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A B S T R A C T

Toppling failure is a common mode of instability in layered and blocky rock slopes where rock blocks rotate
about their toes and overturn. One of the most important types of toppling failure is slide-toe-toppling. In this
failure, rock blocks at the toe of the slope are overturned by the pressure of sliding mass from the upper part of
the slope. In the present study, this type of failure is examined through physical and theoretical modeling. The
literature on toppling failures is reviewed briefly first and, then, the mechanism of slide-toe-toppling failure is
described. To clarify the mechanism of the failure, a series of physical model tests is conducted under static
condition by means of a new tilting table apparatus. Then, a theoretical approach is proposed based on limit
equilibrium analysis and some new equations are developed for stability analysis of this type of failure. Finally,
the results of physical modeling are compared with outcomes of proposed theoretical approach. This comparison
shows a good agreement between the theoretical and experimental results.

1. Introduction

Toppling failure is a common instability in natural and excavated
rock slopes. From the mechanism point of view, the toppling failures
are classified as main and secondary (Goodman and Bray, 1976). In the
main types of toppling failure (flexural, blocky and block-flexure), the
primary cause of instability is weight of the rock mass. But, in the
secondary types of toppling failure, rock mass is stimulated by some
external factors. These types of failure are briefly described here. To
understand the mechanism of blocky toppling failure, it is assumed that
rock mass is composed of a set of dominant parallel discontinuities
dipping steeply into the slope face and a set of cross-joints extended
normal to the dominant discontinuities dividing the rock columns into a
set of rock blocks. Under such condition, the rock blocks may slide
along or turn over the natural cross-joins in their base; so their tensile
strength has no significant effect on the stability of rock slope. Fig. 1-a
shows a schematic diagram and a real case study of this instability.
Another type of main toppling failure is flexural toppling. To under-
stand the mechanism of this type of failure, it is assumed that a rock
mass is only composed of a set of parallel persistent discontinuities
dipping steeply into the slope face. As such, the rock mass behaves like
a series of superimposed inclined continuous cantilever rock columns
which are subjected to bending stresses. When bending tensile stress in
the rock columns exceeds their tensile strength, they fail and topple
downward. Fig. 1-b shows a schematic diagram of this instability and a
photograph of such failure in a limestone quarry mine. In real case
studies, the above-mentioned idealized failure mechanisms are not

common. Natural toppling failures are mostly a combination of both
blocky and flexural modes which can be generally termed as block-
flexure toppling failure. If any of these failures is stimulated by some
external factors, the result will be called a secondary toppling failure.
Secondary toppling failures are quite diverse and many modes have
been proposed for these failures. In Fig. 2, rock blocks at the toe of the
slope are overturned by the pressure of sliding mass from the upper
portion of the slope. This phenomenon is a combined failure known as
slide-toe-toppling. In this paper, the mechanism of this failure is clar-
ified through a series of physical model studies and a new flexible
analytical approach is proposed.

2. Literature review

Failure due to overturning of natural rock blocks was first men-
tioned by Müller in 1968, after studying the instabilities near the Vaiont
dam lake in Italy (Müller, 1968). In 1971, Ashby introduced a simple
criterion for this type of failure and proposed the term “toppling” for it.
From 1971 to 1976, toppling failure was the subject of a few scattered
researches focused on numerical and physical modeling and real case
studies (Cundall, 1971; De Freitas and Watters, 1973).

In 1976, Goodman and Bray classified the toppling failures into two
categories: main (flexural, blocky and block-flexure) and secondary
types and introduced a theoretical approach for the analysis of blocky
mode. Later, several researchers tried to develop this approach into
some design charts and computer programs to assess the failure (Hoek
and Bray, 1977; Zanbak, 1984; Choquet and Tanon, 1985; Tatone and
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Grasselli, 2010). Apart from the above mentioned researches, many
other articles and reports can be found in the literature on the physical
modeling, case study and theoretical and numerical analysis of blocky
toppling failure, mostly based on the classification of Goodman and
Bray (Wyllie and Mah, 2004; Pritchard and Savigny, 1990; Bobet, 1999;
Sagaseta et al., 2001; Naresh et al., 2002; Xinbin et al., 2007; Brideau
and Stead, 2010; Alejano et al., 2015; Smith, 2015).

The first comprehensive approach to analyze flexural toppling

failure was introduced by Aydan and Kawamoto (1992) who managed
to incorporate the effects of dynamic loads and underground water
pressure into the analysis. In 2009, Amini et al. proposed a simple and
direct method for analysis of the failure based on compatibility prin-
ciples governing the behavior of cantilever beams (Amini et al., 2009).
There was a good agreement between the results of this method and the
results of existing physical modeling and case studies. Apart from these
studies, this type of failure has been the subject of several articles in the

List of symbols

σt Tensile strength of rock blocks
UCS Uniaxial compressive strength
γ Unit weight
h Average length of blocks or slices
z Height of falling
t Thickness of blocks
ψf Dip of slope face
ψp Dip of dominant discontinuities of rock mass or soil slices
ψt Dip of overall failure plane of toppling failure
ψs Dip of upper surface of the slope
ψb Dip of normal to discontinuities
b Distance between tensile crack and crown of slope
n Number of rock block
m Number of soil slice
H Height of slope
fRj Inter-slice normal force acting at the right side of slice “j”
fLj Inter-slice normal force acting at the left side of slice “j”
Nj Normal force acting at the base of slice “j”
Sj Shear force acting at the base of slice “j”

ψR
j Angle between fRj and normal to slice “j”

ψL
j Angle between fLj and normal to slice “j”

hRj Point of application of fRj with respect to base of slice “j”
hLj Point of application of fLj with respect to base of slice “j”
ℓj Point of application of Nj with respect to toe of slice “j”
ψa

j Dip of base of slice “j” with respect to horizon
Δxj Thickness of slice “j”
ϕs Internal friction angle of soil
cs Cohesive strength of soil
ϕsb Interface friction angle between soil and rock masses
ϕb Interface friction angle of base of rock blocks
cb Cohesive strength of base of rock blocks
ϕc Interface friction angle between adjacent rock blocks
ϕi Internal friction angle of intact rock
ci Cohesive strength of intact rock
κ Constant coefficient
W Weight of rock blocks
P Inter-block normal force
Q Inter-block shear force
y Point of application of “P” with respect to base of block

b)a)

Fig. 1. Schematic diagrams and real case studies of main
toppling failures: a) blocky; b) flexural.
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format of physical and numerical modeling and real case studies
(Adhikary et al., 1997; Adhikary and Guo, 2002; Alzo'ubi et al., 2010;
Aydan and Amini, 2009; Majdi and Amini, 2010).

In 2012 and 2015, Amini et al. combined the method of Goodman
and Bray (1976) with the method of Aydan and Kawamoto (1992) to
introduce a solution for analysis of block-flexure toppling failure. They
evaluated their method on a number of case studies and demonstrated
the validity and accuracy of its results. In 1983, Teme and West studied
a particular case of slide-toe-toppling failure by basing their analysis on
the assumption that sliding of a massive rigid block at the top leads to a
blocky toppling failure at the toe of the slope (Teme and West, 1983). A
typical example of this type of failure, occurred in the slopes of a coal
open pit mine, was studied by Wyllie and Munn in 1979. In 2014, Amini
proposed a new mechanism for this failure based on the assumption
that the interactions between soil mass and rock columns are similar to
the interactions between soil and a rigid retaining wall (Amini, 2014).
Later, this method was developed by Mohtarami et al. (2014) and its
results were validated in a real case study. However, the method is
limited to a logarithmic spiral failure surface in the upper soil mass and
block-flexure toppling failure in toe of the slope and, also, the theore-
tical analysis is too complicated. It is, hence, of utmost importance to
study the mechanism of the failure and to evaluate it rationally. Effort
has been made to study it in this paper.

3. Mechanism of slide-toe-toppling failure

As mentioned, when a slope is made of an upper portion susceptible
to sliding and a lower portion prone to toppling failure, the slope has a
potential of slide-toe-toppling. Schematic diagram of this type of failure
is shown in Fig. (2). In this type of failure, analysis of the rock mass
positioned at the toe of the slope shows that this part should be stable
against toppling failure by its own weight. Hence, this section acts like a
rigid wall retaining the independently unstable soil mass. Therefore,
there is a natural reaction between soil and rock masses.

In the simplest case, the first top rock block is subjected to its own
weight and a force exerted by the upper soil mass. But in general, this
block could also be subjected to some external forces such as dynamic
loads, water pressures and loads of rock bolts. In any case, resultant of
all of the mentioned forces may push the block to topple or slide. This
block also will push and destabilize the next block and this domino
effect will continue down to the last block at the toe of the slope.
Finally, if the last rock block slides or topples, the entire slope will fail
and a slide-toe-toppling failure will occur; but as long as the last rock
block remains stable, the slope will be stable too. Hence, to evaluate the
stability of the slope, the reaction force between upper soil mass and the

first top rock block should be known. But, sliding soil mass is statically
indeterminate. Therefore, it should first be solved with appropriate
theoretical methods and, then, its reaction with the first block should be
estimated. In next sections, the mechanism of this instability is clarified
by physical modeling and a new theoretical model is proposed to de-
termine the reaction between the upper soil mass and the lower rock
mass in the slide-toe-toppling failure.

4. Modeling of slide-toe-toppling

4.1. Physical modeling

Physical modeling is a conventional method for studying the me-
chanisms of instabilities in soil and rock masses. These models play an
essential role in validation of theoretical and numerical models and
verification of their results. In the case of slopes, physical modeling is
usually carried out by tilting table, centrifuge apparatus, base friction
table and temporary support. In the tilting table method and temporary
support, weight of samples is modeled directly; so the model should be
large enough to naturally fail under its own weight. But in the cen-
trifuge and base friction methods, weight is simulated with the aid of
centrifugal and friction forces; so the model can be reasonably small
(Khosravi et al., 2016). So far, the physical models developed for the
study of toppling failures have been entirely focused on the main top-
pling failures (Ashby, 1971; Egger, 1983; Aydan and Kawamoto, 1992;
Aydan and Amini, 2009; Amini et al., 2015) and no such model has
developed for secondary toppling failures. In this study, the slide-toe-
toppling failure was physically modeled to clarify the mechanism of this
instability and check the validity of the outcomes of proposed theore-
tical approach. Details and results of this physical modeling are pro-
vided in the following subsections.

4.1.1. Material properties
The selection of modeling material is one of the most important

issues in regard to physical modeling. In this study, all physical models
were made with base friction powder. This powder is a frequently used
material to construct physical models and is a highly regarded for this
purpose (Egger, 1983; Kawamoto et al., 1983; Aydan and Kawamoto,
1992; Aydan and Amini, 2009, Amini et al., 2015). When the powder is
poured in suitable molds and properly compressed, it turns into solid
blocks of desired quality (Fig. 3). The higher is the pressure, the denser
and thus stronger will be the resulting block. Thus, this powder can be
used to prepare blocks of desired strength and unit weight in line with
research purposes. The high unit weight and low strength of the re-
sulting blocks make them particularly suitable for physical modeling on
tilting table, as they allow the model to fail under its own weight even
in a small scale. In the models of this study (for examination of slide-
toe-toppling failure), this powder was used as a homogenous material
constituting the upper portion of the slope and the solid blocks made of
compressed powder were used to build the rock mass at the toe portion.

Fig. 2. Schematic diagram of slide-toe-toppling failure. Fig. 3. Mold, powder and solid blocks used in this research.
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Evaluation of physical models with numerical and theoretical methods
requires an adequate measurement of mechanical and physical prop-
erties of the modeling material. Therefore, powder and solid blocks
were subjected to a number of initial tests to determine the required
properties.

4.1.1.1. Unit weight. The unit weight of a solid blocks could be
controlled by the compressive pressure (0–1036 kPa) applied to the
base friction powder. The resultant unit weight is plotted as a function
of molding pressure in Fig. 4. As expected, the unit weight of the block
increased with an increase in molding pressure. But this relationship
was not linear; because the mold had a fixed initial volume and as the
pressure increased and specimen became more compressed,
compression progressed at a slower rate. In this study, the blocks
were made under a pressure of 460 kPa, resulting in a unit weight of
21.1 kN/m3 (Fig. 4).

To simulate the soil mass behind the rock blocks, the same base
friction powder was used under its loose condition. The air pluviation
technique was applied where the material is poured into the modeling
box from a certain falling height. A feeder was produced for this pur-
pose with the ability to move along the modeling box and with a
controllable falling height. The powder was poured from different
falling heights (5, 10, 15 and 20 cm) into a small box with known vo-
lume and a relationship between the falling height and resultant unit
weight was defined (Fig. 5).

As it can be seen, in the scope of this study, powder's unit weight
showed an almost linear relationship with the falling height which is
expressed as the following equation:

= +γ z0.06 13.38 (1)

where z is the falling height in cm and γ is the powder's resultant unit
weight in kN/m3. In this study, the soil mass in physical models was
made with a falling height of 10 cm, resulting in a unit weight of
13.98 kN/m3.

4.1.1.2. Uniaxial compressive strength. Uniaxial compressive strength of
solid blocks is one of the most important mechanical properties of these
material which acts as a measure of blocks' strength and competency
and a criterion for the choice of ultimate compressive pressure. The
blocks should be strong enough to sustain their shape during
preparation in the model; but weak enough to fail under modeling
stress level. To determine the relationship between blocks' compressive
strength and molding compressive pressure, uniaxial compressive
strength of several specimens made under pressures of 346–570 kPa
was measured. All of these specimens were 5 cm wide, 10 cm high and
had a thickness of between 3.7 and 3.9 cm depending on the molding
compressive pressure. The trend of uniaxial compressive strength
versus compression pressure (in the scope of this study) is plotted in
Fig. 6. This figure shows that in the mentioned pressure range
(346–570 kPa), the block's uniaxial compressive strength has a linear
relationship with molding compressive pressure. Note that over a wider
range, this relationship is likely to be nonlinear; but, when the
compressive pressure ranges from 246 kPa to 570 kPa, the linear
relationship is accurate enough to explain their association (see
Fig. 4). Since the molding compressive pressure in this study was
decided to be 460 kPa, the blocks' uniaxial compressive strength was
assumed to be 52.5 kPa.

4.1.1.3. Tensile strength. As mentioned earlier, in flexural and block-
flexure toppling failures, rock blocks first break under tensile stress and
then overturn. Thus, these modes of failure are particularly sensitive to
the blocks' tensile strength. This also applies to the case of physical
models. In view of this sensitivity, tensile strength of solid blocks made
under different compression pressures should be measured. Measuring
the tensile strength of weak and brittle material is subject to many
limitations. Hence, to measure this parameter, indirect test methods are
more preferable. The common practice for determining the tensile
strength of these blocks is the use of three-point or four-point bending
tests. In these methods, especially in four-point bending test, stress
concentration around supports may lead to crack initiation and
propagation in those areas which results in a lower accuracy of the
results. To avoid this issue, the authors designed and built a new device
shown in Fig. 7 to measure the tensile strength in line with research
objective. In this device, a 20 cm long block with a weight placed on its
one end is placed on a small conveyor belt. As the motor starts, the belt
starts to move and one end of the block start to hang off the edge and

Fig. 4. Variation of blocks' unit weight versus compressive pressure.

Fig. 5. Relationship of powder's unit weight with height of falling.

552.5

460

Fig. 6. Variation of the block's uniaxial compressive strength versus compressive pres-
sure.

M. Amini et al. Engineering Geology 228 (2017) 82–96

85



act as a cantilever beam. As the belt moves, the free length of this beam
increases until the block breaks under its own weight. In this device, the
moment of failure is determined by a laser displacement transducer
installed above the hanging side of the specimen. According to the laws
of solid mechanics, tensile strength of the block at the moment of
failure can be determined by the following relationship:

=σ h γ t3t
2 (2)

where h is the length of the block at the moment of failure, γ is the
block's unit weight and t is the block's thickness.

In this study, several 5 cm thick blocks made under different com-
pression pressures (346–570 kPa). Unit weight of these blocks was de-
termined according to the diagram demonstrated in Fig. 4. For each
block, its length at the moment of failure was measured by mentioned
device and its tensile strength was obtained from Eq. (2). In Fig. 8, the
block's tensile strength is plotted versus compression pressure
(346–570 kPa). As this plot shows, along the mentioned pressure range,
the block's tensile strength has a linear relationship with molding
compressive pressure. Note that, as stated for the uniaxial compressive
strength, this relationship would be probably nonlinear over a wider
pressure range. Since the solid blocks to be used in physical modeling
were made under pressure of 460 kPa, in theoretical analyses, tensile
strength of the blocks was assumed to be 14 kPa.

4.1.1.4. Shear strength parameters. In slide-toe-toppling failure, soil
mass must undergo shear sliding and rock blocks must slide on each
other before toppling. Thus, the internal shear parameters of both
powder and blocks and also the inter-block shear parameters are
important for analysis. The internal shear parameters were measured
by direct shear test using a 6 × 6 cm shear box. In this test, dry base
friction powder was poured into the box and was sheared under normal
effective stresses of 1.8, 4.4 and 6.2 kPa. These results showed that the
used powder had a friction angle of 20° and a cohesive strength of
0.35 kPa.

To determine the internal shear strength parameters of the blocks, a
number of blocks were made under pressure of 460 kPa and were tested
as was described for powder (under normal effective stresses of 1.8, 4.4
and 6.2 kPa). The blocks exhibited a friction angle of 35° and a cohesive
strength of 100 kPa. Also, the inter-block shear strength was estimated
by some tests on a small tilting table. In these tests, one block was
placed on top of another and the table was inclined until the top block
slid. By ignoring the inter-block cohesive strength, the angle of the table
at the onset of sliding will be equal to the inter-block friction angle.
These tests showed that the inter-block friction angle is about 32°.

4.1.2. Physical model tests
Slide-toe-toppling failure was modeled on a tilting table designed

and constructed at the University of Tehran by the authors specifically
for this purpose. Fig. 9 shows a schematic diagram and a photograph of
this apparatus. To use this device, physical model of the slope was built
inside a 1 × 0.5 × 0.5 m transparent Plexiglas Acrylic box which was
perfectly horizontal and fully fixed when building the model. Once the
model was built, the box and hence the model were tilted very gently at
a constant rate of 1° per minute. Angle of the tilting table was measured
by a potentiometer installed on a central bar. This sensor was powered
by a rechargeable battery installed on the device; so its outputs were
independent of power cutoff or fluctuation. The angles measured by this
sensor also were checked by manual measurements. In order to mini-
mize the influence of the electric motor vibration on the model, the
motor and gearbox were installed on the ground apart from the main
body. The force required to tilt the table was transferred from the motor
to the table by means of a pulley-belt system and a ball screw linear
actuator. All connections of the device were equipped with rubber
washers to dampen the shocks both at the start and during the test.
During the tests, displacement of the model was measured by a dis-
placement transducer installed on the box at the front of the slope. In
addition, the test was video recorded from the side and front positions
so that model behavior could be examined in slow-motion. To ensure
the uniformity, consistence and repeatability of the method which was
used to pour the powder into the box, this procedure was done by a
feeder moving over adjustable rails installed above the Plexiglas box.
This setup allowed the position of feeder to be adjusted both long-
itudinally and in height, so that powder could be poured from the de-
sired height and at the desired position. This allowed the powder to be
poured in a standard repeatable method for all models. During the tests,
the feeder was removed from the device to avoid interference. As pre-
viously stated, for all models, powder was poured into the box from a
fixed height of 10 cm.

For each test, first, solid blocks were placed vertically alongside
each other to form the rock mass of the toe of slope. As table tilts, these
blocks become susceptible to overturning. Since toppling failure of rock
mass at the toe may be in blocky, flexural or block-flexure modes, each
scenario was investigated separately by some models built specifically
for that failure mode. For flexural toppling failure, rock mass was built

Fig. 7. Measurement of tensile strength of solid blocks by a new
apparatus.

114

460

Fig. 8. Variation of the block's tensile strength versus compressive pressure.
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with continuous blocks; so for toppling to occur, blocks had to break at
the base by the tensile stress caused by bending. For blocky mode, a set
of artificial cross-joint was made at the base of blocks in a way that
overall toppling failure plane would be at an angle of 14° to the table
floor. These joints allowed the blocks to easily separate at their bases
and overturn under the exerted loads. For block-flexure toppling
failure, continuous blocks and those with cross-joints were placed al-
ternately. The dip of overall toppling failure plane was chosen to be 14°
in this model too, so that block-flexure toppling failure would be reg-
ular and easier to analyze. To avoid the problems associated with

making and movement of the blocks, their maximum height was limited
to 35 cm. On the other hand, initial modeling showed that flexural
models which were shorter than 15 cm can remain stable even under a
slope angle of 90°. Therefore the height of blocks was selected between
15 cm to 30 cm for all the models with a constant block thickness of
5 cm. Furthermore, the slope angle before tilting was 56.3° for every
test. After building the toe of the slope, the feeder containing the
powder was fixed at the height of 10 cm from the box floor. The feeder
was then moved along the container pouring a uniform layer of powder
behind the rock blocks. The air pluviation process was continued for a

 Feeder

Model

Camera

 Control Panel

 Motor and 
Gearbox

 Sensor

Fig. 9. Tilting table apparatus; (a) photograph, (b) schematic diagram.

(a)

(b)

(c)
Fig. 10. Schematic diagrams and photographs of slide-toe-toppling failure in physical models; (a) flexural mode, (b) blocky mode, (c) block-flexure mode (all dimensions are in
centimeter).
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constant powder falling height of 10 cm until the space behind the
blocks was backfilled completely. Then, after checking the proper
functioning of sensors and cameras, the table was tilted at a slow and
continuous rate of 1° per minute. In all experiments, four stages can be
considered for the tests: stable, initiation of instability, failure and post-
failure. The slow rate of tilting allowed initiation of instability to be
recorded. In all models, as the dip of tilting plane increased, transverse
tension cracks appeared in the powder. As the test progressed, the
number and depth of these cracks increased and blocks started to show
deflection. In the later stages, often a number of tension cracks dee-
pened more than others and powder-block contact surface underwent a
shear displacement so that blocks could undergo bending deflection.
Finally, all blocks were toppled and a roughly circular sliding occurred
in the powder suddenly. This circumstance, which a large movement
was observed in the model, assumed failure stage. While total move-
ment of flexural toppling mode in failure stage was more than blocky
and block-flexural modes, all models experienced self-stabilization
condition in their post-failure stage. Fig. 10 shows the schematic dia-
grams and photographs of the models. To save space, only the diagrams
and photographs of one of the typical models tested for each failure
mode are presented (the model with h = 30 cm). But overall, a total of
9 physical models were conducted and their results were recorded.
Geometric details of the models at the onset of failure are presented in
Table 1.

In every test, tilting was stopped immediately after the failure stage,
geometric details of the model were recorded, depth of sliding surface
in the powder was captured three-dimensionally to acquire geometric
data required for theoretical analyses and finally sliding mass and
broken blocks were carefully removed to measure the height of blocks
below the overall toppling failure plane (Fig. 11). To better understand
the total instability surface in these models, the acquired data was
tuned into 3D models. A view of one of these models (model F20) is
shown in Fig. 12. As this figure shows, sliding surface in the slope's
upper area is roughly circular and extends from the end of tension crack
to the boundary of overall failure plane in toppling zone. It was also
found that in the blocky and block-flexure models, surface of toppling
failure matched the surface of cross-joints. Thus, the angle between
overall toppling failure plane and the normal to discontinuities was

about 14°. But in the flexural toppling model where there was no cross-
joint, failure surface had to be measured by other means. For this
purpose, the average height of blocks below the total failure plane in
different models was measured (Fig. 13). Then, to determine the

Table 1
Geometry of physical models at the failure stage.

Modela h ψf ψp ψb ψs ψt t b n Condition

(cm) (Degree) (Degree) (Degree) (Degree) (Degree) (cm) (cm) –

B30 32.4 64 82.3 7.7 7.7 21.7 4 20.2 6 Unstable
B25 27.3 65.8 80.5 9.5 9.5 23.5 4 22.4 5 Unstable
B20 22.1 69.3 77 13 13 27 4 17.2 4 Unstable
F30 34.7 73.3 73 17 17 27.1 4 25.1 6 Unstable
F25 29.3 79.3 67 23 23 33.36 4 18.9 5 Unstable
F20 23.3 87.3 59 31 31 42.31 4 24.5 4 Unstable
BF30 33.6 69.3 77 13 13 27 4 23 6 Unstable
BF25 28.9 76.3 70 20 20 34 4 21.1 5 Unstable
BF20 23.2 82.8 63.5 26.5 26.5 40.5 4 17.4 4 Unstable

a B, F, and FB denote respectively the blocky, flexural, and block-flexure modes, and the following number is the pre-tilting height of the model in centimeter.

a b

Fig. 11. A view of blocks below the total failure plane; (a) flexural toppling failure, (b) block-flexure toppling failure.

aSliding

Flexural Toppling

Fig. 12. 3D view of total failure plane in the model F20.

Fig. 13. 3D plot of average length of blocks below the overall toppling failure plane in
flexural mode.
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gradient of overall failure plane, the height of these blocks was plotted
versus their distance from the toe (Fig. 14). As can be seen from Figs. 13
and 14, in flexural toppling failure models, the angle between total
toppling failure plane and the normal to discontinuities varied between
10° and 11.5°.

4.2. Theoretical modeling

4.2.1. Proposed theoretical model
For theoretical analysis of this type of toppling failure, first, reaction

between weak material and rock masse should be determined and then
applied to block “n”. In this study, this reaction force is determined by
the conventional slice method. But since the contact surface between
the soil and block “n” is tilted, selected slices should not be vertical.
Thus, the sliding mass is divided into multiple hypothetical slices, all
parallel to dominant discontinuities of the rock mass. A random sliding
surface is assumed in soil mass to ensure the adequate generality of
sliding surface geometry and thus its capability to account for various
circular and non-circular forms. Fig. 15 shows a diagram of this slicing
and the forces exerted on a typical slice (slice “j”) of sliding mass. As
this figure shows, free body diagram of each slice has 9 unknowns
(fRj, fLj,Nj,Sj,ψRj,ψLj,hRj,hLj, ℓj), thus, the total number of unknowns for
sliding mass is 9m. If we remove the unknowns shared between slices
(fLj= fRj+1,ψLj=ψR

j+1,hLj=hRj+1), ignore the unknowns of right side
of slice “1” according to boundary conditions (fR1=hR1=ψR

1=0),
assume the sliding mass to be in limit equilibrium condition
(Sj=Nj tanϕs+csΔxj/sin(ψaj+ψp)) and assume that the vertical force
acting on the base of each slice to be applied to the center of its bottom
(ℓj=Δxj/2), the number of unknowns will be reduced to 4m. Never-
theless, we have access to only 3m equilibrium equations (2m forces
equilibrium equations and m moments equilibrium equations); so the
sliding mass is statically indeterminate and should be simplified and
analyzed with an appropriate technique for this purpose. In this re-
search, the inter-slice forces and their points of application are de-
termined by the following procedure.

According to Fig. 15, writing the forces equilibrium equations along
x and y axes for slice “j” gives:

∑ = → + + − −

=

f f ψ S N W ψ f ψ0 cos sin(Ψ ) cos(Ψ ) cos cos

0
y
j

L
j

L
j j j j j j

p R
j

R
j

(3)

∑ = → − + − −

=

f f ψ S N W ψ f ψ0 sin cos(Ψ ) sin(Ψ ) sin sin

0
x
j

L
j

L
j j j j j j

p R
j

R
j

(4)

where Ψj=ψa
j+ψp.

Assuming that sliding mass is in the limit equilibrium condition and
follows the Mohr-Coulomb failure criterion, the normal and shear
forces acting on the slice bottom will have the following relationship:

= +S N ϕ c Δx
Ψ

tan
sin( )

j j
s s

j

j (5)

Determining Sj by Eq. (5) and substituting its value into Eqs. (3) and
(4) and, then, substituting the Nj obtained from Eq. (3) into Eq. (4)
result in the following relationship for fLj:

=
+ +
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4 (6)

Also, writing the moment equilibrium equation with respect to
middle point of base of the slice “j” gives:

∑ = → + −

− − −

− − + =

M f ψ h Δx Ψ

f ψ h Δx Ψ

f ψ Δx f ψ Δx W ψ h
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(7)

After arranging Eq. (7), hLj will be given by:

=

+

− + − −

+
h

W ψ h f ψ h
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L L (8)

To solve the problem, we assume a primary function such as ψj=κF
(xj) for the angles of inter-slice forces; where F(xj) is a function with the
range (0–1), κ is a positive constant and xj is the distance of lower left
corner of slice j from the point where sliding surface coincides with
block “n” (point O in Fig. 15). Some functions that are typically used as
F(xj) are shown in Fig. 16. At the moment of failure, we observed
tension cracks behind the crown of the slope; so the value of this
function for the right side of slice “1” is zero. The physical models
showed that for toppling failure to be occurred, block “n” and slice “m”
have to slide against each other so that this block would be able to
overturn about its base. Thus, if we ignore the cohesive strength be-
tween these two elements (rock block “n” and soil slice “m”), then
ψL

m=ϕsb. Therefore, it can be concluded that in the analysis of sliding
mass shown in Fig. 15, F(xj) of the right side of slice “1” is zero while
that of the left side of slice “m” is nonzero (ϕsb). Thus, it is better to
define inter-slice forces with clipped half-sine function. The mathema-
tical relationship of this function is expressed with:

Fig. 14. Inclination of overall toppling failure plane in flexural
mode.
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= ⎡
⎣

⎛
⎝

− + ⎞
⎠

⎤
⎦

ψ κ a
x
L

a πsin (1 )j j

(9)

where a is a constant coefficient chosen between 0 and 1 and κ is de-
termined according to a and boundary conditions. The angle ψj must be
smaller than or equal to ϕs (inter-slice friction angle). Also, L denotes
the direct distance between the point O and the end of tension crack
(the point A). For example, if we assume a friction angle of 32° between
the slice “m” and the block “n” and an internal friction angle of 38° for
the soil, curves of function ψj for different values of a will be plotted in
Fig. 17.

To solve the problem, first, a is initialized with a primary value and
force fR1 is assumed to be zero. With these values at hand, force fL1 can
be obtained from Eq. (6). Since fR2= fL1, the recently obtained value
can be substituted into Eq. (6) as a replacement for fR2 in order to

obtain fL2. The same process can be repeated until slice “m”. Then, a can
be adjusted in a way that force fLm (interaction between soil slice “m”
and rock block “n”) becomes maximum. Doing so gives all the inter-
slice forces as well as the interaction forces between sliding mass and
rock mass with potential of toppling failure. Depending on the sign of
force fLm, one of the following states will occur:

• fLm≤0: sliding mass is stable or at the point of equilibrium and thus
there are no external forces being applied to the rock mass at the toe
of the slope. Therefore, the slope will be stable against slide-toe-
toppling failure.

• fLm>0: slope has a potential of slide-toe-toppling failure, as the
reaction of this force functions as an external force acting on block
“n” and contributing to toppling failure. In this case, with the

Fig. 15. A schematic view of slide-toe-toppling failure and forces
acting on a given slice of the soil mass with the sliding potential.
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boundary condition of slice “1” in mind, the point of application of
the force acting on its right side (hR1) can be equated to zero so that
the point of application of the force acting on its left side (hL1) can
be calculated by Eq. (8) and the same process can be continued until
slice “m”. This procedure gives the point of application of interac-
tion force between sliding mass and the rock block “n”.

According to Figs. 15 and 18, rock mass constituting the toe of
mentioned slopes are prone to blocky, flexural or block-flexure toppling
failures. So in general, a rock block in the toppling zone undergoes
sliding, toppling, bending or shearing, in which case, the force acting on
the right side of this block can be obtained, respectably, from the fol-
lowing relationships (Amini et al., 2012):
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ϕ ϕ

(sin cos tan )
1 tan tani s i

i b b b b

b c
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1 tan tani sh i

i b b i i

c i
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The presence of a cross-joint at the block base undermines its ability
to resist against bending stress; so it either topples or slides, in which
case, sliding or overturning can be examined by Eqs. (10) and (11). If
Pi−1 , s>Pi−1 , t, rock block has the potential of sliding failure; but if
Pi−1 , t>Pi−1 , s, toppling has a stronger possibility. If both of these
forces are negative, this block is stable and applies no force to the next
block (Pi−1=0). A block that is cantilever is subjected to bending
stresses; so it may break under bending-induced tensile stress or un-
dergo shearing due to the resultant of forces acting on it, in which case,
its stability status can be determined by Eqs. (12) and (13). Here, if
Pi−1 , f>Pi−1 , sh rock block has the potential of bending; but if
Pi−1 , sh>Pi−1 , f shearing has a stronger possibility. As before, if both
of these forces are negative, this block is stable and applies no force to
the next block. In all these cases, it is assumed that shear stresses ex-
erted on the sides of each block (Qi) can be determined by the Mohr-
Coulomb failure criterion. In any case, when the block “n” is cantilever
or has cross-joint at its base, reaction force between sliding mass and
rock mass (fLm) can be substituted into the mentioned relations to de-
termine the force acting on the left side of the block “n” and the inter-
block forces can be calculated in the same manner in order to ultimately
determine the force required for the rock block “1” to remain stable.
The sign of this force can be used to evaluate the overall stability of the
slope against slide-toe-toppling failure:

• P0>0→ Slope is unstable.

• P0<0→ Slope is stable.

• P0=0→ Slope is at the point of equilibrium.

Moreover, shear parameters of discontinuities, intact rock and
sliding surface can be adjusted in a way that slope would reach the
point of equilibrium and then the obtained shear parameters can be
compared with the real values to determine the slope's FoS against
slide-toe-toppling failure. This technique is a common practice for de-
termination of the slope's FoS. In all discussed calculations, it is as-
sumed that the slope is completely dry and is subjected to no external
forces such as dynamic and structural loads or reinforcement force.
When the slope's water level is higher than overall failure plane or
sliding surface or when the slope is subjected to some external loads,
these forces can be added to the discussed limit equilibrium equations
to reanalyze the situation. Since magnitude and point of application of
these forces are known, they make no change in general condition and
structure of the solution.

Fig. 16. Typical functions for determination of inter-slice forces in
general circular and non-circular sliding shapes (Abramson et al.,
2002).

Fig. 17. Functions of inter-slice forces for a typical example.
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4.3. Analysis of a typical example with the proposed theoretical method

Analysis of physical models or real case studies with a potential of
slide-toe-toppling failure with the proposed theoretical method requires
extensive calculations which would take considerable time and effort to
be performed manually. To avoid manual calculations, the proposed
theoretical method for analysis of slide-toe-toppling failure was coded

into a computer program. This program receives the slope's character-
istics from the user and performs all analyses associated with the pro-
posed method and displays all geometric information and forces acting
on rock blocks and soil slices. This program allows the user to adjust the
values of parameters and thereby examine the sensitivity of the slope to
different variables. To evaluate the performance of the proposed
method, the coded program was used to analyze a typical example. To

Fig. 18. Analysis of slide-toe-toppling failure.

(b)(a)

Fig. 19. Diagrams of the studied typical examples; (a) main toppling failure, (b) secondary toppling failure.
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allow the readers to compare the slide-toe-toppling failure with the
main toppling failures, this example was also analyzed for the main
flexural, blocky and block-flexure toppling failures. The diagram of one
state of this example is illustrated in Fig. 19. The analyses for the main
flexural, blocky, and block-flexure toppling failures were performed by
the methods of Goodman and Bray (1976), Aydan and Kawamoto
(1992) and Amini et al. (2012), respectively. The results of different
analyses on this example are presented in Table 2. Geometrical and
geotechnical specifications of the slope which are fed to the program as
inputs are displayed in the top section of the table and the results of
analyses for different failures are shown in the bottom section. The left
side of this table shows the results of stability analysis of the example
against the main toppling failures. As can be seen, this slope is unstable
against blocky toppling failure; because block 1 slides and blocks 2 to
17 topple. Note that in this case, a stable zone appears behind the crown
of the slope (blocks 18 to 22). The analyses also show that this example
is perfectly stable against flexural toppling failure. In this case, reac-
tions are limited between the blocks 8 to 11 and other blocks apply no
force to each other; so the slope as a whole can be considered stable
against this mode of failure. The last two columns of this section of the
table show the results of stability analysis of the slope against block-
flexure toppling failure. These results show that the slope is also stable
against block-flexure mode; but not as strongly as against flexural
toppling failure. Because this stability relies only on stability of blocks 1
to 3 while blocks 4 to 12 have inter-block reactions. The analysis also
indicates that blocks 14 and 16 tend to undergo blocky toppling; but are
stabilized by blocks 13 and 15, respectively. The right side of the table

displays the results of stability analysis of the example against slide-toe-
toppling failure. In this part of the table, the results are partitioned into
two sections. The upper section is dedicated to the result pertaining to
circular sliding in soil mass. As can be seen, all inter-slice forces are
positive which indicates that soil has a circular sliding potential. The
reaction between soil and rock mass is equal to the force exerted on
slice 10 which has a magnitude of 4424.69 kN and is applied to a point
located 13.84 m above the base of this slice. Applying this force to block
10 allows the toe of the slope to be analyzed for flexural, blocky and
block-flexure toppling modes. The results of these analyses are dis-
played below this section. These results show that if the toe has a po-
tential of blocky toppling failure, the slope will not be stable against
slide-toe-toppling; because block 1 will slide and blocks 2 to 10 will
topple. But if the toe has a potential of flexural toppling failure, the
slope as a whole will be stable against slide-toe-toppling failure; be-
cause a stable zones appearing in the toe (blocks 1 to 4) will stabilize
the entire mass. The last column of this section shows that if the toe has
a potential of block-flexure toppling failure, the slope will be at the
point of instability and the smallest external force (e.g. earthquake or
underground water pressure) can make it unstable. This is because, in
this case, stability of the entire mass only relies on the stability of block
1 as other blocks have a tendency to slide or topple.

For more explanation, magnitudes of inter-column normal forces
acting at rock blocks in the toe of these case studies are presented in
Fig. 20. Although, to clarify the figure, outcomes of blocky and flexural
modes are shown in the figure, block-flexural one has also similar re-
sults. As can be seen from the graph, magnitude of the force in

Fig. 20. Magnitudes of inter-column normal forces acting at rock
blocks in the toe of the slopes.

Table 3
Geometry of theoretical models at the moment of failure.

Modela ψf ψp ψb ψs ψt t b n Condition

(Degree) (Degree) (Degree) (Degree) (Degree) (cm) (cm) –

B30 65.11 81.19 8.81 8.81 22.81 4 20.2 6 Limit equilibrium
B25 67.13 79.17 10.83 10.83 24.83 4 22.4 5 Limit equilibrium
B20 69.97 76.33 13.67 13.67 27.67 4 17.2 4 Limit equilibrium
F30 71.18 75.12 14.88 14.88 24.98 4 25.1 6 Limit equilibrium
F25 76.71 69.59 20.41 20.41 30.77 4 18.9 5 Limit equilibrium
F20 86.13 60.17 29.83 28.37 39.68 4 24.5 4 Limit equilibrium
BF30 69.47 76.83 13.17 13.17 27.17 4 23 6 Limit equilibrium
BF25 73.39 72.91 17.09 17.09 31.09 4 21.1 5 Limit equilibrium
BF20 79.22 67.08 22.92 22.92 36.92 4 17.4 4 Limit equilibrium

a B, F, and FB denote respectively the blocky, flexural, and block-flexure modes, and the following number is the pre-tilting height of the model in centimeter.
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secondary mode is more than main toppling failure for all rock blocks.
But, general trend of this force is similar in main and secondary ones.

4.4. Analysis of physical models with the proposed theoretical method

To verify the results of the proposed method, this method was used
to analyze the physical models described in Section 4.1. In these ana-
lyses, physical and mechanical properties of soil and rock materials
were assumed as described in Section 4.1.1. Limit equilibrium condi-
tions of the models were determined with the proposed theoretical
method and the results of physical and theoretical models were sub-
jected to quantitative comparison. Table (3) presents the predictions of
the proposed theoretical method regarding the geometry of physical
models under limit equilibrium condition.

5. Comparison of physical and theoretical results

In Section 4.4, the proposed theoretical method was used to analyze
the physical slide-toe-toppling models and predict their geometry at the
moment of failure. Thus, the error of theoretical approach can be de-
termined by comparing these results (Table 3) with the real geometry
observed in physical models (Table 1). This comparison can be made
based on several parameters; but since tilting table of the physical
models had a varying inclination, the angle of inclination was selected
as the basis of this comparison. In the theoretical models, the angle of
the line normal to dominant discontinuities matches the table's angle of
inclination. So the error of the proposed theoretical method can be
determined by comparing this angle with the table's angle of inclination
in observations. In Table 4, these two parameters are compared and the
errors of the theoretical approach are reported. As it can be seen, in all
cases, the error of the proposed theoretical method in prediction of
table's angle of inclination at the moment of failure is <15%. With
respect to the complexity of the mechanism of this failure, these errors

may be reasonable. These two parameters (table's real inclination angle
at the moment of failure in the physical models and the angle of the line
normal to dominant discontinuities in the theoretical models) are also
compared in Fig. 21. Similar to Table 4, this plot also shows a sa-
tisfactory agreement between the theoretical and experimental results.

6. Conclusions

In this study, the mechanism of slide-toe-toppling failure was in-
vestigated through a series of physical models. The investigation results
showed that a roughly circular failure in the homogeneous soil mass at
the upper part of the slope leads to toppling failure of the rock blocks at
the toe of the slope. This observed mechanism was used as a base to
develop a theoretical model for the analysis of this type of slope in-
stability. In the resulting model, first, the reaction forces between soil
and rock mass are obtained by limit equilibrium methods. Then the
obtained force is transferred to the rock mass at the toe to determine its
stability against toppling failure. The validity of this theoretical method
was investigated by comparing its results with the experimental ob-
servations. The results showed a difference of <15% between the
theoretical predictions and the experimental results. Considering the
complexity of the mechanism of the failure, this level of error is rea-
sonable.
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