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Highlights

• An integrated shift scheduling and waste collection routing is studied.

• A model enhancement approach accurately estimates the required collection times.

• The solutions are compared with a practical lower bound based on flexible routes.
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Abstract

This paper presents a model enhancement approach for the integrated problem of developing shift
schedules and waste collection routes. Given a variable amount of waste to be collected the ob-
jective is to find fixed, minimal cost shift schedules and collection routes under a service level
constraint. While regular shifts during traffic peak hours are cheaper in terms of labour costs, the
collection speed is on average lower than during expensive, non-regular shifts. Our findings can be
summarized as follows. (1) Solutions can be found within reasonable computation time for real-life
instances. (2) The model enhancement approach accurately estimates the required collection times
and therefore consistently finds a feasible solution. (3) The solutions not only result in considerable
savings, but are also proven to be (near)optimal by comparison with a practical lower bound based
on flexible routes.

Keywords: Routing; model enhancement, waste collection, shift scheduling

1. Introduction

The growing tendency towards waste separation at the source (i.e., the separation of waste into
different flows at household or firm level) stresses the need for an effective and efficient organization
of the collection process.

This study was inspired by a research question we received from the company Fost Plus concerning
the optimization of the collection process of glass. Fost Plus is a private not-for-profit company
that promotes, coordinates and finances the selective collection, sorting and recycling of household
packaging waste in Belgium.

The model developed in this paper is, however, more generic as it can also be applied to other waste
or material flows. For instance, the recent shift from door-to-door collection towards centralised
(underground) drop-off containers in densely populated areas also shows the need for combined
scheduling and routing models. Moreover, even with door-to-door collection the model can be
used on a more tactical level by considering waste generation on neighbourhood levels instead of
on household levels.

In practice, the glass collection is not performed by Fost Plus, but is decentralized to different
intermunicipal authorities (IAs), which can in turn decide to outsource this to another party. A
typical IA has its own fixed periodical collection scheme that defines the work schedule (comprising
the work days and the days off) for each truck driver as well as the collection routes for each driver
on each day. In order to optimize the current collection process, we will consider a second shift
type (N shifts) on top of the single current shift type (P shifts) which contains the peak traffic
hours on the road. The current P shifts (containing the peak traffic hours) are cheaper than the
N shifts (not containing the peak traffic hours) because the P shifts cover the normal daytime
working hours (i.e., 9 AM to 5 PM) while the working hours of the N shifts can lie (partially)
outside this interval. Prior to any negotiations concerning the definition of the N shifts, we are
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primarily interested in the potential benefits of these N shifts. While the P shifts are cheaper than
the N shifts, the driving times during the P shifts are on average higher than those during the
N shifts. This difference creates a trade-off between higher costs and faster driving times which
possibly results in a better workforce schedule with lower weekly labor costs.

As the amount of glass put in the glass containers differs from day to day, the time required to
collect this glass also differs from day to day. Glass containers are only emptied if they reached a
certain fill level. If on a particular day more glass containers reached this fill level, the collection
trucks, which have a limited capacity, need to return more often to the collection point. This has
again consequences on the fill levels and the collection times of the next day. For this reason,
a static model that accurately calculates the collection time for a given truck on a given day is
virtually impossible. Therefore, we introduce a dynamic optimization model that uses as input the
variable fill rates of each glass container on every day of the year.

The collection scheme will be optimized using a model enhancement (ME) technique (Bachelet and
Yon (2007)) that accurately estimates the collection time on every particular day of the considered
time horizon. In order to construct a mathematical optimization model for solving a real-life
problem, often several modeling simplifications are needed (Bachelet and Yon (2007)). In most
cases, the resulting model therefore fails to give a correct representation of reality. In the ME
framework, however, simulation is used to find better estimators for the model’s parameters and
as such ‘enhances’ the mathematical model increasing the realism and applicability of the solution.
While most optimization-simulation couplings focus on improving the objective function evaluated
from simulation (like the simulation optimization approach), ME still focuses on optimizing the
combinatorial optimization problem. As the problem under study involves solving a complex
integrated shift and tour scheduling problem, ME is particularly effective in this case. We illustrate
the performance of the ME approach using several test cases based on real-life data. Finally, the
model is applied on the real-life data of a single IA.

The remainder of this paper is organized as follows. First, Section 2 reviews the literature related
to this study. Next, Section 3 gives a detailed problem description as well as a problem formulation.
Section 4 describes the model enhancement solution approach, while Section 5 presents the results
of the computational experiments. Finally, Section 6 concludes this paper and discusses some
avenues for future research.

2. Literature review

Constructing a workforce schedule for glass collection is a complicated task. As in all industries,
workforce schedules should be constructed according to certain legal constraints. Each schedule
is for example constrained by a maximum time limit and should include a break of a certain
duration. However, designing a workforce schedule for glass collection also requires a routing
decision. This means that we have to decide on the composition of the collection routes (the routing
decision) and the personnel and shift schedules (the scheduling decision) simultaneously, because
the feasibility of a shift schedule cannot be evaluated without solving the routing problems. Assume
it is decided to work according to a shift schedule P-P-P-P-P. The only way to know whether
these shifts are sufficient is by constructing the collection routes for every shift and verifying
whether the glass can be collected in this shift schedule. The collection routing is thus necessary
to evaluate the shift schedule. Solving both problems independently cannot guarantee a feasible

4



ACCEPTED MANUSCRIPT

solution. Unfortunately, the integration of the routing decision and the scheduling decision is not
straightforward and makes these types of problems very challenging.

The routing decision is an important complicating factor when solving the glass collection problem.
For a general review on municipal solid waste collection problems we refer to Beliën et al. (2014).
The routing problem considered here belongs to the broad class of Vehicle Routing Problems (VRP)
(Mes, 2012). In the VRP, a given set of vehicles must deliver goods to a given set of customers
such that the overall transportation costs are minimized. Hence, the goal is to construct a set of
optimal routes in order to reduce the total travelled distance and possibly the required number
of vehicles. Translating the VRP to our case can be done by assuming that the glass containers
represent the customers and the goods to be delivered is empty space. This implies that within the
VRP collecting glass can be seen as filling the containers with air. For an overview of the solution
techniques designed for the VRP we refer to Carić and Gold (2008).

In this paper, the goal is to find a fixed weekly schedule that is repeated each week during the
considered time horizon (e.g., one year). This problem is related to the periodic vehicle routing
problem (PVRP) where customers require service on multiple days during a given planning horizon,
while the VRP is only concerned with one period. Two decisions have to be made using an
integrated or a two-stage approach. First, the weekly service frequency (i.e., how often each
customer is served) and service pattern (i.e., which customers will be served on which day of the
week) must be determined. Second, a VRP is solved for each day based on the selected customers
for that day according to the VRP rules.

Francis et al. (2008) present a literature review on the PVRP and its extensions, showing that
most of the PVRP research assumes a predetermined service frequency. Only a few researchers
incorporate the service frequency as a decision variable in the optimization model. While we also
assume a predetermined service frequency (i.e., each container should be visited at least once a
week), the service pattern decision is integrated with the routing decision.

Our model has three special features which increases the complexity compared to the standard
PVRP. First, we incorporate a shift scheduling decision, which is barely investigated in the existing
literature in combination with the PVRP. In their literature survey, Ghiani et al. (2014) state that a
large percentage of total waste management cost related to waste collection is due to the equipment
and the workforce (about 75% according to Shamshiry et al. (2011)). Optimizing the workforce
scheduling process can therefore result in significant savings. However, these aspects have not
been given much attention in the literature (Ghiani et al., 2014). This is confirmed by Ernst et al.
(2004) in their literature review on staff scheduling and rostering where the authors point out the
lack of contributions related to personnel and vehicle shift scheduling in the waste management
literature. In the literature review of Francis et al. (2008) on the (P)VRP, shift scheduling is not
even mentioned. The papers that do consider a combination of staff scheduling and the vehicle
routing problem propose a multi-staged approach instead of an integrated approach, or fail to
incorporate important routing constraints such as truck capacity constraints (Baudach et al., 2009;
Ghiani et al., 2013; Hansmann and Zimmermann, 2009; List et al., 2006).

Second, while the standard PVRP only links the different days in the planning horizon in the
objective function, seeking the overall minimal transportation costs over all days, we also link the
days in the constraints. Like Coene et al. (2010), we consider the scenario where the load of a
vehicle at the end of a day needs to be equal to the load of that vehicle at the start of the following
day. Furthermore, Francis et al. (2008) state that in the PVRP literature it is assumed that a
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fraction 1
fi

of the total demand has to be delivered to customer i on each visit, with fi the number
of visits required for customer i during the planning horizon. Hence, at each visit, a demand of
wi = Wi

fi
is delivered, with Wi the total demand of customer i. This can be a good approach when

each visit also involves a delivery and when the daily demand can be assumed to be constant.
However, in our problem, we assume that each visit does not necessarily involve emptying the
container. Furthermore, we show that strong seasonality effects exist in our data which implies
that we cannot assume a constant daily fill rate of glass over the considered time horizon. Hence,
our procedure will link all days in the considered time horizon by taking into account the effect of
the visits and/or emptying on each day on all succeeding days in the considered time horizon.

Third, our problem features intermediate facilities where vehicles can unload (or reload) and thus
renew capacity during a route. The PVRP with intermediate facilities is described by Angelelli
and Speranza (2002), Kim et al. (2006), Alonso et al. (2008) and Coene et al. (2010). In order
to deal with the increased complexity in the PVRP caused by these three elements, we propose a
model enhancement heuristic that iteratively combines simulation and optimization.

3. Problem definition

3.1. Glass collection procedure

This section first describes the glass collection procedure as it is currently performed by the IA
under consideration in our paper. Note that both the practical organization of the collection round
as the features of the glass containers might differ somewhat between IAs.

In the IA a certain number of trucks is available each day for glass collection. The IA employs
a certain number of truck drivers that cannot work in the weekend. Each glass container in the
IA is located on a site. Each site can hold one or more glass containers. There are two different
types of glass containers: duo containers and mono containers. Duo containers are divided in two
equal compartments; one compartment for white glass and one compartment for colored glass.
Mono containers have only one compartment and can be used for either white glass or colored
glass. We make a difference between these two types of containers because of the differences in
capacity and the time required to empty the container and collect the glass. Duo containers are
overground containers that are smaller compared to the mono containers. Therefore, it takes less
time to empty duo containers compared to mono containers that are placed underground.

For each truck, the collection route starts at the depot of the IA. Each truck carries one large
container with two compartments, one for colored glass and one for white glass. Leaving the
depot, the truck will visit the glass containers as specified by the route in the workforce schedule.
While all containers specified in the route must be visited, they will only be emptied when one
of the compartments is filled for at least a certain percentage. This percentage is referred to as
the collection threshold and is further discussed in Section 5. The truck continues to check and
empty glass containers until one of its compartments is getting full. At this time, the truck has to
make a trip to the drop-off site of the IA. At the drop-off site, the full container is unloaded from
the truck and is replaced with an empty container. Of course, this unloading and loading takes
a certain amount of time. When all containers in the route are visited, the truck returns to the
depot location.
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Apart from the above description we make following assumptions:

1) The truck drivers are paid on a daily basis instead of on an hourly basis. This implies that on
each week day, each truck driver is paid for 8 hours or has a day off. When a driver has a day off,
he is also not paid for that day. We realize that, in reality, truck drivers often receive a monthly
salary independent of the working days. We have opted for this objective function in order to
reach a solution in which a driver either has a highly occupied working day or a day without glass
collection routing. This has several advantages. In contrast with half days work, complete days-off
(without any collection routing at all) lead to more flexibility in planning as drivers do not have to
come to work and can have a vacation day. Moreover, a day without collection routes planned can
also be used for training or other tasks that have to be done by the IA. Often, IAs offer different
community serving tasks and truck drivers regularly rotate to other jobs. In order to be able to
value a day without planned collection routing, our model uses the shift costs (as some kind of
opportunity cost).

2) To minimize the glass placed next to the containers when the container is full (i.e., to minimize
overflow), we assume that each glass container is visited at least once a week.

3) Because a truck is only emptied when one of its compartments is getting full, its final fill level
at the end of the day equals the fill level of that truck in the beginning of the next day. We assume
that a trip to the drop-off site at the end of the day is not allowed.

3.2. Fill rate of glass containers

The fill level of each compartment in each container on each day depends on the fill rate. The fill
rate is the amount of glass that is added to a certain container on a specific day. Hence, accurate
data regarding the fill rate is very important to make a realistic model. We calculated the daily
fill rates based on daily glass collection data for a 1-year time horizon. Note that real daily fill
rates are not constant but might change from day to day. Because we only have data on the
amounts collected on different days per container and thus not on the daily amounts disposed in
the containers, we are confident that a constant daily fill rate between two consecutive collections
is the most acceptable assumption in this case. As an example of our calculations, suppose that
our data shows that a container was emptied on days 2, 7 and 9. If 7500 dm3 and 2000 dm3 of
white glass were collected on day 7 and on day 9, respectively, the daily fill rate is assumed to be
1500 dm3 for days 3 until 7 and 1000 dm3 for days 8 and 9.

3.3. Shift scheduling

As we consider a combination of different shift types (i.e., P shifts and N shifts), we propose a
general shift scheduling model to optimize the glass collection process. The goal of this general
model is to analyze different scenarios regarding shift costs and driving times.

We first list the sets, along with their associated indices:
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d ∈ D: days in the week. With D = {1, 2, ..., 5}
w ∈W : available truck drivers = daily available trucks
i ∈ I: set of glass containers
r ∈ R: set of feasible routes
t ∈ T : set of different shift types

The coefficients and right hand side constants are presented below:

Ct,d,w: cost of scheduling a shift of type t on day d for truck w
Vi,r: = 1 if container i is visited in route r; = 0 otherwise
ΘMax: maximum daily average working time (in hours)

The decision variables are:

xt,d,w ∈ {0, 1}: = 1 if a shift of type t is scheduled on day d for truck w; = 0 otherwise
λr,d,w ∈ {0, 1}: = 1 if route r is used on day d for truck w; = 0 otherwise

We define the following auxiliary variables which completely depend on the former two decision
variables:

τ routet,r,d,w: average time required to perform route r on day d with truck w with a shift of type t
(in hours)

Although Model 1 presented hereafter does not explicitly model the routing decision, our solu-
tion approach does (heuristically) solve the full integrated shift scheduling and routing problem.
The set R contains all feasible routes r and hence the variable λr,d,w implicitly represents all fea-
sible routes r on day d for truck w. The routes will be constructed dynamically using a cheapest
insertion heuristic as explained in Section 4.2.

Model 1: Shift scheduling model

Minimize:
∑

t∈T

∑

d∈D

∑

w∈W
Ct,d,wxt,d,w (1)

Subject to:
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∑

t∈T
xt,d,w ≤ 1, ∀d ∈ D,∀w ∈W (2)

∑

r∈R
λr,d,w −

∑

t∈T
xt,d,w = 0, ∀d ∈ D,∀w ∈W (3)

∑

t′∈T\t
xt′,d+1,w ≤ 1− xt,d,w, ∀t ∈ T,∀w ∈W,

∀d ∈ {1, ..., 4} (4)
∑

d∈D

∑

w∈W

∑

r∈R
Vi,rλr,d,w ≥ 1, ∀i ∈ I (5)

∑

t∈T

∑

r∈R
τroutet,r,d,wλr,d,wxt,d,w ≤ ΘMax, ∀d ∈ D,∀w ∈W (6)

τroutet,r,d,w = f

(
{λr′,d′,w′ : r′ ∈ R, d′ ∈ D,w′ ∈W} ,
{xt′,d′,w′ : t′ ∈ T, d′ ∈ D,w′ ∈W}

)
, ∀t ∈ T,∀r ∈ R,

∀d ∈ D,∀w ∈W (7)

In the objective function (1) the weekly labor costs are minimized. The total number of shifts
required (i.e.,

∑
t∈T

∑
d∈D

∑
w∈W xt,d,w) is also referred to as the total number of truck days.

Expressions (2) to (7) represent the constraints in the shift scheduling problem. Constraint (2)
ensures that there will be at most one shift scheduled on each day for each driver. Constraint (3)
shows that each shift should be associated with exactly one collection route r ∈ R. The set of
feasible routes R contains all collection routes that meet certain conditions. First, each route r ∈ R
is a tour that begins and ends at the depot location of the IA. Second, a feasible collection route
consists of at least one glass container and at most 60 glass containers. According to Fost Plus,
this maximum number of containers keeps the schedule manageable and allows the truck drivers
to become familiar with the collection routes.

According to labor legislation, there should be at least a certain amount of time between two
consecutive shifts. Because two different shift types (e.g., an N shift and a P shift) cover different
working hours, they cannot succeed each other. For example, an N shift cannot be followed by a
P shift or vice versa. This is ensured in our model by Constraint (4) which represents the shift
succession constraint. Because none of the workers can work in the weekend, the shift succession
constraint is only concerned with the week days.

The requirement that each glass container should be visited at least once a week is ensured by
Constraint (5).

Finally, the labor legislation also states that a worker can work (on average) for at most 8 hours in
a shift including a 30 minute break. With the average working time, we mean the average working
time for that day and truck over all weeks in the considered time horizon. This requirement
is represented by Constraint (6) in which ΘMax = 7.5. Since both λr,d,w and xt,d,w are binary
variables, τ routet,r,d,w must be smaller than 7.5.

Note that, for ease of exposition and because we will not solve Model 1 using a mathematical
programming approach, Constraint (6) is stated in a non-linear form. This constraint could easily
be linearized by introducing a new binary decision variable that reflects whether or not truck w
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rides collection route r on day d in shift t and adding constraints that ensure that this new variable
is 1 if both λr,d,w and xt,d,w are 1; and 0 otherwise.

Constraint (7) shows that τ routet,r,d,w is a function of all routing variables λr′,d′,w′ with r′ ∈ R, d′ ∈ D,
w′ ∈ W and all shift scheduling variables xt′,d′,w′ with t′ ∈ T , d′ ∈ D and w′ ∈ W . Recall that
τ routet,r,d,w represents the average working time of truck w on day d riding route r during shift t.

This means that this working time could be longer than τ routet,r,d,w in some weeks (this will be the
case in weeks where there are relatively fewer drop-offs thanks to low fill levels of the containers
and truck at the start of the day), but this must be compensated by higher working times (for
the same route and shift) in other weeks, in order to reach an average working time equal to
τ routet,r,d,w. Unfortunately, it is very hard to calculate τ routet,r,d,w exactly using a closed-form expression.

Therefore, we will approximate τ routet,r,d,w using simulation as explained in Section 4.2. However,

some components of τ routet,r,d,w do not depend on the other routing and shift scheduling decisions and
therefore can easily be calculated exactly for a certain route r during shift type t. To see this,
τ routet,r,d,w can be written as the sum of three separate times, as follows:

τ routet,r,d,w = Θdriving
t,r + τ collectionr,d + τdrop-off

t,r,d,w (8)

According to Equation (8), the total average working time (τ routet,r,d,w) consists of three parts, namely

the driving time (Θdriving
t,r ), the collection time (τ collectionr,d ) and the drop-off time (τdrop-off

t,r,d,w ). The

first part (Θdriving
t,r ) only represents the driving time from the depot location to the first container

in route r, the driving time between all consecutive containers in route r and the driving time
from the last container in route r back to the depot location. Hence, Θdriving

t,r only depends on the
sequence of glass containers in route r and is independent of the fill level of the containers and the
fill level of the truck. This means that Θdriving

t,r is independent from the other routing and shift
scheduling decisions, but only depends on the current route r and the scheduled shift type t. Recall
that these driving times depend on the shift type, however they are assumed to be deterministic
in the considered time horizon.

The second part of the total average working time is the collection time τ collectionr,d . Note that this
time is independent of the scheduled shift type t, because it does not contain any driving time.
The collection time only consists of the average collection time for all containers in route r. Hence,
it is the time required to empty containers when one of its compartments is filled for at least the
collection threshold on day d. Therefore, the collection time τ collectionr,d not only depends on the
routing decision for truck w on day d but also on the routing decisions on the other days and for the
other trucks. Moreover, whereas the driving time Θdriving

t,r is independent of the day, the collection

time τ collectionr,d does depend on the day during which the route is executed because the fill level of

each container can be different on each day. In our model τ collectionr,d represents an average over all

weeks in the considered time horizon while we assumed Θdriving
t,r to be constant over all weeks.

The drop-off time τdrop-off
t,r,d,w consists of two parts: the average time required to interrupt the route

when the truck is getting full and the average time required to unload the truck at the drop-off
location. Just as τ collectionr,d , the drop-off time τdrop-off

t,r,d,w also depends on all other routing decisions
(for other trucks on other days), because the position of the different drop-offs in the route (which
determines the total driving time to and from the drop-off location) and the number of required
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drop-offs (which determines the total unloading time), not only depend on the fill level of the
containers on day d, but also on the initial fill level of truck w at the beginning of that day. Just as
Θdriving

t,r , the drop-off time τdrop-off
t,r,d,w contains driving times (during the trips to and from the drop-

off) and thus depends on the scheduled shift type t. Finally, just as τ collectionr,d , τdrop-off
t,r,d,w represents

an average over all weeks in the considered time horizon.

Note that, based on the former definition of Θdriving
t,r , the sum of the three terms in Equation (8)

would account for more time than is actually required. Indeed, when a drop-off is required, the
truck immediately goes from container K to the drop-off location and returns to the next container
K + 1 in the route (with K the value of the index of a container in the route). Hence, the trip

from container K to K + 1 (trip K → K + 1), which is included in Θdriving
t,r , gets replaced by trip

K → drop-off → K + 1, which is included in the drop-off time τdrop-off
t,r,d,w . To make sure that we

do not account for more driving time than is actually required, these excess driving times (from
K to K + 1) should be subtracted. The substraction of this excess driving time is accounted for

in τ collectionr,d and τdrop-off
t,r,d,w . This is very important in order for the proposed solution technique to

perform well and is further explained in Section 4.4.

Recall that τ collectionr,d and τdrop-off
t,r,d,w not only depend on the current routing decision but also depend

on routing decisions on other days for other trucks, while Θdriving
t,r only depends on the current

route r and current shift type t. Therefore, both τ collectionr,d and τdrop-off
t,r,d,w are a function of the set

of all routing variables λr′,d′,w′ and shift scheduling variables xt′,d′,w′ with t′ ∈ T , d′ ∈ D and
w′ ∈W :

τ collectionr,d = f ′
(
{λr′,d′,w′ : r′ ∈ R, d′ ∈ D,w′ ∈W} ,
{xt′,d′,w′ : t′ ∈ T, d′ ∈ D,w′ ∈W}

)
, ∀r ∈ R,∀d ∈ D

τdrop-off
t,r,d,w = f ′′

(
{λr′,d′,w′ : r′ ∈ R, d′ ∈ D,w′ ∈W} ,
{xt′,d′,w′ : t′ ∈ T, d′ ∈ D,w′ ∈W}

)
, ∀t ∈ T, ∀r ∈ R,

∀d ∈ D,∀w ∈W

As our problem contains the vehicle routing problem (VRP), our problem is NP-hard. This makes it
very difficult to solve to optimality in a reasonable amount of time for realistic sized instances. But
even without the difficulty added by the VRP, solving Model 1 is not straightforward. The difficulty
of solving Model 1 clearly lies in the complex calculation of τ routet,r,d,w and in particular of τ collectionr,d

and τdrop-off
t,r,d,w . An explicit definition of τ collectionr,d and τdrop-off

t,r,d,w implies an explicit formulation of
the functions f ′ () and f ′′ (). This would require a complete mathematical description of the
entire collection process in each week of the considered time horizon linking the fill level of each
container and the route decision for each truck driver on each day with each other. Instead of such
a complex explicit mathematical formulation, simulation is much better suited for these cases. We
evaluate a certain workforce schedule with a simulation model resulting in a value for τ collectionr,d

and τdrop-off
t,r,d,w without the requirement for an explicit mathematical formulation of f ′ () and f ′′ ()

in the optimization model. Since τ collectionr,d and τdrop-off
t,r,d,w are averages on day d over all weeks in

the considered time horizon, simulation also removes the need to model each single week explicitly
in the optimization model.
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4. Methodology

4.1. Model Enhancement

One way to solve Model 1 presented above is to estimate τ collectionr,d and τdrop-off
t,r,d,w for each day,

truck, route and shift type and to use this estimate in the optimization model. This way, variables
τ collectionr,d and τdrop-off

t,r,d,w are transformed into parameters Θcollection
r,d and Θdrop-off

t,r,d,w , removing the

need for Constraint (7) in Model 1. Hence, Θcollection
r,d and Θdrop-off

t,r,d,w are independent of the shift
and route decisions in the optimization model. This is of course a simplification that allows us to
approximate τ collectionr,d and τdrop-off

t,r,d,w without explicitly modeling them in the optimization model.
However, we do not know whether we will obtain a good or even feasible solution this way. Because
of its simplicity, this approach is called straightforward optimization by Bachelet and Yon (2007).

A better way to approximate τ collectionr,d and τdrop-off
t,r,d,w is to use ME which allows to iteratively

improve the initial estimate of τ collectionr,d and τdrop-off
t,r,d,w with the help of simulation. In an ME

model, optimization and simulation are used in an iterative procedure to enhance the optimization
model. Hence, the goal is to exploit the benefits of simulation which allows us to solve the problem
without an explicit formulation of f ′ () and f ′′ (). Just as with straightforward optimization, ME

allows us to replace the variables τ collectionr,d and τdrop-off
t,r,d,w by parameters. However, in contrast to

straightforward optimization, the estimate of the parameter values is enhanced during each ME
iteration based on a simulation run.

The three phases of the ME procedure are shown in Figure 1 and are discussed below.

12
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Figure 1: Model enhancement algorithm
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4.2. Phase I: Optimization

In order to apply ME to solve Model 1, variables τ collectionr,d and τdrop-off
t,r,d,w are transformed into

parameters. Therefore, τ collectionr,d and τdrop-off
t,r,d,w are modeled to be independent of the routing and

shift scheduling decisions during the intermediate optimizations. This means that we will estimate
the collection time and the drop-off time during a certain shift avoiding the need to calculate
these times based on the start information (container and truck fill levels) and collection routes.
We simply start with an estimate and update this estimate during the ME phase III based on
the information received from the simulation phase II. If the simulation results show that our
estimate was too low for the collection route during a particular shift, the parameter estimate
will be increased for the next optimization phase using ME in such a way that the estimate will
converge to the correct value.

To translate this strategy to our model, the route index r in the subscripts of τ collectionr,d and τdrop-off
t,r,d,w

should be removed (since the model decides on the route). Since there can only be one route for
each day and truck (see Constraint (2)), the route index r can be replaced by the truck index

w. Second, making τ collectionr,d and τdrop-off
t,r,d,w independent of the decisions made by the optimization

13
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model means that also the shift type index t can be removed (since the model decides on the
scheduled shift types).

Hence, both variables are transformed into parameters as follows:

τ collectionr,d → Θcollection
d,w

τdrop-off
t,r,d,w → Θdrop-off

d,w

Because both Θcollection
d,w and Θdrop-off

d,w will now be parameters in the optimization model with the

same indices d and w, we can add them together as Θc&d
d,w :

Θc&d
d,w = Θcollection

d,w + Θdrop-off
d,w , ∀d ∈ D,∀w ∈W

We can now formulate Model 2, the adjusted shift scheduling model, as an approximation of
Model 1. Model 2 only differs from Model 1 regarding Constraint (6) and Constraint (7). These
two constraints are replaced by Constraint (9) as follows:

Model 2: Adjusted shift scheduling model

Minimize:
∑

t∈T

∑

d∈D

∑

w∈W
xt,d,wCt,d,w

Subject to:

Constraints (2) to (5)

∑

t∈T

∑

r∈R
Θdriving

t,r λr,d,wxt,d,w +
∑

r∈R
Θc&d

d,w λr,d,w ≤ ΘMax, ∀d ∈ D,∀w ∈W (9)

At the start of the ME algorithm the parameter Θc&d
d,w is initialized to an initial estimate for each

day d ∈ D and each truck w ∈ W . The estimates for Θc&d
d,w are subsequently enhanced during the

enhancement phases (phase III) of the ME algorithm.

For real-life dimensions, Model 2 cannot be solved to optimality in a reasonable time limit. The
real-life problem under study consists of 300 glass containers that have to be visited each week by a
truck. For each of these containers, we have to decide on which day during which shift and in which
position in the route they will be visited. Moreover, we have to decide on the number and the types
of shifts in which the type of shift has an impact on the collection speed. This type of integrated
vehicle routing - shift scheduling problem is a complex problem that with the current state of
knowledge cannot be solved efficiently using a mathematical programming approach. Moreover,
Model 2 needs to be solved in each iteration of the ME algorithm, after which simulation is used
to verify the estimates used. Obviously, we want a quality solution to Model 2 in each iteration
of ME, but optimality is not strictly required as the best solution found is saved and updated
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each time a better solution is found. For all of these reasons a metaheuristic, that combines Tabu
Search (TS) (Glover and Laguna, 1997) for the high-level shift scheduling problem and cheapest
insertion for the lower-level routing problem, is used to solve Model 2.

The TS algorithm swaps the shift type of a scheduled shift. The idea behind swapping P by N shifts
is to reduce the number of truck days (which is the total number of required shifts). Depending on
the cost of an N shift, this swap move could decrease the objective value (the total weekly labor
costs). However, the capability of TS to escape from local optima is particularly suitable here
because swapping a P shift for an N shift will in most cases not immediately decrease the objective
value. The idea behind swapping N shifts by P shifts is to decrease the total weekly costs while
maintaining the same number of truck days.

In each optimization phase, the TS algorithm is applied to the shift schedule obtained during the
previous optimization phase. For the first iteration, a start shift schedule is constructed using a
greedy heuristic that adds P shifts until all containers can be included in a collection route.

In order to evaluate each swap move, a collection route is constructed for each scheduled shift in
the adjusted shift schedule until all containers are included in a collection route. The collection
routes are constructed using a cheapest insertion heuristic aiming at small total driving times.
When not all shifts are needed to include all containers in the collection routes, the unnecessary
shifts are removed. Conversely, when the scheduled capacity (in terms of shifts) is insufficient to
construct collection routes such that all containers can be included, an extra P shift is added to
the end of the shift schedule. The constructed collection routes are first assigned to the schedule
of the first truck and only then to the second truck.

Note that compressing the collection routes in view of reducing the required number of shifts
means that the total driving time of the obtained solution does not necessarily decrease during
the enhancement iterations. Therefore, the best shift schedule with the lowest total driving time
is saved during the enhancement procedure.

When the collection routes are constructed, the succession constraints (4) are checked and the shift
schedule is adjusted if necessary. When the succession constraints (4) are violated because of the
swap move, the necessary days off are inserted (if possible) to render the shift schedule feasible
again. This step also allows to remove unnecessary days off from the shift schedule resulting from
the swap move.

After building and optimizing the collection routes and adding or removing shifts from the adjusted
shift schedule, the cost of the shift schedule is calculated according to objective function (1) in order
to numerically evaluate each move. Note that it is only during the construction of the collection
routes that Constraint (9) is checked to ensure a feasible shift schedule.

During each optimization phase, 100 tabu search iterations are performed. The optimization phase
will always result in a feasible result with respect to Constraint (9). While the objective value of
the obtained result is not necessarily lower than the one during the previous enhancement iteration,
the assumptions made in the model (i.e., the approximation of the real average collection and drop-
off times by Θc&d

d,w ) are getting more realistic. Eventually, this will result in good feasible solutions
with respect to Constraints (6) and (7) in model 1.
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4.3. Phase II: Simulation

During phase II a simulation model is ran in order to evaluate the solution obtained in phase I.
Figure 2 shows a schematic overview of the steps in the simulation process.

Figure 2: Schematic overview of the simulation process

For each day:

Update fill level of glass 
containers

If day is a working day:

Execute collection routes 
within scheduled shifts

 

As Figure 2 shows, the fill level of all glass containers is only updated at the beginning of each
day based on the fill rate (see Section 3.2). This means that the simulation model has a precision
of one day. Hence, we assume that the containers are filled at the beginning of each day with the
total amount of glass that was dropped in the container during the previous day. During the rest
of the day, no glass is added to the container. When the current day in the simulation is a working
day (i.e., not a weekend day), the scheduled collection routes are executed within the scheduled
shifts. The execution of the collection routes is simulated by letting a truck with a certain capacity
follow the route within the scheduled shift. Recall that the initial fill level of the truck depends on
the final fill level during the previous shift of that truck. The truck visits each container according
to the collection route and collects the glass of the visited container if one of its compartments is
filled for at least the collection threshold. When the truck is full, the collection route is interrupted
by a trip to the drop-off location.

The goal of the simulation is to evaluate the solution obtained during the optimization phase
with respect to the total average working time on each day d for each truck w. Hence, the
simulation gives us the real (under the assumptions of the simulation) value of the Left-Hand Side
(LHS) of Constraint (6) in model 1. Since Constraint (9) in model 2 is only an approximation of
Constraint (6) in Model 1, Constraint (6) may or may not be satisfied according to the simulation
results. To make sure that Constraint (9) is a good approximation of Constraint (6), causing both
Constraint (9) and Constraint (6) to be satisfied, the simulation information is used to enhance
the approximation. This is done during the enhancement phase.
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4.4. Phase III: Enhancement

During the enhancement phase, the estimate of Θc&d
d,w in Model 2 is enhanced based on the sim-

ulation results during phase II. The following notations are used to formulate the enhancement
function:

ΘrouteSimulation

d,w : average time required according to the simulation to perform the route
scheduled on day d with truck w with the scheduled shift type on day d
for truck w (in hours). Recall that we define the total route time as the
sum of the driving, collection and drop-off time.

Θ
(c&d)Simulation

d,w : average time required according to the simulation to empty glass contain-
ers and to perform the required drop-offs in the route scheduled on day
d with truck w with the scheduled shift type on day d for truck w (in
hours).

Next, we define δ as the index of the enhancement iterations, with δ = 1 the first enhancement
iteration. Using δ, all notations in Model 2 can be indexed for each enhancement iteration. This
way, we can define:

Θrouteδ

d,w : total estimated average time (resulting from the optimization of Model 2) required
to perform the route scheduled on day d with truck w with the scheduled shift
type on day d for truck w during enhancement iteration δ (in hours). Recall that
we define the total route time as the sum of the driving, collection and drop-off
time. Hence, this equals the value of the LHS of Constraint (9) in the optimal
solution for Model 2 during enhancement iteration δ.

Θ
(c&d)δ

d,w : estimate during enhancement iteration δ of the average time required to empty
glass containers and to perform the required drop-offs in the route scheduled on
day d with truck w with the scheduled shift type on day d for truck w (in hours).

Based on the former definitions, we can now state the enhancement function to enhance the previous
value of Θc&d

d,w as follows:

If
(

ΘrouteSimulation

d,w ≤ ΘMax
)

:

Θ
(c&d)δ+1

d,w =
Θ

(c&d)δ

d,w · δ
δ + 1

+
Θ

(c&d)Simulation

d,w

δ + 1

Else:

Θ
(c&d)δ+1

d,w = Θ
(c&d)δ

d,w + ΘMax −Θrouteδ

d,w + 0.01 (10)

In enhancement function (10), Θ
(c&d)δ+1

d,w is the estimate during the next enhancement iteration
of the average time required to empty glass containers and to perform the required drop-offs in
the route scheduled on day d with truck w with the scheduled shift type on day d for truck w.

If ΘrouteSimulation

d,w ≤ ΘMax, a moving average is calculated causing the impact of the simulation

to diminish over time. This way, we seek after the convergence of Θc&d
d,w . As Θc&d

d,w converges

and stabilizes, Θ
(c&d)Simulation

d,w can also converge and stabilize. In most cases, Θc&d
d,w will therefore
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converge to Θ
(c&d)Simulation

d,w just as in Figure 3.

Figure 3: Example of the convergence of Θc&d
d,w to Θ

(c&d)Simulation

d,w
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However, it is possible that Θc&d
d,w will not converge to Θ

(c&d)Simulation

d,w as is shown in Figure 4.

Figure 4 shows an example of the progress of Θc&d
d,w and Θ

(c&d)Simulation

d,w over the course of 116

enhancement iterations for a certain day and truck. As the graph in Figure 4 shows, Θc&d
d,w descends

towards Θ
(c&d)Simulation

d,w during the first 54 iterations. However, during iteration 55, Θ
(c&d)Simulation

d,w

suddenly peaks over Θc&d
d,w . It is at this point that Θc&d

d,w is small enough to add one extra glass
container in the route of this truck according to Model 2. Recall, however, that Model 2 does not
immediately take into account the possible extra collection and drop-off time that is required to
add this extra glass container. In order for Model 2 to take this extra time into account, we have to
wait for the feedback from the simulation evaluation. As the peaks during iterations 55, 73 and 95
show, it appears to be impossible to add an extra container to the route when the extra collection
and drop-off time is accounted for. In other words, the total average working time is greater than

ΘMax during these peaks. Hence, Θc&d
d,w can never be as low as Θ

(c&d)Simulation

d,w in this case since
we do not immediately take into account the extra required collection and drop-off time.

When ΘrouteSimulation

d,w > ΘMax, we want to escape as quickly as possible from this infeasible
situation. Therefore, the second part (the Else case) of the enhancement function (10) is applied.

In order to avoid spending too much time in the infeasible situation waiting for Θ
(c&d)δ

d,w to increase

with the help of the moving average, Θ
(c&d)δ

d,w is immediately increased by the spare time during

iteration δ (ΘMax − Θrouteδ

d,w ). To ensure that the extra container cannot remain in the route, an
extra 0.01 hours is added. This makes sure that the container is removed from the route during

iteration δ + 1. This explains why Θ
(c&d)Simulation

d,w peaks at iterations 55, 73 and 95, and drops
immediately at the next iteration. This procedure renders the solution feasible more quickly and
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assures more stability during the next iterations which allows to find better solutions more quickly.

Figure 4: Example of the convergence of Θc&d
d,w
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To determine the value of Θ
(c&d)Simulation

d,w during the enhancement procedure, we do not directly
use the collection and drop-off time supplied by the simulation. In Section 3.3 we argued that
the drop-off time, as it is defined in Section 3.3, should be reduced by some driving time in order
for Equation (8) to be exact as Θdriving

t,r contains some unnecessary container-to-container driving
times when one or more drop-offs are required. To ensure that we only account for the necessary

driving time, Θ
(c&d)Simulation

d,w should be reduced by these excess driving times. Therefore, we use

Equation (11) to determine the value of Θ
(c&d)Simulation

d,w based on ΘrouteSimulation

d,w and the driving

times resulting from the optimization phase. ΘrouteSimulation

d,w contains the driving times for a trip to
and from the drop-off (K → drop-off → K+1), but not the driving time for the unnecessary trip K

→ K + 1, while
∑

t∈T
∑

r∈R Θdriving
t,r λr,d,wxt,d,w does contain the driving time for the unnecessary

trip K → K + 1. Hence, enhancing Θ
(c&d)δ

d,w based on Θ
(c&d)Simulation

d,w and using it in Constraint
(9) ensures that we only account for the necessary driving time:

Θ
(c&d)Simulation

d,w = ΘrouteSimulation

d,w −
∑

t∈T

∑

r∈R
Θdriving

t,r λr,d,wxt,d,w (11)

5. Results and discussion

The proposed ME procedure (developed in C++) allows to solve Model 1 in order to analyze the
possible advantages of introducing a second shift type. We focus on one specific IA. This IA is
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selected based on the availability of data, the reliability of the available data and the geographic
location of the IA (a fairly urbanized and busy area). Because of confidentiality reasons, we cannot
give the name of the IA under study, but we can present some of its key properties. In the IA
under study, two trucks are available each day for glass collection. Each truck has 2 compartments
- one for white and one for colored glass. Although in practice both compartments can hold about
50% of the total volume, we will assume the more efficient proportion of 13 m3 for white glass and
17 m3 for colored glass (see De Bruecker et al. (2015) for a more detailed discussion). Furthermore,
two truck drivers are employed that cannot work in the weekend. In total, there are more than
300 containers in the IA, located on more than 200 different sites. Most of the containers are
duo containers, while only a small fraction consists of standard containers. We assume that duo
containers take 6 minutes to empty and can hold 1.675 m3 glass in each of its compartments,
while standard containers take 12 minutes and can hold 4 m3 glass. At the drop-off site, loading
and unloading is assumed to take 20 minutes. Finally, we assume a collection threshold of 40%,
meaning that visited containers are only emptied when one of its compartments is filled for at least
40%. This percentage is based on a trade-off between overtime and glass overflow volume and is
discussed in more detail in De Bruecker et al. (2015).

The driving times were obtained automatically through the Google Maps API and hence take into
account speed limits, congestion, traffic lights and even the driving direction (A to B is different
from B to A).

Based on real-life collection data of one year, the daily fill rate of each compartment of each
container is calculated according to the procedure described in Section 3.2. Figure 5 shows a
graphical representation of the aggregated daily fill rate (in m3) for white and colored glass for two
IAs, where IA1 is the IA under study. The fill rate shows a similar trend for both IAs and shows
large peaks during the New Year period. The ratio between white and colored glass is also very
similar in both IAs.

Figure 5: Aggregated daily fill rate during one year
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5.1. Theoretical results

Before we apply the ME model to the real-life setting, we first analyze the performance of the
model regarding feasibility and solution quality. To get a good view on the performance of the
proposed solution technique, we create a set of test cases that are based on the first 4 weeks of
the year. Recall that this considered time frame falls within the peak period for glass collection.
Therefore, we can assume that the fill rate during the rest of the year will not be higher than
during these four weeks. Hence, finding a good feasible schedule for this period is more challenging
which makes the considered time frame very interesting.

To allow for a thorough analysis, five different scenarios are constructed regarding the average
driving speed during an N shift compared to a P shift. For each of the different speed-up scenarios,
six different scenarios are constructed regarding the cost premium for an N shift compared to a P
shift. The results of the ME algorithm for these 30 different test cases are presented in Table 1
using the following definitions:

σ: factor (≤ 1) that is used to multiply the driving times in a P shift to obtain
the driving times in an N shift.

CN : cost of an N shift. The cost of a P shift (CP ) is always assumed to be 1.

θestimate
w = Avgd∈D

{
Θroute

d,w

}
= estimate in Model 2 of the average working hours for

truck w over all active truck days for truck w.

θsimulation
w = Avgd∈D

{
ΘrouteSimulation

d,w

}
= average working hours for truck w over all

active truck days for truck w according to the simulation.

We test the model for five different σ values ranging from 0.9 to 0.5 and six different CN values
ranging from 1.1 to 1.6. Columns 2 and 3 of Table 1 show the value of σ and CN respectively. The
index of each of the 30 test cases is shown in Column 1. The results presented in columns 4 to 9
are obtained by running the ME algorithm for 100 iterations. This takes on average 10 minutes for
each test case. Columns 4 to 6 show the required number of truck days, the required number of P
and N shifts and the resulting weekly costs of the shift schedule. Columns 8 to 9 show for each of
the 2 trucks (indexed in column 7) the average estimated working hours and the average simulated
working hours. At the bottom of Table 1, we show the average and the standard deviation of
columns 8 and 9.

5.1.1. Feasibility

The first criterion for a good solution is of course the feasibility of the solution with respect to
all the constraints in Model 1 (i.e., Constraints (2) to (7)). In this section we only focus on the
feasibility with respect to Constraints (6) and (7) as these are the constraints that are approximated
by constraint 9 in Model 2 with the aid of ME. All other constraints in Model 1 are also present in
Model 2 and will therefore be satisfied by definition. Hence, we want the real (i.e., simulated over
the four weeks in our considered time frame) total average working hours of the obtained solutions
to be less than or equal to 7.5 hours (ΘMax) on each day for each truck. The convergence of Θc&d

d,w

(possibly, but not necessarily to Θ
(c&d)Simulation

d,w ) which is aimed at during the enhancement phase
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in the ME procedure, should ensure that Constraints (6) and (7) in Model 1 are satisfied. When

Θc&d
d,w converges to Θ

(c&d)Simulation

d,w , Constraint 9 is a good approximation of Constraints (6) and
(7). Hence, when Constraint (9) is satisfied, Constraints (6) and (7) are also satisfied. As we have

shown in Section 4.4, Θc&d
d,w will not always converge to Θ

(c&d)Simulation

d,w . If it does not converge,

Θc&d
d,w will be greater than Θ

(c&d)Simulation

d,w . Therefore, Constraints (6) and (7) are satisfied when
Constraint (9) is satisfied.

While the tabu search algorithm during the optimization phase in the ME procedure ensures that
Constraint (9) in Model 2 is never violated, it is the enhancement phase that has to make sure that
Constraints (6) and (7) are satisfied. We found that our ME procedure is able to find a feasible
result for each test case (satisfying Constraints (6) and (7)). Column 9 of Table 1 then also shows
that the real (simulated) average total working time (over all active truck days) θsimulation

w is less
than or equal to 7.5 hours for each test case. As can be observed in these two tables, θestimate

w and
θsimulation
w always lie fairly close to each other. Furthermore, there is no statistically significant

difference between these two averages (two sided p value of 0.2994).

5.1.2. Solution quality

The second criterion of a good solution is the solution quality in terms of the obtained objective
value (the weekly costs). The obtained objective value for each of the test cases can be found in
column 6 of Table 1.

We compare the results of the ME procedure with the results of a flexible schedule (see De Bruecker
et al. (2015)). Recall that in our fixed schedule, we assumed that each container must be visited
at least once a week. However, visiting a container does not necessarily mean that it will also
be emptied. A container is only emptied when one of its compartments is filled for at least 40%.
Based on sensor information, it is possible to eliminate these useless trips. This means, however,
that we have to abandon a fixed schedule and use a flexible schedule which can be different for
each truck on each day in each week. A rolling horizon procedure is used by (De Bruecker et al.,
2015) in order to construct this flexible schedule. Interested readers are referred to latter work for
a detailed description of this approach.

It is very likely that a flexible schedule will result in fewer truck days since we only construct a
collection route if necessary. However, the average weekly number of truck days of the flexible
schedule cannot be seen as a theoretical lower bound (LB) since the rolling horizon approach does
not take into account the long-term effects of the collection decisions (De Bruecker et al. (2015)).
Hence, it cannot be proven that the flexible schedule will always perform better than the fixed
schedule. However, we argue that the results of the flexible schedule can be seen as a practical lower
bound for the minimal effort (in terms of truck days) that is required to make sure that the glass
overflow (glass placed next to the containers) is minimal. Johansson (2006), for example, concludes
that with relative large systems (more than 100 containers), dynamic scheduling (i.e., constructing
a flexible schedule) performs best. Johansson (2006) further concludes that the highest savings
of this dynamic policy are achieved in environments with high demand fluctuation. Also Mes
(2012) states that with seasonal patterns and huge random variations from day to day, a flexible
schedule outperforms a fixed schedule. Both authors compare their flexible scheduling results to a
fixed schedule and conclude that a flexible schedule can save on average 10% in working time or
costs. As we also face a very large system (over 300 containers) and an environment with seasonal
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patterns and high glass disposal fluctuations, similar savings are expected.

Table 2 shows a comparison of the ME results with the results of the flexible schedule (LB) in
terms of the minimal average required number of truck days. Again, we focus on the same four
weeks as previously to produce the results and we make this comparison for the same five σ cases.
Columns 2 and 3 of Table 2 give the results for the scenario where we only consider N shifts.
Columns 4 and 5 give the results for the scenario where we only consider P shifts. It is impossible
to test the scenarios where we allow for a mix of P and N shifts since this is impossible within
the framework of a flexible schedule. The rolling horizon procedure to obtain a flexible schedule
(as outlined by (De Bruecker et al., 2015)) makes decisions on a daily basis and is therefore not
designed to produce a good (or optimal) overall (over all days) mix of N and P shifts which satisfies
the shift succession constraints. Therefore, only N or only P shifts are considered to analyze the
LB.

As Table 2 shows, the LB is always smaller than the ME result. Note that the LB is an average
calculated by dividing the total number of required truck days over the considered planning horizon
by the number of weeks in the considered time horizon. Since each week can be different in a flexible
schedule, the LB can therefore have a fractional value. This is of course impossible for the fixed
schedule scenario. Hence, rounding the LB to the next integer also results in an even stronger
(practical) lower bound for the fixed schedule scenario. Comparing the (rounded) LB and the
ME results shows that the ME procedure produces the best possible solution for a fixed schedule,
compared to a flexible schedule (at least for the cases where we consider only N or only P shifts).
This strongly suggests that our ME method is capable of finding good (even possibly optimal)
solutions for the fixed schedule scenario. In the research presented by (De Bruecker et al., 2015),
the authors go even further and also analyze the quality of the obtained solutions based on the
properties of an optimal solution. They prove that the proposed solution technique can produce
results that meet certain optimality conditions. This does, however, still not prove the optimality
of the individual solutions. It does, however, indicate that the proposed solution approach does not
seem to arbitrarily perform better or worse for some problem instances as the full set of solutions
resembles an optimal structure. Interested reader are referred to the latter research for more
information.
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Table 1: Theoretical results Fost Plus

Case σ CN Truck days Shifts Weekly costs Truck w θestimate
w θsimulation

w

1 0.9 1.1 8 8P + 0N 8.00 1 7.36 7.26

2 6.94 6.94

2 0.9 1.2 8 8P + 0N 8.00 1 7.36 7.26

2 6.94 6.94

3 0.9 1.3 8 8P + 0N 8.00 1 7.36 7.26

2 6.94 6.94

4 0.9 1.4 8 8P + 0N 8.00 1 7.36 7.26

2 6.94 6.94

5 0.9 1.5 8 8P + 0N 8.00 1 7.36 7.26

2 6.94 6.94

6 0.9 1.6 8 8P + 0N 8.00 1 7.36 7.26

2 6.94 6.94

7 0.8 1.1 7 0P + 7N 7.70 1 7.38 7.33

2 6.54 6.39

8 0.8 1.2 8 8P + 0N 8.00 1 7.36 7.26

2 6.94 6.94

9 0.8 1.3 8 8P + 0N 8.00 1 7.36 7.26

2 6.94 6.94

10 0.8 1.4 8 8P + 0N 8.00 1 7.36 7.26

2 6.94 6.94

11 0.8 1.5 8 8P + 0N 8.00 1 7.36 7.26

2 6.94 6.94

12 0.8 1.6 8 8P + 0N 8.00 1 7.36 7.26

2 6.94 6.94

13 0.7 1.1 7 5P + 2N 7.20 1 7.39 7.39

2 7.40 7.38

14 0.7 1.2 7 5P + 2N 7.40 1 7.39 7.39

2 7.40 7.38

15 0.7 1.3 7 5P + 2N 7.60 1 7.39 7.39

2 7.40 7.38
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Theoretical results Fost Plus Cont.

Case σ CN Truck days Shifts Weekly costs Truck w θestimate
w θsimulation

w

16 0.7 1.4 7 5P + 2N 7.80 1 7.39 7.39

2 7.40 7.38

17 0.7 1.5 8 8P + 0N 8.00 1 7.36 7.26

2 6.94 6.94

18 0.7 1.6 8 8P + 0N 8.00 1 7.36 7.26

2 6.94 6.94

19 0.6 1.1 6 1P + 5N 6.50 1 7.34 7.33

2 7.20 7.21

20 0.6 1.2 6 1P + 5N 7.00 1 7.34 7.33

2 7.20 7.21

21 0.6 1.3 6 1P + 5N 7.50 1 7.34 7.33

2 7.20 7.21

22 0.6 1.4 7 5P + 2N 7.80 1 7.33 7.33

2 7.33 7.12

23 0.6 1.5 8 8P + 0N 8.00 1 7.36 7.26

2 6.94 6.94

24 0.6 1.6 8 8P + 0N 8.00 1 7.36 7.26

2 6.94 6.94

25 0.5 1.1 6 2P + 4N 6.40 1 7.36 7.36

2 6.98 6.98

26 0.5 1.2 6 2P + 4N 6.80 1 7.36 7.36

2 6.98 6.98

27 0.5 1.3 6 2P + 4N 7.20 1 7.36 7.36

2 6.98 6.98

28 0.5 1.4 6 2P + 4N 7.60 1 7.36 7.36

2 6.98 6.98

29 0.5 1.5 6 2P + 4N 8.00 1 7.36 7.36

2 6.98 6.98

30 0.5 1.6 8 8P + 0N 8.00 1 7.36 7.26

2 6.94 6.94

Average: 7.20 7.16

St.dev.: 0.22 0.20
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Table 2: Comparison of the weekly average required number of truck days

Only N shifts Only P shifts

Case LB ME LB ME

σ = 0.9 7.25 8.00 7.75 8.00

σ = 0.8 6.50 7.00 7.75 8.00

σ = 0.7 6.25 7.00 7.75 8.00

σ = 0.6 5.75 6.00 7.75 8.00

σ = 0.5 5.50 6.00 7.75 8.00

Note: LB (Lower Bound) refers to the average number of truck days resulting from the flexible schedule.

ME (Model Enhancement) refers to the average number of truck days resulting from the fixed schedule.

5.2. Application to a real-life problem

In this section we present the results of the ME procedure for the entire year based on real-life
data for the IA under study. Furthermore, we also present the results of a flexible schedule for
benchmarking purposes.

Table 3 presents the results of the ME procedure for the four most realistic σ scenarios with CP = 1.
Solving the ME procedure for one year instead of 4 weeks for 100 iterations increases the required
computation time from on average 10 minutes to on average 70 minutes. The results show that we
always find a solution where θsimulation

w is less than or equal to 7.5 hours. Just as for the results
in Section 5.1.1, we can again observe that θestimate

w and θsimulation
w lie very close to each other.

As in Section 5.1.2, Table 4 shows the results of the flexible schedule (LB) compared to the results
of the ME procedure. Note that the LB is now the average required number of truck days over
the entire year. Comparing the (rounded) (practical) LB and the ME results shows that the ME
procedure produces the best possible solution for a fixed schedule compared to a flexible schedule.
Along with the results in Table 3, this again suggests that our ME method is capable of finding
good (even possibly optimal) solutions for the fixed schedule scenario.

Regardless of the optimality of the obtained results, the improvement with respect to the current
schedule in use at the IA under study is at least as important in order to evaluate the quality of
the proposed solutions. At this time, the IA under study uses a fixed schedule with only P shifts
employing two full time drivers. Since one collection route is assigned to each driver on each day,
10 truck days are required every week in the current schedule. Even without the inclusion of an
N shift, Table 3 shows that our model already results in a saving of at least three truck days per
week. Table 3 shows that even more savings are possible when N shifts are used in combination
with P shifts depending on the premium of an N shift and the value of σ. These results allow Fost
Plus to evaluate different cost possibilities under different σ assumptions.

Appendix 6 shows the Graphical User Interface (GUI) developed for this application. Besides
visualizing the collection routes, the GUI also allows a non-expert user to analyze a fixed or flexible
schedule under different parameter settings such as driving time (e.g., highways or no highways),
overtime, and drop-off rules. For instance, the user can analyze the possible effects of allowing a
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truck to go to the drop-off site at the end of the day without it being completely full.

Table 3: Real case results

Case σ CN Truck

days

Shifts Weekly

costs

Truck w θestimate
w θsimulation

w

1 - 6 0.9 1.1 - 1.6 7 7P + 0N 7.00 1 7.418 7.418

2 6.895 6.895

7 - 12 0.8 1.1 - 1.6 7 7P + 0N 7.00 1 7.418 7.418

2 6.895 6.895

13 0.75 1.1 6 1P + 5N 6.50 1 7.295 7.295

2 7.125 7.125

14 0.75 1.2 6 1P + 5N 7.00 1 7.295 7.295

2 7.125 7.125

15 - 18 0.75 1.3 - 1.6 7 7P + 0N 7.00 1 7.418 7.418

2 6.895 6.895

19 0.7 1.1 6 2P + 4N 6.40 1 7.375 7.375

2 7.045 7.020

20 0.7 1.2 6 2P + 4N 6.80 1 7.375 7.375

2 7.045 7.020

21 - 24 0.7 1.3 - 1.6 7 7P + 0N 7.00 1 7.418 7.418

2 6.895 6.895

Average: 7.165 7.164

St.dev.: 0.245 0.246

Table 4: Comparison of the minimal average required number of truck days

Only N shifts Only P shifts

Case LB ME LB ME

σ = 0.9 6.37 7.00 6.40 7.00

σ = 0.8 6.10 7.00 6.40 7.00

σ = 0.75 5.70 6.00 6.40 7.00

σ = 0.70 5.34 6.00 6.40 7.00

Note: LB (Lower Bound) refers to the average number of truck days resulting from the flexible schedule.

ME (Model Enhancement) refers to the average number of truck days resulting from the fixed schedule.
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6. Conclusion and future research

In this paper we successfully showed how an ME approach can be used to integrate a routing
problem with a personnel planning problem in a waste collection context. We apply our solution
approach to several test cases and to the real-life data from a particular IA. In order to evaluate
the performance of the ME model, both the feasibility and the solution quality of the obtained
results are analyzed.

First, the feasibility of the results is an important performance indicator of the ME approach as
it shows how good the simplified model approximates the real model. The results show that each
obtained solution (for all test cases as well as the real-life case) is feasible in both the simplified
and the real model.

Second, the quality of the ME results is evaluated based on a practical lower bound (LB). This
lower bound is calculated based on the results obtained for a flexible schedule (see De Bruecker
et al. (2015)). In the flexible scheduling model, useless trips are eliminated since only the most
urgent containers are visited. As the ME results are equal to the rounded LB results for the tested
scenarios, this strongly suggests that the proposed ME method is capable of finding good (even
possibly optimal) solutions.

Regardless of the optimality of the obtained results for the test cases, the improvement with
respect to the schedule used in reality is at least as important in order to evaluate the quality of
the proposed techniques. We show that even without the inclusion of an N shift, the ME model
results in significant savings. Even more savings are possible when N shifts are used in combination
with P shifts depending on the additional cost for an N shift. Furthermore, the results presented
in this paper also allow Fost Plus to evaluate the benefits of installing sensors in each container.
This analysis goes, however, beyond the scope of this paper.

Finally, we propose some interesting topics for future research. In this paper we assume to know
the exact fill level of the containers based on historical fill rate data. However, some stochasticity
can be expected in the fill rate. Hence, incorporating a stochastic fill rate can contribute to the
construction of a more realistic and applicable model. Furthermore, stochasticity can also be
introduced in the driving times, collection times, loading and unloading times, etc. However, while
stochasticity is an interesting additional element, we rather prefer to emphasize the lack of research
related to the combination of personnel and vehicle shift scheduling in the waste management
literature. This lack was already pointed out by Ernst et al. (2004) and still exists today according
to the literature review of Ghiani et al. (2014). Another interesting avenue for future research is
developing a decomposition approach, e.g., column generation, for solving Model 1 and examining
its performance as compared to the heuristic neighbourhood search proposed in this paper.
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8. Appendix

Figure 6: Graphical User Interface
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