS for the exceptional groups of Lie type
is still open.
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