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Gene therapy is, potentially, a powerful tool for treating
neurodegenerative diseases such as amyotrophic lateral
sclerosis (ALS), spinal muscular atrophy, Parkinson’s
disease (PD) and Alzheimer’s disease (AD). To date,
clinical trials have failed to show any improvement in
outcome beyond the placebo effect. Efforts to improve
outcomes are focusing on three main areas: vector de-
sign and the identification of new vector serotypes,
mode of delivery of gene therapies, and identification
of new therapeutic targets. These advances are being
tested both individually and together to improve effica-
cy. These improvements may finally make gene therapy
successful for these disorders.

Gene therapy: theory and practicalities
In theory, gene therapy is a straightforward process. A
disease is treated by delivery of a transgene that either
replaces or corrects a defective gene, or generally supports
cells in the disease environment. In practice, it is consid-
erably more complex, and a variety of factors need to be
optimized. The correct vector needs to be selected, the
appropriate mode of delivery optimized, and the transgene
chosen. The interaction between the host immune system
and the vector or transgene may further complicate thera-
py. For neurodegenerative diseases, the nature of the
target tissue adds an extra layer of complexity.

Gene therapy vectors can be either viral or non-viral.
Viral vectors harness the natural ability of viruses to infect
cells. Their genomes are modified to remove genes that
would allow them to replicate, rendering them translatable
for clinical use. For neurodegenerative diseases the two
most common viral vectors used are adeno-associated vi-
ruses (AAVs; see Glossary) and lentiviruses. AAV and
lentiviral vectors have the ability to infect both dividing
and non-dividing cells. However, lentivirus integrates into
the host genome, while AAV does not. Integration confers
stable, long-term expression, but also raises the possibility
of integrational mutagenesis. Although AAV is non-inte-
grating, it can still deliver stable gene expression in non-
dividing cells [1,2]. Non-viral vectors usually consist of
naked plasmid DNA or in complex with cationic lipids or
polymers. They have a localized effect and require a higher
therapeutic dose than viral vectors. In general, non-viral
delivery confers only transient gene expression, which is
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usually not sufficient for the treatment of chronic neuro-
degeneration.

The delivery route is an important consideration, espe-
cially to the central nervous system (CNS). Remote deliv-
ery, via intravenous injection, has the advantage of being
non-invasive. However, the blood–brain barrier (BBB) is a
significant obstacle hindering the passage of most vectors
into the CNS. Thus, the discovery that AAV9 has the
ability to cross the BBB was significant [3]. The disadvan-
tages of remote delivery are the increased risk of off-target
effects and the need to deliver a greater dose to achieve a
therapeutic dose in the target tissue. Direct delivery to the
CNS limits off-target effects and reduces the required dose
of the gene therapy vector. In the CNS this can be achieved
via intraparenchymal injection (directly into the brain or
spinal cord) or injection into the cerebrospinal fluid [CSF;
either intracerebroventricular (ICV) or intrathecal]. Both
intrathecal delivery and direct spinal cord injection have
been demonstrated to be safe [4,5], as well as direct injec-
tion into the human brain [6,7]. The proposed transgene
can target the specific gene causing the disease, if known,
or target a pathway or process within the disease. As more
is understood about the disease process and progression,
additional potential therapeutic targets can be identified.

There have been several gene therapy clinical trials for
neurodegenerative diseases. One of the first trials for AAV-
mediated gene therapy was for Canavan disease, which is
caused by a mutation in the aspartoacylase (ASPA) gene.
AAV2-ASPA was injected into the brain and the patients
were monitored for up to 10 years post-surgery [8]. Follow-
up showed a slowed progression in brain atrophy with
some improvement in seizure frequency [8]. Recently,
the first trial to deliver AAV9 intrathecally delivering
the gigaxonin gene (GAN) (ClinicalTrials.gov registry
number NCT02362438) to treat giant axonal neuropathy
(GAN) has begun to recruit patients. However, many of the
clinical trials have not demonstrated efficacy (Table 1).
Efforts in improving vectors, targeting delivery, and
expanding the choice of possible transgenes should in-
crease efficacy in gene therapy trials.

Parkinson’s disease
PD is a neurodegenerative disease that is characterized by
loss of the dopaminergic neurons of the substantia nigra
pars compacta (SNc) and reduction of levels of dopamine in
the striatum. Symptoms include rigidity, resting tremor,
and motor function impairment, including freezing
and bradykinesia. The current standards of care include
dopamine replacement with drugs such as levodopa, a 
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Glossary

Acyl-CoA:cholesterol acyltransferase (ACAT) 1: an endoplasmic reticulum

enzyme that modulates build-up of cholesterol in membranes by converting it

to cholesterol esters.

Adeno-associated virus (AAV): non-enveloped, non-integrating virus with the

ability to infect dividing and non-dividing cells.

Alzheimer’s disease (AD): a progressive disorder characterized by problems

with memory, thinking, and behavior.

Amyloid b (Ab): peptide that form the main component of plaques in

Alzheimer’s disease.

Amyotrophic lateral sclerosis (ALS): a progressive disorder resulting from loss

of upper and lower motor neurons in the brain, brainstem, and spinal cord that

is usually fatal within 2–5 years from diagnosis. ALS can be familial or sporadic

in origin.

Antisense oligonucleotides (ASOs): short fragments of nucleic acid that bind to

their target sequence and inhibit translation.

Blood–brain barrier (BBB): composed of endothelial cells of microvessels

which form a barrier to the entry of most blood-borne substances to the brain.

It excludes toxic substances and maintains a stable environment.

Convection enhanced delivery (CED): a pressurized infusion technique that

allows therapies to be delivered to large volumes of the brain.

Deep brain stimulation (DBS): the implantation of electrodes into specific parts

of the brain to control movement and affective disorders.

Glycosaminoglycan (GAG): a long unbranched polysaccharide; accumulation

can cause mucopolysaccharidosis (MPSI).

Granulocyte colony stimulating factor (G-CSF): a hematopoietic factor

important in regulating production of blood cells and in bone marrow stem

cell survival.

Hypoxia-inducible factor (HIF1): a core regulatory factor that regulates gene

expression during hypoxia.

Insulin-like growth factor 1 (IGF1): a neurotrophic factor that promotes

neuronal survival.

Intracerebroventricular (ICV): delivery of a therapeutic factor directly into the

ventricles of the brain, bypassing the BBB.

Parkinson’s disease (PD): disorder characterized by loss of dopaminergic

neurons in the substantia nigra. Symptoms include rigidity, resting tremor, and

motor function impairment.

Magnetic resonance imagery (MRI): a technique that uses a magnetic field and

radio waves to create detailed images of tissues and organs.

Metachromic leukodystrophy (MLD): is caused by an inherited mutation in

arylsulfatase A (ARSA). Symptoms results from sulfatide accumulation in

Schwann cells, oligodendrocytes and brain neurons.

Nerve growth factor (NGF): a neurotrophic factor that is important for the

survival and maintenance of sympathic and sensory neurons, and induces

axonal growth.

Neurturin (NRTN): a neurotrophic factor related to GDNF. It enhances

dopaminergic neuron survival.

Nonsense-mediated mRNA (NMR) decay: a mechanism for degrading

transcripts with a premature termination codon.

Spinal muscular atrophy (SMA): infantile form of motor neuron disease caused

by the loss of the SMN1 gene. Prognosis varies depending on the severity of

the disease.

Spinocerebellar ataxia (SCA): a neurodegenerative disease caused by muta-

tions in ataxin genes.

Substantia nigra par compacta (SNc): an area of the brain that serves as an

input to the basal ganglia circuit. It supplies the striatum with dopamine.

Superoxide dismutase 1 (SOD1): an enzyme that converts the superoxide

radical to either molecular oxygen or hydrogen peroxide. Mutations in the

SOD1 gene can cause ALS.

Survival motor neuron 1 (SMN1): a housekeeping protein that from complexes

with gemin proteins in the nucleus. It functions is assembling small nuclear

ribonucleoproteins and in pre-mRNA splicing.

Trimethoprim (TMP): an antibiotic with the ability to cross the BBB.

Vascular endothelial growth factor (VEGF): an angiogenic factor with

neurotrophic and neuroprotective properties.
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dopamine precursor, and deep brain stimulation (DBS).
Levodopa can restore some motor function with varying
efficiency; however, as PD progresses levodopa becomes
less effective and its side effects become more pronounced.
DBS has been effective at treating the symptoms of PD but
does not target the cause. Moreover, DBS can exacerbate
the cognitive and emotional deterioration that can char-
acterize late-stage PD [9].

The possibility of using gene therapy to treat PD has
been explored extensively. Several gene therapy trials
have fulfilled the Phase I safety criteria and suggested
some efficacy [10]. However, when advanced to controlled,
blinded Phase II trials, the majority have failed to show
improvement beyond the placebo effect. The only trial to
show efficacy in a controlled, blinded Phase II trial was
delivery of AAV2-glutamic acid decarboxylase (GAD) by
direct injection into the subthalamic nucleus
(NCT00643890) [11]. Patients who received AAV2-GAD
had improvement in symptoms over control patients; how-
ever, this improvement was not greater than that seen
with the current standard of care, and the study was
terminated. Another trial used AAV2 to deliver neurturin
(NRTN) (Cere-120) to the putamen to support the dopa-
minergic neurons (NCT00400634) [12]. Analysis of post-
mortem brain tissue from Phase II trial patients found that
although there was an increase in NRTN expression in the
injected area of the striatum/putamen, there was no cor-
responding increase in the substantia nigra [13]. This was
thought to be due to failure of retrograde transport of the
dopaminergic neurons. To address this issue a Phase IIb
trial was undertaken in which both the putamen and the
substantia nigra were injected. The dose was also in-
creased with the aim of increasing transduction of the
putamen. Preclinical data showed that this strategy sig-
nificantly increased NRTN expression [14,15]; however,
results from this Phase IIb trial showed no improvement in
clinical outcome for the participants [16]. The trial coordi-
nators hypothesized that the degenerative state of the PD
brain may have affected transport of NRTN through the
brain. Secondary outcome measures suggested that NRTN
expression may have improved younger patients treated
earlier in their disease course, arguing that growth factor
gene therapies need to be delivered before neurodegenera-
tion has progressed extensively.

The Prosavin trial targeted the dopamine synthesis
pathway, using a tricistronic lentiviral vector to deliver
the genes encoding the rate-limiting dopamine biosynthe-
sis enzymes tyrosine hydroxylase, aromatic amino acid
dopa decarboxylase (AADC) and GTP cyclohydrolase I
(GCH1) [17,18]. A tricistronic vector is advantageous as
cells transduced with the vector will express all three
enzymes. The clinical trial entailed a Phase I/II dose-
escalation study (NCT00627588 and NCT01856439) tar-
geting the sensorimotor part of the striatum and the
putamen. The trial achieved its goal in demonstrating
the safely profile of Prosavin. The efficacy data also showed
promise, with improvement in motor function in the off-
medication state that correlated with increasing dose of
Prosavin [18]. However, given that this was an open-label
trial, the efficacy results have to been interpreted cautious-
ly. Palfi et al. noted that the improvement observed in
patients was within the placebo effect range seen in other
clinical trials. The investigators intend to optimize the
delivery method and then proceed to a double-blinded
randomized trial to determine the efficacy of Prosavin.

AADC was also used as the sole therapeutic transgene in
two Phase I clinical trials using AAV2 as the viral vector
[19,20]. Long-term follow-up determined no adverse safety
events and stable AADC expression after 4 years. An im-
provement in the unified PD rating scale (UPDRS) was
observed in the first 12 months, but slowly deteriorated 
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Table 1. Gene therapy trials for neurodegenerative diseases

Disease Gene therapy Delivery route Trial code Current status

ALS ASOs to SOD1 Intrathecal NCT01041222 Phase I safety trial successful

Pompe’s disease AAV1-GAA Intramuscular injection

targeting the diaphragm

NCT00976352 Phase I/II trials showed treatment well

tolerated

Pompe’s disease AAV9-GAA Intramuscularly into

the TA muscle

NCT02240407 No results posted

MLD AAVrh10-ARSA Intracerebrally NCT01801709 No results posted

MPSIIIA AAVrh10-SGSH

and SUMF1

Direct brain injection NCT01474343

NCT02053064

Phase I/II trial. No safety issues with

preliminary efficacy data

SMA AAV9-SMN Intravenous NCT02122952 Phase I trial started 2014

SMA ASOs targeting

SMN2 splicing

Intrathecal NCT0149701,

NCT01703988,

NCT02052791,

NCT02193072,

NCT02292537

Phase I–III trials. No study results posted

Alzheimer’s disease AAV2-NGF Injection into the basal

forebrain

NCT00876863 Phase I successful, treatment well

tolerated.

Phase II initiated but no updates posted

Parkinson’s disease AAV2-GAD Injection into the

subthalamic nucleus

NCT00643890 Phase II successful, showed improvements

over controls. However, not better than

current standard of care and trial was

terminated

Parkinson’s disease AAV2-NTRN Injection into putamen NCT00400634,

NCT00985517

Phase I safety trials successful. Phase II

safety trails did not show efficacy over

control groups

Parkinson’s disease Lentivirus-TH,

AADC, and CH1

Injection into striatum

and putamen

NCT00627588,

NCT01856439

Phase I trial successful. Initial efficacy data.

Delivery system being optimized before

continuing with trial

Parkinson’s disease AAV2-AADC Injection into the putamen NCT02418598 Phase I safety trial successful

Phase II in progress

Parkinson’s disease AAV2-AADC Intrastriatial infusion NCT00229736 Phase I safety trial successful

Review Trends in Molecular Medicine August 2015, Vol. 21, No. 8
 

 

in the following years [21]. Following up on these results,
researchers have focused on improving delivery with the
aim of increasing coverage of the putamen. This has been
demonstrated in non-human primates using an MRI-guided
delivery system with convection enhanced delivery (CED)
[22]. Combining an MRI-guided tracer with the viral vector
has allowed the development of a system that can monitor
the delivery of the gene therapy in real time. AAV2-AADC in
non-human primates using CED has been proven to be a
safe and effective delivery method [22], and a human trial
using iMRI and CED to deliver AAV2-AADC is anticipated
in the near future.

In the area of proof-of-principle testing, there are sev-
eral new therapies in development. Targeting dopamine
synthesis, an AAV5 vector expressing tyrosine hydroxylase
(TH) and GCH1 has been tested in rat and nonhuman
primate models of PD [23]. While results were promising in
the rat model, non-human primate studies did not show
efficacy. This was attributed to lack of expression of TH in
the caudate putamen [24]. The efficacy of cerebral dopa-
mine neurotrophic factor (CDNF) has been assessed by two
groups in rat models of PD [25,26]. Both reported function-
al improvement but only one, Ren et al., reported protec-
tion of TH-producing neurons [25]. These studies are too
preliminary to adequately assess the efficacy of CDNF. The
study of Back et al., in particular, is difficult to interpret
because the gene therapy was administered 2 weeks before
induction of PD [26].

Achieving control over transgene expression could allow
a more nuanced approach to gene therapy. This is relevant
where continuous expression of the transgene could lead to
506
unwanted side effects. In the case of glial derived neuro-
trophic factor (GDNF), it has been found to be effective in
animal models of PD. However, side effects from constitu-
tive expression of GDNF include aberrant axonal sprout-
ing, downregulation of TH and increased turnover of
dopamine [27–30]. Therefore a system where GDNF would
be delivered and expression controlled is needed for PD
therapy [31]. A lentiviral vector expressing GDNF fused to
the destabilizing domain (DD) of E. coli dihydrofolate
reductase has been developed. Trimethoprim is a drug
which can cross the BBB, and binds to the DD domain.
This regulates the stability of the DD domain and, by
extension, the expression of GDNF [32]. When tested in
a rodent model of PD, it protected neurons and improved
motor function [31]. However, it is important to note that
the gene therapy was delivered before PD induction in
these animals. Further study on animals already display-
ing PD symptoms will be necessary to determine its thera-
peutic efficacy.

Amyotrophic lateral sclerosis
ALS (also known as Lou Gehrig’s disease) is a progressive,
fatal neurodegenerative disease. It results from a loss of
both upper and lower motor neurons in the brain, brain-
stem, and spinal cord. It is usually fatal within 2–5 years.
ALS can be either sporadic or familial in origin, and a
variety of genes are linked to disease development
[33]. The only FDA-approved treatment for ALS is Rilutek,
which delays disease progression by 3–6 months. In the
case of familial ALS, gene therapy for ALS can be
approached by targeting a specific mutation. For sporadic 
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ALS, neurotrophic factors can be delivered to support
motor neurons.

For familial ALS, altering the expression of the affected
gene has proven effective. This approach has primarily been
tested for the superoxide dismutase 1 (SOD1) gene because
mutations in SOD1 were among the first to be identified as
causing ALS. Delivering antisense oligonucleotides (ASOs)
to SOD1 intrathecally progressed to a Phase I trial
(NCT01041222), with some patients receiving repeat treat-
ments. Efficacy was not expected, as most patients received
a single dose, but the safety profile of this treatment was
established [34]. One disadvantage of administering ASOs
on their own is the need for constant infusion or repeat
dosing. Using a viral vector to deliver an ASO or a short
hairpin (sh) RNA circumvents this issue. Two proof-of-prin-
ciple studies have used AAV9-SOD1-shRNA to knock down
SOD1 gene expression in rat models. Delivery involved
either direct injection into the motor cortex [35] or temporal
or tail vein injection [36]. Both studies showed delay of
disease onset and extended survival. Foust et al. went on
to demonstrate successful intrathecal delivery and suppres-
sion of SOD1 expression in non-human primates [36], illus-
trating the possibilities for translating this therapy to the
clinic. A third mechanism tested was the intrathecal deliv-
ery of AAV9 expressing a single-chain antibody against
misfolded SOD1. This approach delayed disease onset
and extended lifespan in transgenic mice overexpressing
a mutated form of SOD1 [37]. Although the studies de-
scribed have been focused on SOD1, they have the potential
to be applied to other known ALS-causing mutations.

For sporadic ALS, a more general neuroprotective ap-
proach needs to be adopted. One method of achieving this is
by delivering growth factors to support the motor neurons.
Growth factor delivery has shown promise in preclinical
testing but little efficacy in clinical trials. However, there is
potential for therapeutic efficacy from growth factors. Vas-
cular endothelial growth factor (VEGF) was linked to ALS
when mice with a deletion in the VEGF promoter region
developed motor neuron disease similar to SOD1 mice
[38,39]. Gene delivery experiments resulting in increased
VEGF expression have been tested in ALS animal models.
One of these studies delivered AAV4-VEGF and AAV4-
insulin-like growth factor (IGF1) into the lateral and 4th
ventricles of SOD1 mice [40]. Administered individually
both factors delayed motor decline and extended survival;
however, when delivered in combination the therapeutic
effect was not cumulative. An alternative approach might
be to increase endogenous VEGF production. Delivery of a
plasmid expressing a zinc-finger protein that results in
upregulated endogenous VEGF expression was tested in
SOD1 rats via a series of eight weekly injections into the
gastrocnemius muscle [41]. There was localized improve-
ment in motor function, but, because only one muscle group
was targeted, there was no effect on overall weight or
lifespan [41]. Granulocyte colony stimulating factor
(GCSF/CSF3) is another growth factor that has also been
tested, via intramuscular injection and direct injection into
the spinal cord of SOD1 mice. Unlike VEGF, GCSF only
showed efficacy when injected into the spinal cord [42].

Other potential transgenes that are being assessed in
preclinical studies include those involved in the control of
RNA expression. miRNA 155 was identified as having
increased expression in SOD1 mice and in human ALS
spinal cord samples [43]. Inhibition of miRNA 155 expres-
sion in SOD1 mice, via an oligonucleotide repressor,
resulted in extended survival and disease duration
[44]. Another potential target is upframeshift protein 1
(UFP1), which plays a role in nonsense-mediated mRNA
(NMR) decay [45]. ALS was induced in mice via injection of
AAV9 expressing TAR DNA binding protein TDP-43
(TARDBP) on postnatal day 1, and mice were treated on
the same day with AAV9-UFP1. Treated mice had im-
proved motor scores [46]. Results from this study need
to be interpreted cautiously given the early intervention;
however, identifying UFP1 and NMR as potential thera-
peutic targets in ALS is useful in increasing options for
researchers.

Alzheimer’s disease
AD is a progressive neurodegenerative disorder that is
characterized by problems with memory, thinking, and
behavior. Disease progression is associated with degener-
ation of cholinergic neurons and buildup of amyloid b (Ab)
plaques [47,48]. Familial AD results from mutations in the
amyloid b (A4) precursor protein (APP) gene, or in pro-
teases that cleave the precursor protein into fragments
[49]. The current treatment for AD includes cholinesterase
inhibitors which can provide some symptomatic relief for
some patients [50].

A Phase I clinical trial of AAV2-nerve growth factor
(NGF) injected into the basal forebrain has been completed.
The therapy was well tolerated, with follow-up data for up to
2 years. Analysis of postmortem tissue identified expression
of NGF in an active form [7]. These data supported the
initiation of a controlled Phase II trial to rigorously assess
the effectiveness of AAV2-NGF (NCT00876863); however,
the sponsor recently announced that the Phase II trial failed
to meet its primary endpoints.

Preclinical studies have targeted a variety of processes
in AD, including inhibiting plaque formation, apoptosis,
and using growth factors. One strategy for inhibiting pla-
que formation is to decrease levels of Ab and tau in the
brain. An AAV expressing a miRNA to knockdown acyl-
CoA:cholesterol acyltransferase 1 (ACAT1) was shown to
reduce Ab levels in a triple transgenic mouse model of AD
[51,52]. ASOs were used to inhibit microtubule-associated
protein tau (MAPT) expression in wild type mice; however,
this needs to be assessed in an animal model of AD to
determine if it can affect disease progression [53]. Nepri-
lysin, one of the enzymes involved in brain Ab catabolism,
is decreased in the hippocampus of early-stage AD patients
[54]. Two independent studies delivering the neprilysin/
membrane metallo-endopeptidase (MME) gene in an
AAV9 vector via either intracardiac administration [55]
or direct injection into the right anterior cortex and hippo-
campus [56] were published. Both studies found reduction
in Ab levels in the brain, while Iwata et al. also reported
improvement in memory and learning [55]. Leptin is an-
other factor that has the ability to lessen the symptoms and
pathology of AD [57–59]. A lentiviral vector containing the
leptin gene (LEP) was injected ICV into double-transgenic
AD mice, resulting in reduced Ab load, decreased tau 

 

507



Review Trends in Molecular Medicine August 2015, Vol. 21, No. 8
 

phosphorylation, and improved synaptic density [60]. The
reelin pathway is a potent suppressor of tau phosphoryla-
tion [61], and has also been recognized as a therapeutic
target for AD [62,63]. Reduction in reelin expression has
been linked to early pathophysiology in AD [63,64]. A
lentiviral vector expressing the reelin homolog F-spondin
(SPON1) was injected into the dentate gyrus of the hippo-
campus of AD mice, resulting in improved memory and
learning, and decreased levels of Ab plaque deposits [65].

Targeting apoptosis in AD has been approached by both
knockdown and overexpression of different genes. One of
the toxic effects of Ab is the generation of reactive oxygen
species and induction of apoptosis [66]. A lentiviral vector
expressing a shRNA against caspase 3 (CASP3) was tested
in mice that received an injection of aluminum into the
brain which induced apoptosis, and as a result models AD.
Lentiviral shRNA against CASP3 resulted in reduced
levels of caspase 3 and cell death, and improvements in
learning and memory [67]. AAV-mediated overexpression
of hypoxia inducible factor 1, a subunit (HIF1A) was found
to both diminish the effects of Ab neurotoxicity and de-
crease apoptosis [68]. Using growth factors to provide
neurotrophic support has also been evaluated for AD. A
variety of growth factors have shown promise in animal
studies but have failed at clinical trial, suggesting that the
idea still has merit, but needs refinement and better
targeting. Both AAV8-IGF2 and lentiviral GDNF have
been tested. Although overexpression of GDNF had no
effect on levels of either Ab or tau, it did preserve learning
and memory in a triple-transgenic AD mouse model
[69]. AAV8-IGF2 delivery resulted in significant reduction
in Ab levels in a transgenic mouse model overexpressing
human APP [70]. This result is interesting as the authors
also showed that IGF2 levels were reduced in the hippo-
campus of AD patients, indicating a potential link between
IGF2 levels and AD progression [70]. The identification of
these new targets for AD is promising, but ultimately it is
difficult to assess their true potential until they are fully
tested in clinical trials.

Spinal muscular atrophy
SMA is a childhood form of motor neuron disease and is the
leading genetic cause of infantile death. It results from the
loss of the survival motor neuron 1 (SMN1) gene
[71]. Humans have a second gene, SMN2, which is highly
homologous to SMN1. The differences in SMN2 lead to
alternative splicing at exon 7, which results in the produc-
tion of a truncated, unstable protein. A small fraction of the
SMN2 transcript is properly spliced, producing a full-length
transcript. The severity of the disease rests on the number of
copies of SMN2 and the amount of full-length SMN gener-
ated from SMN2 [72]. As the cause of SMA has been
identified as a single gene, it makes SMA an ideal candidate
for gene therapy. Replacement of SMN1 has shown efficacy
in mouse models of SMA [73–76]. These studies used both
intravenous and intrathecal delivery of AAV9 to achieve
SMN1 expression in the spinal cord. They also demonstrat-
ed that both modes of delivery were translatable by testing
the mode of delivery in non-human primates. A Phase I trial
(NCT02122952) testing intravenous delivery of AAV9-SMN
in SMA patients was initiated in April 2014. This phase is
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testing the safety and efficacy of increasing doses of AAV9-
SMN and is scheduled to end in 2017. This study represents
a significant advance in the potential to treat SMA. In
addition, it is necessary to bear in mind that the severity
of SMA and the timing of the intervention will have a large
impact on the study outcomes. The issue of timing of AAV9-
SMN delivery was addressed by Duque et al. using a pig
model of SMA, where the disease is induced by knockdown of
SMN1 expression [77]. SMN1 gene expression was restored
by intrathecal delivery at different time-points. Gene deliv-
ery of SMN1 in pigs pre-symptomatically did not develop
disease symptoms or limb weakness. These animals also
had correction of pathological changes associated with SMA.
Animals treated at symptom onset showed delayed progres-
sion of disease but only partial improvement in motor
neuron numbers. Intervention at the symptomatic stage
was effective if initiated without delay. These results have
clear implications for treating SMA patients and clinical
trial design [77].

The second therapeutic option for SMA is to target
splicing of SMN2 to promote the synthesis of full-length
transcripts. This can be achieved using ASOs that target
exon 7 and promote its inclusion in the mRNA transcript.
The efficacy of this approach has been demonstrated in two
separate preclinical studies on mouse models of SMA
[78,79]. Both studies reported improved motor function
and survival. Targeting of SMN2 mRNA splicing by ASOs
has already been tested in a clinical trial. ASOs delivered
intrathecally to SMA patients using multiple-dosing para-
digms were tested: single dose (NCT0149701) and multiple
doses (NCT01703988, NCT02052791), but to date no
results have been published. Two separate Phase III trials
(NCT02193072 and NCT02292537) have been initiated but
no results have been published.

Spinocerebellar ataxia
Spinocerebellar ataxia (SCA) describes a heterogeneous
family of neurodegenerative diseases. They result from
expanded CAG repeats in one of the ataxin genes. Symp-
toms are caused by cerebellum and brainstem dysfunction
[80]. Because SCA is a monogenic disorder, much of the
focus in preclinical studies has been on either knockdown
or inhibition of the affected gene. This has been achieved in
several different animal models of SCA. The majority of
studies have focused on SCA3, which is also known as
Machado–Joesph disease. RNAi, encoded by either a len-
tiviral or AAV vector, has been used to suppress ataxin 3
(ATXN3) expression after delivery via direct brain injec-
tion. Results from these studies showed improvement both
in tissue pathology and in behavioral testing [81–
83]. SCA1 and SCA7 have been targeted in a similar
manner [84,85]. Results from these studies show great
promise for RNAi as a treatment for multiple forms of
SCA. However, because some of the therapeutics were
administered as SCA was induced, further study is needed
to determine how effective RNAi would be when adminis-
tered post-symptomatically.

Lysosomal storage diseases
Lysosomal storage diseases encompass over 50 different
individual diseases. They arise from defective catabolism 
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of macromolecules and their accumulation within lyso-
somes [86]. The most common form of treatment is for
enzyme replacement therapy [87]. However, owing to the
inability of large molecules to cross the BBB, this treat-
ment is ineffective for lysosomal storage diseases that have
a neurological component. Gene therapy treatments have
been tested and some have advanced to clinical trial for
particular lysosomal storage diseases.

Pompe’s disease is caused by deficiency in lysosomal
acid a-glucosidase (GAA), which leads to glycogen accumu-
lation in muscle and motor neurons [88]. There are cur-
rently two clinical trials testing AAV-mediated gene
therapy for Pompe’s disease. The first trial (NCT
00976352) is delivering AAV1-GAA to the diaphragm via
intramuscular injection. Preclinical data demonstrated
that both systemic and directed delivery of AAV1-GAA
had therapeutic benefit [89,90]. Results from the initial
Phase I/II safety trial showed that the treatment was well
tolerated and safe. After 180 days the unassisted tidal
volume in patients had significantly increased. However,
maximal inspiratory pressure was not improved [91].
The researchers are hoping that an earlier intervention
will provide functional benefit. The second trial
(NCT02240407), which will be conducted by the same
research group, is a Phase I safety trial, injecting AAV9-
GAA intramuscularly. Patients that will be treated will
have late-onset Pompe’s disease. Preclinical data showed
intramuscular injection of AAV1-GAA and AAV9-GAA to
be therapeutically effective, with AAV9 showing better
targeting of motor neurons [92]. Recent preclinical studies
have shown functional improvements with alternative
sites to target for therapy such as intrapleural [93] and
spinal cord injection [94]. A further study addressed the
problem of an immune response to the gene therapy. An
anti-CD4 monoclonal antibody was administered together
with the AAV-GAA gene therapy and was found to help to
control the humoral response [95].

Metachromic leukodystrophy (MLD) is caused by an
inherited mutation in arylsulfatase A (ASA). Symptoms
result from sulfatide accumulation in Schwann cells, oli-
godendrocytes, and brain neurons [96]. There is no current
treatment. A Phase I clinical trial is underway delivering
AAVRh10-ARSA intracerebrally to early or presymptom-
atic MLD patients (NCT01801709). No results have been
published for this trial, but the proof-of-concept study in a
mouse model of MLD (expressing a disrupted form of ASA)
showed that delivery of a single injection of AAVRh10-
ARSA corrected brain sulfatide accumulation and associ-
ated brain pathology in the injected hemisphere [97]. An
alternative to direct brain injection was explored in a
mouse knockout model of MLD, where AAV9-ASA was
administered via the jugular vein in neonatal mice.
Long-term gene expression was detected together with
inhibition of accumulation of sulfatide [98]. This form of
delivery could be feasible in early forms of MLD.

Mucopolysaccharidosis type III A (MPSIIIA), also known
as Sanfilippo type A, is caused by a mutation in the lyso-
somal heparan-N-sulfamidase gene (SGSH). Symptoms in-
clude cognitive delay, abnormal behavior, and seizures
[99]. There are two Phase I/II trials (NCT01474343
and NCT02053064), one a long-term follow-up of the first,
looking at the effectiveness of direct brain injection of
AAVRh10-SGSH and sulfatase-modifying factor (SUMF1),
which activates the catalytic site of SGSH. In the trial
patients received bilateral injections into the white matter
anterior, medial, and posterior to the basal ganglia. There
were no safety issues associated with the vector, and there
were some preliminary efficacy data with stability in regard
to brain atrophy for some patients and possible improve-
ments in behavior and sleep [100]. Several preclinical stud-
ies have tested both different AAV serotypes and different
modes of delivery to correct MPSIIIA [101–103]. All report
widespread transgene expression, correction of GAG accu-
mulation and storage, and prolonged survival.

Mucopolysaccharidosis type III B (MPSIIIB) is caused
by mutation in the gene encoding lysosomal enzyme a-N-
acetylglucosaminidase (NAGLU). This disrupts the degra-
dation of heparin sulfates, leading to their accumulation in
lysosomes, with cells of the CNS being the most affected
[104]. Gene therapy to increase NAGLU expression has
been tested preclinically. Delivery of AAV9-NAGU via
either an intravenous injection [105] or direct CSF delivery
[106] to MPSIIIB mice resulted in correction of pathology
in the CNS and in peripheral tissue. The neurological
benefits were long-term, and survival in these mice was
significantly extended. Delivery of AAV9-NAGLU to non-
human primates resulted in no adverse events associated
with the vector, but there was an antibody response to both
the vector and the transgene. The level of the anti-NAGLU
antibody correlated with a loss of circulating enzyme, but
did not affect levels of enzyme in the tissue [107]. Delivery
in dogs, both naı̈ve and with preexisting immunity to
AAV9, resulted in stable levels of transgene expression
[106].

Mucopolysaccharidosis type 1 (MPSI), also known as
Hurler disease, is a lysosomal storage disease that results
from mutations in the a-L-iduronidase (IDUA) gene. The
enzyme is involved in the degradation of glycosaminogly-
cans (GAG) and mutation results in the accumulation of
partially degraded compounds in lysosomes. This leads to
skeletal abnormalities, cardiac and pulmonary disease,
and progressive neurological disease [108]. Delivery of
AAV8-IDUA via ICV injection [109] or AAV9-IDUA via
intraventricular delivery [110] to MPS1 mice resulted in
increased enzyme levels in the brain in both studies.
Janson et al. reported a reduction in neuronal inclusions
[110]. Wolf et al. reported that gene delivery prevented the
accumulation of GAG and the emergence of neurocognitive
dysfunction [109]. A large-animal study in a feline model of
MPS1 reported that intrathecal delivery of AAV9-IDUA
resulted in almost complete correction of both biochemical
and histological markers of the disease. There was an
immune response which reduced the ability to detect the
enzyme, but this did not appear to affect the efficacy of the
treatment [111].

Sandhoff’s disease is a lysosomal storage disease that
results from mutations in the N-acetyl-b-hexosaminidase
b subunit (HEXB) gene. These lead to accumulation of
GM2 in the lysosomes in the CNS, and currently there is no
effective treatment [112]. Therapeutic success was seen in
a hexb knockout mouse model of Sandhoff’s disease. AAV2-
HEXB was injected into the right striatum. This was found 
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to prevent decline in neuronal density and this correlated
directly with an increase in lifespan [113]. In a feline model
of Sandhoff’s disease, AAV8Rh8 expressing b-hexosamini-
dase a and b subunits (HEXA/HEXB) was injected into the
striatum and delivered ICV [114] and bilaterally into the
thalamus and deep cerebellar nuclei [115]. Both studies
reported an increase in enzyme activity and improved
neurological function. McCurdy et al. reported that there
was a humoral response to the vector but this did not
appear to affect the therapeutic outcome [115].

Concluding remarks and future perspectives
Gene therapy has the potential to significantly advance
the treatment of neurodegenerative diseases. However,
success in bridging the gap between promising proof-of-
principle concepts to therapeutic efficacy in clinical trials
has remained elusive. Initial trials have demonstrated
that delivery of gene therapies to the CNS is safe and
well-tolerated [4,18,116]. To improve delivery, new vec-
tors have been identified and developed. An example is
AAV9, which can cross the BBB and has a strong neuronal
tropism. Although it must be noted that the transduction
pattern of AAV9 has been shown to change from neurons
to astrocytes in mice depending on their age at adminis-
tration [117]. In addition, the manufacturing costs to
provide sufficient AAV9 for an intravenous delivery in
human trials are significant. This restricts the number of
instances in which AAV9 could be delivered systemically.
Another noteworthy advance in viral vectors is the tricis-
tronic lentiviral vector being used in the Prosavin trial. A
further area where progress is being made is in the
methods of delivery for gene therapies to the CNS. Deliv-
ery methods such as ICV, intrathecal, and direct injection
into the brain and spinal cord are being developed and
refined. Improvements in vectors and delivery methods
will only show an effect if the therapeutic gene selected is
efficacious. The most significant area of development is in
the identification and testing of new therapeutic genes.
This is based on a better understanding of disease initia-
tion and progression. Better understanding of the etiology
of neurodegenerative diseases will also likely lead to
earlier diagnosis, which will allow intervention before
the targeted cells are lost. One area where this is being
pursued is in the identification and validation for bio-
markers of neurodegenerative diseases [118–121]. This
will allow earlier diagnosis, which will lead to earlier
interventions. Another advantage of biomarkers is they
allow the therapeutic effect of any intervention to be
monitored. Given the results seen in the PD trials, deliv-
ering therapies before significant onset of symptoms,
before the targeted cells are lost, will likely have a huge
impact on the efficacy of these therapies. The combination
of these advances will help to translate new gene thera-
pies to the clinic, yielding true improvements in treating
these devastating diseases.
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