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a b s t r a c t

This paper proposes an optimal control law for linear systems affected by input delays. Specifically we
prove thatwhen the delay functions are known it is possible to generate the optimal control for arbitrarily
large delay values by using a DDE without distributed terms. The solution can be seen as a chain of
predictors whose size depends on the maximum delay.
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1. Introduction

The control and state estimation problems in presence of in-
put or measurement delays have received growing attention due
to its relevance in many emerging applications such as network
control systems where delays must be taken into account in the
transmission of input signals [1–5]. In the context of continuous-
time systems it is known that the general solution to the control
problem can be provided bymeans of operators on infinite dimen-
sional spaces [6,7]. The optimal control problem has been studied
and solved in this context [8–11]. In [12] it is shown that a suit-
able state feedback control which involves the integral of the past
control law solves the infinite horizon optimal control problem for
linear time-invariant systems with single input time-delay. In [13]
the finite horizon optimal control problem of time-varying linear
systems with multiple constant input delays has been solved.

However infinite dimensional approaches are difficult to imple-
ment, as they require to compute an integral term on-line. As ex-
plained in [7], obtaining this term as the solution to a differential
equation must be discarded because it involves unstable pole-zero
cancellation when the original system in unstable. The numerical
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quadrature rules to evaluate the integral term require special at-
tention in the implementation [14] or approximationmethods that
yields suboptimal solutions [15,16].

Recently, finite dimensional or memoryless methods, mean-
ing that the input is generated by an instantaneous state feed-
back as in the delay-free case, have been proposed for linear
systems [17–23]. Some of these methods consider also time-
varying delays. In [23] the LQ problem is solved with a memory-
less feedback for known delay functions satisfying a delay bound.
In this paper we extend the approach of [23] in two directions.
The first extension is to overcome the problem of the delay bound
by introducing a chain of predictors. In this way it is possible to
generate a finite-dimensional stabilizing input for arbitrarily large
delays, a result previously available only for systems not exponen-
tially unstable [18]. The second extension is to extend the approach
to the case of multiple delay functions, each acting on a specific in-
put.

A basic assumption of our work is that the delay functions are
known. This may be considered as a strong assumption in many
practical situations, but we show that it is the price to pay for
having the same performance as in the optimal delay free case.
On the other hand, this assumption is not specific to our work
but to any exact prediction/control approach in presence of delay.
Consequently a contribution of this papermight also be considered
to be the study of the conditions on the input delay underwhich the
system can be optimally controlled as if the delay was not present.
In this sense, we show that the size of the delay is not relevant as
long as the delay is known and well behaved in a precise sense.
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We introduce the problem and the delay assumption in
Section 2. The approach is illustrated in 3. With the aim of making
easier to read the paper we first introduce the case of large delays
with a single input in Section 3.1 before giving the solution for
the more general case of multiple delayed inputs in Section 3.2.
Section 4 considers output feedback control and Section 5 validates
the method.

Notation. R+ is set of non-negative reals. σ(A) denotes the set
of eigenvalues of the square matrix A, and µ(A) the largest real
part of its eigenvalues. ℜ(z) is the real part of z ∈ C. Cn

δ denotes
the space of continuous functions that map [−δ, 0] in Rn, with the
uniform convergence norm, denoted ∥ · ∥∞.

2. Problem statement

In this paper we consider the following linear system with
multiple input delays

ẋ(t) = Ax(t)+

p
i=1

Biui(t − δi(t)), t > 0

x(0) = x0
ui(t − δi(t)) = 0, t < 0,

(1)

where A ∈ Rn×n, Bi ∈ Rn, ui ∈ R, i = 1, . . . , p. Notice that system
(1) has multiple inputs and each input has only one delay, differ-
ently from the case of single inputwithmultiple delays considered,
among others, by [7,24].

The delay functions δi : R+ → [0, δ̄] are uniformly bounded by
the known constant δ̄. We denoteψi(t)i = t − δi(t) the time point
at which the control signal applied at time t has been generated,
that is, u(t − δi(t)) = u(ψi(t)). Obviously, ψi(t) ≤ t . We require
that the following two assumptions hold.

Assumption 1. Let B = [B1, . . . , Bp]. Then the pair (A, B) is
controllable.

Assumption 2. The functions ψi(t) are bijective, i.e. for ∀t∗ ≥

ψi(0) ∃!ti : t∗ = ψi(ti), i = 1, . . . , p. Moreover, the inverse
functions ti = ψ−1

i (t∗) are known at time t∗.

Assumption 2 is necessary to ensure that when generating the
input ui(ψi(t)) at time ψi(t) there is a known and unique time ti
at which the input will be received. Practical situation in which
Assumption 2 holds are constant or continuous, slowly delays that
satisfy |δ̇(t)| < 1. However, continuity or differentiability of δi(t)
are not implied by Assumption 2, thus δi(t) could be fast-varying
or even not continuous, as long as ψi(t) are invertible and known
functions (see for example δ(t) in Fig. 2). Assumption 2 is quite
standard in this setting [20]. The only alternative to it is to use
robust control with unknown input delay, but in this case the
control is no longer optimal [1]. We look for the optimal controls
ui(t) with respect to a quadratic functional in the infinite-horizon
case, that can be written as

J =


∞

0
xT (t)Qx(t)+

p
i=1

Riu2
i (ψi(t))dt, (2)

where Q is an appropriate positive-definite symmetric matrix and
Ri are positive scalars.

It is well known that, at least for constant delays δi(t) = δ, the
optimal control of (1) can be achieved through the computation of
distributed terms ([1], p. 202). Instead, we explore solutions based
on optimal instantaneous state feedback of the kind

ui(ψi(t)) = −K(ψi(t))x(ψi(t)), (3)

and we show that the optimal control can be generated with such
finite-dimensional feedback, even in presence of variable delays.

Remark 1. A different but related problem is when the delay af-
fects the state measurement, but not the input, that is, at time t
the input ui(t) can be immediately applied but must be gener-
ated using delayed information about the state, ẋ(t) = Ax(t) +p

i=1 Biuix(t−δi(t)). The instantaneous state feedback (3) becomes
ui(t) = −K(ψi(t))x(ψi(t)). Thus, the method described in this pa-
per can be applied also in this case andAssumption 2 canbe relaxed
to the knowledge of δ(t) at t .

3. Predictors for input delays

3.1. Systems with single input delay

In order tomake the presentation easier we consider in the first
place the case of a single delay and scalar input,

ẋ(t) = Ax(t)+ Bu(ψ(t)) (4)

with u(t) scalar, u(ψ(t)) = 0 for t < 0, and x(0) = x0.
Given a square matrix A ∈ Rn×n we introduce the following

scalar function of vector K ∈ Rn and scalar α ∈ R+

ωA(α, K) := max

δ ∈ R+ :

 δ

0

Ke(A−BK)sB
 eαsds ≤ 1


, (5)

with the convention thatωA(α, K) = ∞ if the inequality is always
satisfied. If ωA(α, K) < ∞, due to the structure of the integrand
in (5), larger values of α correspond to smaller values of ωA(α, K)
and vice-versa. It is possible to show [21] that ωA(α, K) does not
depend on B. but only on α, σ(A) and σ(A−BK), and it is therefore
invariant to a change of coordinates.

The optimal control problem for system (4) was solved in [23]
for delay functions uniformly bounded. We report the main result.

Theorem 1 ([23]). Consider system (4) with the pair (A, B) control-
lable, δ(t) ≤ δ̄ that satisfies Assumption 2 and the cost functional (2).

Let K
o

= R−1BTP be the optimal gain with no input delay, P steady-
state solution of the Riccati equation

ATP + PA − PBR−1BTP + Q = 0, (6)

and A = A − BK
o
. If the delay bound satisfies δ̄ < ωA(−µ(A), K

o
),

then the optimal control law is

u(ψ(t)) =


−K

o
eAtx0, t < δ̄,

−K
o
eA(t−ψ(t))x(ψ(t)), t ≥ δ̄.

(7)

Moreover the value of J for (4) with (7) is xT0Px0.

In (7), by definition, t − ψ(t) = δ(t). In the time coordinate of
the controller, control law (7) can be written, for t ≥ δ̄

u(t) = −K
o
eA(ψ

−1(t)−t)x(t), (8)

where ψ−1(t) − t = δ(ψ−1(t)) is the delay with which the plant
will receive the input, and ψ−1(t) is known in virtue of Assump-
tion 2. From now onwe use the time coordinate of the plant. It may
be noticed that the idea behind (7) is to use eAδ(t)x(t − δ(t)) as a
predictor of x(t) This would yield, for t ≥ δ̄, u(ψ(t)) = −K

o
x(t) =

uo(t), where uo(t) is the optimal input for the delay-free case. If this
finite-dimensional predictor works well, the optimal evolution is
therefore the same as in the delay-free case. Theorem 1 provides a
sufficient (sometimes necessary, see [23]) delay bound for the pre-
dictor. Our aim is to extend this solution to delays that are larger
than ωA(K

o
).

We resort to a chain of predictors, each in charge of extending
the prediction provided by the exponential of A to a fraction
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Fig. 1. Scheme of a chain of three predictors.

of the total delay. This technique has already been successfully
used to overcome delay bounds for observers with delayed
measurements [25–28]. The chain structure suited to our purposes
is illustrated in Fig. 1. At time t the present value of x(t) is used by
the predictor to generate ξ0(t), which is an estimate of x(t + δ̄).
Each elementary predictor in the chain extends the prediction of a
fraction of δ̄. The value ξ0(t − δ̄ + δ(ψ−1(t))), that approximates
x(t +δ(ψ−1(t))), is extracted from the buffer and used to generate
the input signal. Due to the delay, this input will be applied at time
t + δ(ψ−1(t)) and it will correspond to the optimal input at that
time.

Before defining the chain of predictors for the variable delay
case it is useful to report a result that can be found in [21], Theorem
3.

Lemma 1. Let A ∈ Rn×n, B ∈ Rn, K such that A = A−BK is Hurwitz.
Consider the delay system

ξ̇ (t) = Aξ(t)− BKeAδξ(t − δ), t ≥ 0, (9)

with pre-shape function ξ(τ ) = φτ ∈ Cn
δ . For any α > 0 such that

−α > µ(A), if ωA(α, K) > δ then ∥ξ(t)∥ ≤ e−αtγ ∥φ∥∞, ∀t ≥ 0,
∀φ ∈ Cn

δ .

Definition 1. Given a maximum delay δ̄ and a delay bound δ∗, a
delay partition Pδ̄,δ∗ is a set {δj}, j = 0, . . . ,m, such that δ∗ > δ0 >

δ1 > · · · > δm > 0 and
m

j=0 δj = δ̄.

Definition 2. Given system (4) with the cost functional (2), K
o

optimal gain without input delay, δ(t) ≤ δ̄, α = −µ(A − BK
o
),

a delay partition Pδ̄,δ∗ is valid if δ∗
= ωA(α, K

o
).

The idea behind the previous definition is to have a sequence
of decreasing delays, each one satisfying the delay bound δj <
ωA(α, K

o
) that sum up to the total delay δ̄. Note that the definition

of a valid delay partition implies that there exists a sequence α <
α0 < α1 < · · · < αm such that δj < ωA(αj, K

o
). In practice the

choice of a valid delay partition is easily accomplished by choosing
α0 > α and a slowly increasing sequence αj. The sequence
terminates when the sum of the correspondingωA(αj, K

o
) exceeds

δ̄. It is easy to see that extending the delay partition is in principle
possible to compensate any delay δ̄.

Let, as before, K
o
= R−1BTP with P solution of (6), A = A− BK

o

and K(δ) = K
o
eAδ . Given a valid delay partition P

δ̄,ωA(α,K
o
)
= {δj},

we denote dj =
j−1

k=0 δk for j = 1, . . . ,m, with d0 = 0. Notice that
δ̄ > dj ≥ 0.

The chain is made up by them + 1 systems ξj(t), j = 0, . . . ,m,
where ξj(t) aims at predicting x(t + δ̄ − dj), thus ξ0(t) predicts
x(t + δ̄).

Initialization:

ξj

−δ̄ + dj


= x0, j = 0, . . . ,m. (10)

Pre-shape:

ξ̇j(t) = Aξj(t), −δ̄ + dj ≤ t < dj. (11)

t > dj:

ξ̇j(t) = Aξj(t)− BK
o
ξ0


t − dj


+ BK(δj)


ξj+1(t)− ξj(t − δj)


, j < m

ξ̇m(t) = Aξm(t)− BK
o
ξ0 (t − dm)

+ BK(δm) (x(t)− ξm(t − δm)) .

(12)

For illustrative purposes, let us detail the case of two predictors,
m = 1, with a delay partition δ0 + δ1 = δ̄, with δ0 > δ1. Since both
delays must be less than the delay bound δ∗ for a single predictor,
but they can be arbitrarily close to it, we have that the overall delay
δ̄ can be arbitrarily close to 2δ∗, thus actually doubling the delay
bound. ξ1(t) predicts x(t + δ1), ξ0(t) predicts x(t + δ0 + δ1) =

x(t + δ̄). The initialization is ξ0(−δ̄) = x0, ξ1(−δ1) = x0. Notice
that, to perform the initialization, the controller needs a future
state, i.e. x(0) at time −δ̄. Depending on the situation, this can
be accomplished by using a prediction based on the open-loop
dynamics of the plant or an approximate initialization, as discussed
in the sequel. The pre-shape evolution of the predictors is, for
t ∈ (−δ̄, 0) and t ∈ (−δ1, δ0) respectively,

ξ̇0(t) = Aξ0(t), ξ̇1(t) = Aξ1(t). (13)

Finally,

ξ̇0(t) = Aξ0(t)+ BK(δ0) (ξ1(t)− ξ0(t − δ0)) , t ≥ 0

ξ̇1(t) = Aξ1(t)− BK
o
ξ0 (t − δ0)

+ BK(δ1) (x(t)− ξ1(t − δ1)) , t ≥ δ0.

(14)

Ifwe suppose, for simplicity a constant delay (δ(t) = δ̄), the control
law at the plant side, t ≥ 0, is u(t − δ̄) = −K

o
ξ0(t − δ̄) =

−K
o
x(t) where of course the last equality holds if the prediction

is correct. The conditions under which this is true are provided by
the following theorem.

Theorem 2. Consider system (4) with the pair (A, B) controllable,
δ(t) ≤ δ̄ that satisfies Assumption 2 and the cost functional (2). Let
K

o
= R−1BTP be the optimal gain with no input delay, P solution of

the Riccati equation (6), A = A − BK
o
and α = −µ(A). Given a valid

delay partition P
δ̄,ωA(α,K

o
)
= {δj} the optimal control law is

u(ψ(t)) = −K
o
ξ0(t − δ̄), t ≥ 0, (15)

where, by definition, ξ0(t − δ̄) = ξ0(ψ(t)− δ̄ + δ(t)), ξ0(t) defined
by (10)–(12). The value of J for (4) with (15) is xT0Px0.

Proof. The closed-loop dynamics of (4) is, for t ≥ 0,

ẋ(t) = Ax(t)− BK
o
ξ0(t − δ̄). (16)

The optimal control, without delay, is uo(t) = −K
o
xo(t), and

the optimal trajectory is ẋo(t) = Ax0(t), that is, xo(t) = eAtx0.
Consequently the proof is complete if we show that x(t) = eAtx0.
The crucial step is to prove ξ0(t − δ̄) = x(t) = eAtx0, because the
thesis immediately follows from (16). From (10) to (11) it follows
that ξ0(t − δ̄) = x(t) = eAtx0 holds for t ∈ [0, δ̄]. Similarly, it is
easy to see that for j = 1, . . . ,m,

ξj

t − δ̄ + dj


= xo(t) = eAtx0, t ∈ [0, δ̄]. (17)
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Introducing the prediction errors ϵj(t) = x(t) − ξj(t − δ̄ + dj), it
follows that ϵj(t) = 0 for t ∈ [0, δ̄]. Consider now t ≥ δ̄. For j = m
the prediction error evolution is

ϵ̇m(t) = Ax(t)− BK
o
ξ0(t − δ̄)− Aξm(t − δ̄ + dm)+ BK

o
ξ0(t − δ̄)

− BK(δm)(x(t − δ̄ + dm)− ξm(t − δ̄ + dm − δm))

= Aϵm(t)− BK(δm)(x(t − δm)− ξm(t − 2δm))
= Aϵm(t)− BK(δm)ϵm(t − δm), (18)

because t − δ̄ + dm = t − δm. Since δm < ωA(αm, K
o
), the delay

equation (18) is exponentially stable in virtue of Lemma 1, with
exponential decay rate αm. Moreover, the initial state of (18) is the
0 function. We conclude that ϵm(t) = 0 for t ≥ 0. For j < m and
t ≥ δ̄ the remaining prediction errors are

ϵ̇j(t) = Ax(t)− BK
o
ξ0(t − δ̄)− Aξj(t − δ̄ + dj)+ BK

o
ξ0(t − δ̄)

− BK(δj)(ξj+1(t − δ̄ + dj)− ξj(t − δ̄ + dj − δj))

= Aϵj(t)− BK(δj)(ξj+1(t − δ̄ + dj+1 − δj)− x(t − δj)

+ x(t − δj)− ξj(t − δ̄ + dj − δj))

= Aϵj(t)− BK(δj)ϵj(t − δj)+ BK(δj)ϵj+1(t − δj), (19)

where we have used the property dj+1 = dj + δj. A direct check
confirms that the delayed terms in the last expression of (19) are
well posed. System (19) is equivalent to system (9)with an external
disturbance BK(δj)ϵj+1(t−δj). This disturbance is null for j+1 = m,
and it is consequently null for j + 1 = 1, . . . ,m since the delay
equation (19) is exponentially stable in virtue of Lemma 1, with
exponential decay rate αj > α. Since this holds also for j = 0, we
have ϵ0(t) ≡ 0, that is, x(t) = ξ0(t − δ̄). �

Remark 2. At first sight it may seem strange that the feedback
law (15) does not contain any time-varying delay and that the
resulting system-predictor has equations with constant delay,
a fact that considerably simplifies their analysis. However this
paradox is apparent, because the time-varying delay is hidden
in the difference between t and ψ(t). To see this write (15) as
u(ψ(t)) = −K

o
ξ0(ψ(t) + δ(t) − δ̄). Recalling that ξ0(ψ(t) − δ̄)

is the prediction of x(ψ(t))we have, when the prediction is exact,
u(ψ(t)) = −K

o
x(ψ(t) + δ(t)) = −K

o
x(t), where the presence

of the variable delay is made explicit in the first equality. Notice
that the input is computed at ψ(t) by using ξ0 at time ψ(t) +

δ(t) − δ̄ < ψ(t). Then, in the case of variable delay, past values
of ξ0(t) extracted by the buffer are used. When δ(t) = δ̄ only the
most recent value of ξ0 is used, but a buffer for ξ0 is needed by the
remaining predictors.

Remark 3. The predictor chain (10)–(12) yields the optimal trajec-
tory xo(t) for any delay function that satisfies Assumption 2. This
implies that the system receives the same input independently of
the delay. In other words, the input generated at the predictor is
delay dependent, but the delayed input received at the system is
not (see Fig. 3).

Remark 4. We have proved that the prediction errors are initially
null and, for t ≥ δ̄, their dynamics is exponentially stable with
decay rate faster than the controlled system. If the second point
were not guaranteed the systems dynamics would eventually
diverge from xo(t).

The initialization (10) deserves some caution, since here we
require to know x(0) at t = −δ̄. This is not surprising, because we
want to generate the optimal trajectory through a delay system,
then we need a suitable infinite-dimensional initial condition
containing x0. In practical cases it could be impossible to estimate

in advance x(0) from the open-loop dynamics. To overcome this
difficulty, we consider the generic initialization

ξj

−δ̄ + dj


= x̂0, j = 0, . . . ,m, (20)

where x̂0 is not necessarily equal to x0.

Corollary 2. In the hypotheses of Theorem2, the control law (15)with
ξ0(t) generated by (11), (12) with initialization (20) is such that
∥xo(t)− x(t)∥ ≤ e−αtγ o

∥x0 − x̂0∥.

Proof. From (19) it follows that the rate of exponential conver-
gence to 0 of ϵj(t) is min(αj, αj + 1) = αj. Therefore the rate of
convergence to zero of ϵ0(t) is α0 > α. Let z(t) = xo(t) − x(t).
Since ẋo(t) = Axo(t)− BK

o
xo(t), it follows that

ż(t) = Az(t)− BK
o
(xo(t)− ξ0(t − δ)) = Az(t)− BK

o
ϵ0(t), (21)

from which it follows that the exponential rate of convergence to
zero of z(t) is α. �

The above result can of course be used to solve themore general
(i.e. non optimal) control problem of linear systems with arbitrary
but known input delay by means of finite-dimensional feedback.

Corollary 3. Consider system (4) with the pair (A, B) controllable,
δ(t) ≤ δ̄ that satisfies Assumption 2. Let K be such that A = A − BK
is Hurwitz and α = −µ(A). Given a valid delay partition Pδ̄,ωA(α,K) =

{δj} the control law

u(ψ(t)) = −Kξ0(t − δ̄), ψ(t) ≥ 0, (22)

where t = ψ−1(ψ(t)) = ψ(t)+δ(t), ξ0(t) defined by (11), (12)with
initialization (20) is such that ∥x(t)∥ ≤ e−αtγ ∥x0 − x̂0∥.

It must be finally mentioned that all the derivations of this
section considered the case of scalar u(t). This limitation is only
due to the application to multiple input delays in next section. All
the results presented here hold for vector u(t) by changing the
definition of ωA(α, K) to

ωA(α, K) := max

δ ∈ R+ :

 δ

0
∥Ke(A−BK)sB∥eαsds ≤ 1


. (23)

3.2. Systems with multiple input delays

We now go back to consider system (1). It turns out that the
solution described in the previous section extends nicely to the
case of the multiple delays in the input. The following result is
immediate to prove.

Corollary 4. Consider system (1) satisfying Assumption 1, δi(t) ≤

δ̄ that satisfy Assumption 2 and the cost functional (2). Let K
o

=

R−1BTP be the optimal gain with no input delay, P solution of the
Riccati equation (6), A = A − BK

o
and α = −µ(A). Given a valid

delay partition P
δ̄,ωA(α,K

o
)
= {δj} the optimal control law is

ui(ψi(t)) = −K
o
i ξ0(t − δ̄), ψi(t) ≥ 0, (24)

where K i, i = 1, . . . , p is the ith row of K
o
, by definition t =

ψi(t) + δi(t), and ξ0(t) is defined by (10)–(12). Moreover, the value
of J for (4) with (24) is xT0Px0.

Proof. From (24) it follows that the dynamics of x(t) is given by
(16). The proof is therefore the same as in Theorem 2. �

As in the case of single input, if the initialization (20) is used the
resulting control is asymptotically optimal. If a generic gain K that
makes A = A − BK Hurwitz is used instead of the optimal gain
K

o
, the resulting non optimal trajectory is still exponentially stable

with decay rate α = −µ(A).
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4. Optimal control from output

In this section we briefly consider the case of state not fully
accessible, and with a possible delay,

ẋ(t) = Ax(t)+

p
i=1

Biui(t − δi(t)), t > 0

y(t) = Cx(t −∆), t > ∆,
x(0) = x0.

(25)

Case ∆ = 0. In this case the chain of predictors is extended with
a Luenberger observer in charge of providing an estimate x̂(t) of
x(t). The asymptotic optimality is preserved if the estimation error
decays at a rate larger than the optimal solution. The last stage of
the predictor chain (12) is modified as follows for t > 0,

ξ̇m(t) = Aξm(t)− BK
o
ξ0 (t − dm)

+ BK(δm)

x̂(t)− ξm(t − δm)


,

˙̂x(t) = Ax̂(t)− BK
o
ξ0


t − δ̄


+ KL


y(t)− Cx̂(t)


, x̂(0) = x̂0.

(26)

Corollary 5. In the assumptions of Corollary 4, if the pair (A, C) is
observable, given a delay partition Pδ̄,δ∗ = {δj} let αm be such that
ωA(αm, K

o
) = δm. If µ(A − KLC) < −αm, then the trajectory

generated by the control law (24), where the predictor chain (20), (11),
(12) is modified according to (26), is asymptotically optimal.

Case ∆ > 0. The solution for the case of delayed measurements is
to use a Luenberger observer as before, with the task of estimating
x(t − ∆). The chain of predictors is designed to span the extended
delay δ̄ +∆ (see also [24]).

Corollary 6. In the assumptions of Corollary 4, if the pair (A, C) is
observable, given a delay partition Pδ̄+∆,δ∗ = {δj} let αm be such
that ωA(αm, K

o
) = δm. If µ(A − KLC) < −αm, then the trajectory

generated by the control law (24), where in the predictor chain (20),
(11) δ̄ must be replaced by δ̄ +∆, and the last element of the chain is

ξ̇m(t) = Aξm(t)− BK
o
ξ0 (t − dm)

+ BK(δm)

x̂(t)− ξm(t − δm)


,

˙̂x(t) = Ax̂(t)− BK
o
ξ0


t − δ̄ −∆


+ KL


y(t)− Cx̂(t)


, x̂(0) = x̂0,

(27)

is asymptotically optimal.

Notice that this approach requires themeasurement delay to be
constant. For the case of time-varying output delay it is necessary
to use observers with delay, see for example [25].

5. Examples

5.1. Single delay

For comparison purposes we consider first the delayed double
oscillator example presented also in [20,21,23]. The state space
matrices are

A =


p 1 0 0 0
0 0 ω 0 0
0 −ω 0 1 0
0 0 0 0 ω
0 0 0 −ω 0

 , B =


0
0
0
0
1

 , (28)

with p = 0.1 and ω = 1. Note that σ(A) = {0.1, ±j}, hence
the open loop system is exponentially unstable. We consider the
cost functional (2) with Q = I5, R = 1 and P solution of the
algebraic Riccati equation. The corresponding optimal gainwithout
delay is K

o
= [1.4478,−0.1391, 3.1395, 3.4685, 2.8173]. The

spectrum of the closed loop systemwithout delay is σ(A−BK
o
) =

{−0.4921, −0.6882 ± 0.8460i, −0.4244 ± 1.2466i}, hence α =

−µ(A) = 0.4244. The delay bound ωA(−µ(A), K
o
) (5) is δ∗

=

0.4950. Since the input is scalar and K
o
eAtB is positive for t ∈

[0, δ∗
] this bound is strict, thus the control law (7) is not optimal

for δ(t) > δ∗. We use the delay function shown in Fig. 2, defined
as

δ(t) =


2/3t, t < δ̄

3(t − kδ̄), t ∈ [kδ̄, (k + 1/3)δ̄)
3
2


t −


k +

1
3


δ̄


, t ∈ [(k + 1/3)δ̄, (k + 1)δ̄]

(29)

with k = 1, 2, . . . and δ̄ = 1. δ(t) is not continuous, and for
t ≥ δ̄ the delay is fast-varying, because δ̇(t) > 1 where it exists.
However, it is easy to see that t − δ(t) is invertible and that d(t) <
δ̄. Since δ̄ > 2δ∗, we can resort to a chain of 3 predictors. In the
simulations we chose the delay partition δ0 = 0.45, δ1 = 0.33,
δ2 = 0.22. With the initial value x0 = [−1, 2, 2, 1, 2]T the cost
for the optimal control without delay is Jo = xT0Px0 = 162.7004. A
delay-free simulation for t ≤ 50 and integration step dt = 10−3

yields J = 163.0908, the difference being due to the numerical
approximation. The chain of predictors and the control law are,
omitting initializations,

u(ψ(t)) = −K
o
ξ0(ψ(t)+ δ(t)− δ̄), t ≥ 0

ξ̇0(t) = Aξ0(t)+ BK(δ0) (ξ1(t)− ξ0(t − δ0)) , t ≥ 0

ξ̇1(t) = Aξ1(t)− BK
o
ξ0 (t − δ0)

+ BK(δ1) (ξ2(t)− ξ1(t − δ1)) , t ≥ δ0

ξ̇2(t) = Aξ2(t)− BK
o
ξ0 (t − (δ0 + δ1))

+ BK(δ2) (x(t)− ξ2(t − δ2)) , t ≥ δ0 + δ1.

(30)

Fig. 3 compares the input u(ψ(t)) generated by the predictor-
based control law (left) with the input signal received at the sys-
tem (right), that coincides with the optimal input. The value of the
cost functional along the trajectory generated by the predictor is
J = 163.0937. The choice of a more precise numerical integration
would yield J = Jo, but we deliberately chose a coarser integration
scheme to verify that the control scheme is robust with respect to
numerical approximations. To further illustrate this point we com-
pare in Fig. 2 (right) the norm of the optimal trajectory xo(t)with-
out delay with the displacement norm xo(t) − x(t) for two cases,
namely precise initialization (10) and approximate initialization
(20). In the latter case we chose x̂0 = 0.9x0 and we obtained a
value of the cost functional J = 170.3092. The important point is
that in both cases the norms converge exponentially to 0 with the
same rate α as ∥xo(t)∥, in accordance with Corollary 2.

5.2. Multiple delays

Consider a system with the same matrix A as in the previous
section and

B =


0 0
0 0
0 1
0 0
1 0

 , u(t) =


u1(t − δ1(t))
u2(t − δ2(t))


(31)
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Fig. 2. Delay function δ(t) and the corresponding ψ(t) = t − δ(t) (left). Norm of the optimal state trajectory xo(t)without delay, and norm of the difference xo(t)− xi(t),
where x1(t), x2(t) are the trajectories generated by the predictor with precise and approximate initial conditions (right).

Fig. 3. Input generated by the chain of 3 predictors (left) and input signal received at the system after δ(t) (right).

Fig. 4. Delay functions for a system with two inputs.

where the periodic delay functions 0.1 ≤ δ1(t) ≤ 0.6, 0.3 ≤

δ2(t) ≤ 0.8 are shown in Fig. 4. Both functions are continuous
with derivatives< 1 (where they exist), so that t − δi(t), i = 2 are
bijective and invertible. With x0 = [1, 1, 1, 1, 1]T , Q = I5, R = I2
the optimal cost has cost Jo = xT0Pxo = 28.788. A simulation with
dt = 5 · 10−4 yields the approximate value J = 28.805.

6. Conclusions

In this paper we have shown that is possible to build a finite
dimensional state predictor for arbitrarily large input delays,
under suitable conditions on the delay functions. The idea of a
chain of predictors, initially introduced for the state observation
problem [26], has been extended to the control problem. The
optimality of the resulting control law confirms that this kind of

finite-dimensional predictor is in some sense the ‘‘right-one’’ in the
deterministic case. Futureworkwill consider the stochastic version
of the problem, for which [23] provides only initial results.
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