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Classification and Immunohistochemical Scoring of
Breast Tissue Microarray Spots

Telmo Amaral, Stephen J. McKenna*, Katherine Robertson, and Alastair Thompson

Abstract—Tissue microarrays (TMAs) facilitate the survey of
very large numbers of tumors. However, the manual assessment
of stained TMA sections constitutes a bottleneck in the pathol-
ogist’s work flow. This paper presents a computational pipeline
for automatically classifying and scoring breast cancer TMA spots
that have been subjected to nuclear immunostaining. Spots are
classified based on a bag of visual words approach. Immunohis-
tochemical scoring is performed by computing spot features re-
flecting the proportion of epithelial nuclei that are stained and the
strength of that staining. These are then mapped onto an ordinal
scale used by pathologists. Multilayer perceptron classifiers are
compared with latent topic models and support vector machines
for spot classification, and with Gaussian process ordinal regres-
sion and linear models for scoring. Intraobserver variation is also
reported. The use of posterior entropy to identify uncertain cases is
demonstrated. Evaluation is performed using TMA images stained
for progesterone receptor.

Index Terms—Breast cancer, image analysis, immunohistochem-
ical scoring, tissue microarrays (TMAs).

I. INTRODUCTION

ISSUE microarray (TMA) technology facilitates high-
T throughput analysis of tissue specimens stained for one
or more biological markers [1]. It is now extensively utilized in
the study of cancers. Fig. 1 shows a breast TMA slide and an
individual spot. At present, staining, capture, organization, and
display of high-resolution composite TMA images are largely
automated processes. However, analysis of the content of in-
dividual TMA spots remains laborious and time-consuming,
constituting a bottleneck in pathology work flow. Furthermore,
such analysis is subjective, exhibiting significant intra- and
interobserver variability. Therefore, there is strong clinical and
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Fig. 1. (a) Breast TMA slide and (b) an individual spot.

research-related motivation for the development of improved au-
tomated or semiautomated methods for quantitative analysis of
TMA image data. This paper focuses on automated immunohis-
tochemical assessment of breast cancer TMAs. Before outlining
the scope of the rest of the paper, we describe TMA prepara-
tion, immunohistochemical staining, and analysis in some more
detail.

A. TMAs and Immunohistochemistry

To create TMAs, pathologists typically identify up to six
sites of interest on each donor block of formalin-fixed, wax-
embedded tissue. Cylindrical biopsies, named cores, are then
extracted from the identified sites in each donor block and in-
serted into a recipient wax block. This process is repeated for
multiple donor blocks, in such a way that cores of known prove-
nance are placed alongside each other in a mapped grid. The
result is a grid arrangement of cores in the (single) recipient
TMA block. Typical cores range from 2 to 4 mm in length and
have a diameter of 0.6 mm. Sections of the TMA block, 4 to
8 pum in thickness, are then cut and mounted on microscope
slides. Thus, each cylindrical core of tissue from the TMA block
gives rise to disks of tissue referred to as spots.

Immunohistochemistry (IHC) is used to assess protein ex-
pression in TMA slides by staining them with a small aliquot of
antibody. For example, antibodies directed against progesterone
receptor (PR) can be used to detect nuclear expression of that
antigen in epithelial cells of breast tumors. TMA slides are also
counterstained, typically with haematoxylin, to render visible
immunonegative structures. In Fig. 1(b), PR expression can be
seen as brown staining, and immunonegative structures are vis-
ible as blue counterstaining. Cores in a TMA block typically
originate from different patients. Thus, a single TMA slide can
be used to test a given biological marker on tumors from multi-
ple patients, whereas sequential slides cut from the same TMA
block can be used to test multiple markers on the same speci-
mens. Camp et al. [2] concluded that two TMA cores per patient
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were sufficient to assess the expression of estrogen receptor and
PR in invasive breast carcinoma specimens.

B. Spot Analysis

Cores in a TMA block are not homogeneous; for example,
there may be a region of tumor in the top half of a core, while
the bottom half contains only stroma. Therefore, pathology work
flow typically includes a step in which each spot is labeled as to
the type of tissue present. For example, a spot may be labeled
as one of tumor, normal, stroma, fat, blood, or invalid (spot not
present or not assessable). The first four of these are the most
frequent. Note that the purpose here is not to segment tumor
regions but rather to label spots in their entirety. Spots labeled
as stroma or fat should not contain epithelial tissue. In spots
labeled as tumor, at least some tumor tissue should be present,
whereas epithelial tissue in spots labeled as normal should be
benign.

After spot labeling, the degree of biological marker expres-
sion can be assessed in spots of interest (i.e., those labeled as
containing tumor or benign epithelial tissue). This assessment
is done in terms of estimated proportion of cells staining for the
protein of interest and in terms of staining strength, resulting
in a compound score for each spot. Several scoring methods
are in use.! This study uses the Quickscore method [3], which
does not require the pathologist to explicitly count cells, unlike
the H-score [4]. Quickscore involves estimation of two ordinal
quantities. The proportion of immunopositive (stained) nuclei
within the tissue section is scored in the range 1-6, correspond-
ing to proportions of 0—4%, 5-19%, 20-39%, 40-59%, 60-79%,
and 80-100%, respectively. The average strength of staining is
scored in the range 0-3, corresponding to negative (no staining),
weak, intermediate, and strong staining, respectively.

C. Scope and Contributions

This paper presents a computational pipeline for analysis of
breast cancer TMA spots that have been subjected to nuclear
immunostaining, as well as an experimental evaluation using
a set of PR-stained spots. Section III presents an overview of
the proposed pipeline before describing its component parts. A
first stage in the pipeline involves automatic classification of
stained spots as belonging to the four categories tumor, normal,
stroma, and fat. Spot classification using generative topic mod-
els (namely based on latent Dirichlet allocation) is compared to
classifiers trained to compute estimates of class posterior prob-
abilities directly [multilayer perceptrons (MLPs) and support
vector machines (SVMs)]. The use of class posterior probabil-
ities to assign confidence measures to decisions, enabling am-
biguous spots to be flagged, is also described. Having identified
spots likely to contain tumor and normal epithelial tissues, these
can then be scored for IHC in the second stage of the pipeline. A
method for computing continuous-valued image features anal-
ogous to the Quickscore quantities is described. These features

' Immunohistochemical scoring should not be confused with cancer histolog-
ical grading, which does not aim at scoring the reaction of breast tissue sections
to IHC.
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are based on probabilistic labeling of pixels. An ordinal regres-
sion model (implemented using a Gaussian process model) is
used to learn the nonlinear mapping from these features to the
ordinal variables used by pathologists to form the Quickscore.
Ordinal regression is compared to classification using linear and
nonlinear neural networks.

Parts of the research presented in this paper build on ear-
lier descriptions and experiments described in conference pa-
pers [5]-[7]. This paper proposes an overall processing pipeline,
bringing these ideas together in a systematic way and ex-
tending their treatment. It also reports new quantitative re-
sults and comparisons, including an assessment of intraobserver
variability.

II. RELATED WORK

Gurcan et al. [8] provided a review of histopathology image
analysis more generally. Such a review is beyond the scope of
this paper which instead mentions work of particular relevance.

Most published studies on classification of tissue sections
have focused on discriminating between tumor and benign tis-
sue (see, e.g., [9] and [10]) or between different types of tumor
(see, e.g., [11] and [12]). This literature deals largely with tissue
sections stained with haematoxylin and eosin (H&E), as op-
posed to sections subjected to some form of IHC. For example,
Brook et al. [10] classified H&E stained tissue sections as be-
nign, tumor in situ, or invasive carcinoma, based on histograms
computed from a level sets representation. It should be noted
that the presence of immunostaining does not necessarily help
to distinguish benign tissue from tumor, given that both can ex-
hibit IHC staining; the staining simply identifies an antigen that
can be present in both normal and tumor cells.

Methods have been reported that estimate measures such as
the proportion of nuclei that are immunopositive within tissue
sections subjected to some form of nuclear immunostaining
(see, e.g., [13]-[15]). However, typically, such methods do not
involve any form of learning. Rather, features that character-
ize predetected structures within the tissue section are sum-
marized by means of simple formulas. In most cases, no at-
tempt is made to map the obtained measures onto actual dis-
crete scores used by pathologists. For example, Kostopoulos
et al. [13] analyzed breast carcinoma sections immunostained
with diaminobenzidine to determine the percentage of epithe-
lial nuclei that were stained. This value was computed from
the previous segmentation and classification of epithelial nu-
clei, and allowed predicting the ER status of the tissue section
(positive if the percentage was above 20%). Sont et al. [16]
assessed inflammatory cell counts and cytokine expression in
immunostained sections of bronchial tissue. Sanders et al. [17]
scored immunostained head, neck, and prostate TMA images
based on color statistics, thresholding, and locating brown and
blue objects. Their use of pixel-level statistics to derive score
values has a passing similarity to aspects of the formalized
scores proposed below. Unfortunately, their method was not
presented in reproducible form (e.g., “brown” and “blue” were
undefined).
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Fig. 2. Overview of the processing pipeline.

III. METHOD
A. Overview

Fig. 2 shows an overview of the proposed processing pipeline.
Spots are first classified automatically. The classifier reports its
uncertainty so that any spot with a highly uncertain classifica-
tion can be referred for review by a human pathologist. Spots
classified as tumor (T) or normal (N) are then IHC scored auto-
matically. The scoring method also reports uncertainty so that
spots with highly uncertain scores can be referred for review by
a human pathologist.

B. Classification of TMA Spots

We adopted a bag of visual words approach. This general
approach is now widely used in computer vision, e.g., for texture
classification [18] and object and scene classification [19], and
has been applied to histopathology images of skin cancer by
[20]. Different applications vary in the manner in which they
compute local features and sample feature locations.

We used K-means clustering to learn a visual word dictionary
from a training set of normalized 15-D feature vectors. Each spot
was then represented by extracting local image feature vectors
from it, quantizing these to visual words using nearest neighbor
matching with the learned dictionary, and forming a histogram
of visual word frequencies. Each local feature vector consisted
of a pixel’s 7, g, and b color values concatenated with 12 gray-
level differential invariants denoted as dj, k € {1,2,...,12}.
Differential invariants were computed by convolving with a
set of first- and second-order 2-D Gaussian derivative kernels
at three scales through use of a Gaussian pyramid [21]. The
results of these convolutions were then combined to obtain four
differential invariants at each pixel location of the type proposed
by Schmid and Mohr [22]. These features were chosen partly
because they were invariant to image rotation, the orientation
of a TMA spot being arbitrary. Gaussian derivative kernels had
standard deviations of 8 pixels, and thus effectively 16 and 32
pixels at the second and third scales, respectively. Thus, they
encompassed parts of nuclei, whole nuclei, and nuclei along
with their immediate surroundings, respectively, given that the
average epithelial nuclear radius was approximately 16 pixels.
Kernels were three standard deviations in radius.

We previously reported a smaller spot classification experi-
ment in which MLPs were found to give greater classification
accuracy than either generalized linear models (GLMs) or near-
estneighbor classifiers [5]. Here instead we compare spot classi-
fication results obtained using MLPs, latent Dirichlet allocation
models (LDALSs), and SVMs.
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LDAL is a generative probabilistic model for discrete data
[23], namely data such that each data instance can be represented
as a bag of codewords belonging to a limited dictionary. The
main assumption behind LDAL is that there is a given number
of underlying fopics associated with the data universe, where
each topic is characterized by a distribution over codewords. It
is further assumed that each data instance could be generated
by, first, randomly choosing a distribution over topics, then,
for each codeword needed in the data instance, sampling a topic
from the chosen distribution over topics, and sampling the actual
codeword from the distribution over codewords associated with
the chosen topic. The codeword distributions that characterize
the latent topics constitute the main parameters of the model,
which need to be learned from training data.

Although commonly associated with the modeling of text
collections, LDAL has applications to many types of data. In
our case, visual words can be used as codewords and, because
the order of codewords is irrelevant in LDAL, a visual word
histogram is a sufficient representation of each data instance, i.e.,
each TMA spot. A motivation for using LDAL is that the learned
visual topics provide an intermediate level description (between
local image features and spot class label) that is potentially
useful for other tissue analysis tasks. Being a latent description,
topics do not have predefined semantics nor do they need to be
annotated by pathologists.

Let X ={xy,...,xy} denote a dataset where x, =
[#1,...,2p]T denotes the vector of D visual word instances
sampled from the nth spot. Let K denote the number of visual
words in the dictionary. The visual word histogram computed
from the nth spot has K bins and is a sufficient representation
of x,,. The topic mixture for a particular spot is defined by the
frequencies of occurrence of the topics; thus, it has as many
components as the chosen number of topics, Z. Topic mixtures
are modeled as samples from a Dirichlet distribution, assumed
because it has properties that facilitate the development of pa-
rameter estimation and inference algorithms. The parameters
of an LDAL model that need to be estimated are denoted as o
and 3. The vector « consists of Z nonnegative elements that
parametrize the Dirichlet distribution. The matrix (5 contains
Z x K elements, storing one conditional visual word distribu-
tion P(x|z) for each unique visual topic z. These parameters
can be estimated via an alternating variational expectation max-
imization procedure [23]. We trained an LDAL model, M.,
for each of the four spot classes (¢ € {1,2,3,4}). Given the
histogram of a test TMA spot, x, the variational inference al-
gorithm proposed by Blei et al. [23] was used to obtain a lower
bound on log(P(x|M,)). The spot was classified as the class
associated with the largest lower bound.

Equal costs were assumed for all types of classification error,
as we had no solid basis for the definition of an appropriate
cost matrix (a problem that is far from trivial in this type of
application).

C. Scoring of TMA Spots

Quickscoring [3] involves estimation of two ordinal values
reflecting the perceived proportion of epithelial nuclei that are
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immunopositive and the perceived strength of staining. Valuable
information could be lost in this quantization process; neverthe-
less, pathologists are trained to base their decisions on such
values. This was, therefore, the type of output required. Let g,
and ¢, denote the proportion and strength values, respectively.
Computation of features analogous to these values was based
on probabilistic pixel labeling.

Manually annotated subregions of TMA training spots were
used to estimate class-conditional probability distributions of lo-
cal features for three classes of pixel, namely background (3),
epithelial immunonegative (£ ), and epithelial immunopositive
(Ep). We used the same local features as in the spot classifica-
tion experiment, namely, r, g, and b color values and 12 gray-
level differential invariants denoted as dj, k € {1,2,...,12}.
Denoting the pixel class as v € {B, Ey, Ep}, the estimated
distributions can be expressed as P(r, g, b|v) for color features
and P(dy|v) for each differential invariant feature d;. Each
of these distributions was estimated as a histogram. Although
color components were considered interdependent, differen-
tial invariants were assumed to be conditionally independent
given the pixel class. Thus, the likelihood function factored as
P(r,g,blv) [, P(dx|v). A prior P(v) over pixel classes was
estimated from the frequencies of pixels belonging to each class
observed in the annotated training data. Given a new image,
posterior probabilities for each pixel n were estimated as in
(1), where u" denotes the local feature vector at that pixel, i.e.,
u” = (’I",g,b, dl, cee ,d12)TI

P(v)P(r,g,blv) [1; P(dk|v)
P(um)

P(vju") = (D)

Each pixel was labeled as belonging to the class with the
highest posterior. A feature x,,, analogous to g,, was computed
as the number of pixels labeled as Ep divided by the total
number of pixels labeled as epithelial (both F and Ep). This
is shown in (2), where t' is 1 if pixel n was labeled as Ep and
0 otherwise, and ¢’ is 1 if pixel n was labeled as En and 0
otherwise. A second feature, x4, analogous to g5, was computed
as the average of the posterior probabilities for the Ep class,
computed over all pixels assigned to that class, as shown in (3):

Zn t?’
2ty +1p)
_ 2 Plo=Ep[u")tp
St
Predicting g, and g5 from (z,,2)" is an ordinal regres-
sion task. We investigated the use of a state-of-the-art Gaussian
process ordinal regression (GPOR) model [24]. Any Gaussian
process is associated with a random function f(x) such that,
at any given point X, f(x') is a random variable that follows a
Gaussian distribution [25]. In GPOR, the real codomain of f(x)
is divided into a series of contiguous intervals, which map real
values of f(x) into targets t € {1,2,...,C} while enforcing
the ordering constraint. The boundaries between ordinal inter-
vals are not assumed to be equally spaced. The prior distribution
of f(x) can be fully specified by the covariance matrix for the
finite set of zero-mean random variables { f(x1),..., f(xx)}

2)

l'p:

3)

T
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Fig. 3. Examples of breast TMA spots in each of the four categories consid-
ered. From top row to bottom row: tumor, normal, stroma, and fat.

associated with a training set of input vectors {xi,...,Xxy }.
In turn, the covariance between any two such variables can be
defined by Mercer kernel functions [26], [27], such as linear and
Gaussian kernels. The parameters of the GPOR model include
the ordinal interval boundaries, as well as constants defining the
kernel prior. These parameters can be learned using maximum
a posteriori (MAP) estimation or expectation propagation (EP).
Given a test input x, the predicted target can be inferred as that
associated with the largest partial integral of the posterior distri-
bution of f(x) associated with the test input. GPOR was used to
predict g, and g5 from formalized scores x = (x,, z5)". In ad-
dition, classifiers were used to predict the Quickscore values in
order to provide performance comparisons. These were a GLM
and nonlinear MLP classifiers.

IV. EXPERIMENTS

Breast TMA spots subjected to PR IHC were used for eval-
uation. A total of 364 spots were randomly selected from four
TMAs with the constraint that the data be approximately bal-
anced across the four spot categories. These four TMAs con-
tained spots originating from 112 different patients. Fig. 3 shows
examples, illustrating the considerable inter- and intraclass vari-
ability. Each row shows spots from one of the four categories.
An experienced pathologist, observing glass slides under a
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microscope, classified all the spots and assigned Quickscores to
tumor and normal spots. These assessments were fully carried
out in one work session and repeated during a second session
for the purpose of analyzing intraobserver variability.

A set of 40 spots (15 tumor, 15 normal, 5 stroma, and 5 fat)
was used exclusively to train the visual word dictionary. Specif-
ically, a dictionary of 160 words was learned from 400 000
feature vectors sampled randomly from these spots. For each
of the remaining 324 spots, a visual word histogram was com-
puted, based on a random sample of up to 400 000 local feature
vectors per spot. Classification experiments were performed us-
ing tenfold cross validation on those 324 spots. Cross validation
was repeated nine times when randomly initialized models were
used (MLPs and LDAL).

On each of 20 spots, chosen at random from the data set,
a circular subregion 500 pixels in diameter was randomly se-
lected and all epithelial nuclei within that subregion were man-
ually segmented and labeled as either immunonegative or im-
munopositive. Fig. 8 shows an example of an annotated subre-
gion (although only the contouring of the nuclei is shown, not
their labeling). The left third of this circular subregion is popu-
lated with epithelial cells, both stained and nonstained, whereas
the remainder contains connective tissue. In total, approximately
700 epithelial nuclei were annotated in this way and these were
subsequently reviewed by a pathologist. These annotated data
were used to estimate the likelihood functions in (1). Formal-
ized scores (2) and (3) were computed for 190 spots that had
been classified as either tumor or normal in the first assessment
session undertaken by the pathologist. Leave-one-out scoring
experiments were performed so that at each fold 189 spots were
used for training.

GLM and MLP classifiers with softmax functions were
trained using conjugate gradients MAP optimization such that
outputs were interpretable as posterior probability estimates.
MLPs had three hidden units and their weight decay regular-
ization constant was set to 0.1. The number of latent topics in
each LDAL model was 60. Two parameter learning methods
were compared for GPOR: MAP and EP. Furthermore, linear
and Gaussian kernels were compared. SVMs used a radial ba-
sis function kernel. Their error penalty parameter C' and kernel
parameter y were selected via fivefold cross validation over the
training data.

We used the Netlab [28] implementations of k-means, GLM,
and MLP, the C implementations of LDAL by Blei et al. [23]
and of GPOR by Chu and Ghahramani [24], and LIBSVM [29].
Further code was implemented in MATLAB.

V. RESULTS

Fig. 4 shows examples of spots for which the MLP agreed with
the pathologist. Posterior probabilities computed by the classi-
fier are shown for tumor (T), normal (N), stroma (S), and fat (F).
Fig. 5 shows examples for which the classifier disagreed with the
pathologist. Epithelial cells in the lower left region of the spot
in Fig. 5(a) are unusually far apart, which may explain the low
probability for class T. The spot in Fig. 5(b) contains relatively
scattered epithelials which may have caused the probability of
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0.998

0.002 0.000

(a) (b)

0.000 0.01% 0.784 0.1%7 0.001

Fig. 4. Examples of spots correctly classified using MLPs, and corresponding
softmax values for the four classes. (a) Tumor. (b) Normal. (c) Stroma. (d) Fat.

T N S F T N S F
0.656 0.266 0.000 0.692 0.229 0.000

(a) (b)

0.079

T N S F B N S F
0.07¢ 0.422 0.448 3

(c) (d)

-301 0.182 0.001

Fig. 5. Examples of spots misclassified using MLPs, and corresponding soft-
max values for the four classes. (a) T predicted as N. (b) N predicted as T.
(c) N predicted as F. (d) S predicted as T.

class T to be high. In the spot in Fig. 5(c), large regions of stroma
and fat boosted the posterior probabilities of classes S and F,
when what counted for the pathologist was the small portion of
normal tissue in the upper right. The scattered but nonepithelial
(inflammatory) cells in the spot in Fig. 5(d) seem to have been
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TABLE I
CONFUSION MATRICES OF SPOT CLASSIFICATION EXPERIMENTS

(a) Using MLPs

Truth Predicted
(%) T N S F
T 79.7 6.5 11.6 2.2
N 15.7 61.0 21.9 1.4
S 12.2 5.7 73.2 8.9
F 0.0 0.0 3.8 96.2
(b) Using SVMs
Truth Predicted
(%) T N S F
T 81.5 5.4 10.9 2.2
N 11.4 72.9 15.7 0.0
S 9.8 2.4 79.3 8.5
F 0.0 1.2 3.8 95.0
TABLE II
CONTINGENCY TABLE OF THE INTRAOBSERVER CLASSIFICATION TRIAL
Session 1 Session 2
T N S F
T 82 1 4 0 87
N 9 56 2 1| 68
S 3 0 66 3 72
F 1 1 3 73| 78
95 58 75 77

misperceived as epithelial cells, leading to a very low poste-
rior for the true class S. Table I(a) shows the confusion matrix
obtained using MLPs, averaged over nine repetitions. Overall
accuracy was 78.1 £ 0.3%. SVMs yielded the confusion matrix
shown in Table I(b) and an accuracy of 82.4%.

Of the 324 spots involved in the classification experiment,
305 were classified by the same pathologist on a second as-
sessment session (the remaining 19 were deemed invalid). This
allowed the estimation of an intraobserver agreement of 90.8%,
corresponding to an unweighted Cohen’s kappa coefficient of
0.877. Table II shows a contingency table for the pathologist’s
two classification sessions.

The entropy of the posterior distribution can be used as a
measure of classification confidence; the lower the entropy, the
higher the confidence. Fig. 6 shows the fractions of test spots
that could be classified below different entropy thresholds using
either MLPs or SVMs. Also plotted are classification accuracy
and rate of misclassified tumor spots. In the case of MLPs,
results were averaged over nine repetitions.

In order to compare classification based on MLPs, LDALSs,
and SVMs, the tenfold cross validation experiment was repeated
while varying the number of spots used for training, from 10% to
100% of the 291 spots available for training at each fold. Fig. 7
plots the obtained classification accuracies. In the MLP and
LDAL cases, error bars correspond to & one standard deviation
and were computed based on nine repetitions. MLP and LDAL
obtained similar accuracy, whereas for larger training set sizes,
SVM achieved the best results.

Scoring error was measured as the absolute difference be-
tween the predicted score and the pathologist-assigned score.
Table III shows mean scoring errors and their standard de-
viations. Below each result, a normalized result (obtained by
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Fig. 6. Fraction of classified spots, correct classification rate, and rate of
missed tumor spots, for different entropy thresholds, (a) using MLPs and
(b) using SVMs.
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Fig. 7. Accuracy of classification using MLP, LDAL, and SVM models for
different training set sizes.

dividing by the number of targets) is given. Fig. 9(a) and (b)
further details these results by showing the error distributions.
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TABLE III
MEAN AND STANDARD DEVIATION OF ABSOLUTE SCORING ERRORS
Predicted Algorithm
target Classification Gaussian process ordinal regression
GLM MLP MAP EP
Linear Gaussian Linear Gaussian
ap 1.400 £1.677 | 0.926 +1.215 | 1.126 +#1.397 | 0.921 +1.172 | 0.900 +1.129 | 0.888 *1.175
0.200 +0.240 0.132 x0.174 0.161 +0.200 0.132 +£0.167 0.129 *0.161 0.127 +0.168
gs 0.937 £1.097 0.763 +0.988 0.937 +1.106 0.784 +1.003 0.800 +1.025 0.779 £0.994
0.234 +0.274 0.191 +0.247 0.234 x0.277 0,196 %0.251 0.200 +0.256 0.195 +0.249
Normalized values are gray. Lowest errors are in bold.
1 T T T T T
proportion of spots
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Fig.9. (a)and (b) Distributions of ¢, and ¢4 absolute prediction errors for each
scoring approach. (c) and (d) Distributions of ¢, and g5 absolute intraobserver
disagreements between two scoring sessions.

The leftmost distributions were obtained by simply mapping the
formalized scores (2) and (3) to the ordinal scores based on the
Quickscore definition (see Section I-B).

The low accuracy of the GLM and direct mapping methods
indicates that a linear mapping from formalized scores to ordi-
nal Quickscores is suboptimal, supporting the use of nonlinear

confidence.)

methods. The standard deviations associated with prediction er-
rors make comparisons between MLP and GPOR inconclusive.
GPOR with EP and Gaussian kernels obtained the lowest error
for g, and an error very close to the lowest for g,. However,
MLP performed surprisingly well given that it does not explic-
itly model the ordinal nature of the score variables. Furthermore,
MLP was at least an order of magnitude faster at classifying each
spot once trained (tenths of a second versus several seconds).
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Fig. 10 shows the fraction of test spots whose g, and g values
can be predicted below a given entropy threshold. Also shown is
the mean absolute error computed over each fraction of spots.

Of the 190 spots involved in the scoring experiment, 175 were
scored by the same pathologist in a second assessment session
(the remaining 15 were deemed not assessable). The average
absolute interobserver disagreements were 0.411 and 0.246 and
the linearly weighted Cohen’s kappa coefficients were 0.832
and 0.817, for ¢, and g4, respectively. Fig. 9(c) and (d) shows
the distributions of these disagreements. These intraobserver
data suggest that further improvements are certainly possible.
However, it should be noted that this is a tough benchmark
since interobserver variability is expected to be higher than
intraobserver variability [30].

VI. CONCLUSIONS AND RECOMMENDATIONS

Spot classification accuracy was similar for MLP and LDAL
classification methods, while SVMs achieved the best results. It
should nevertheless be noted that, unlike SVMs, MLPs do not re-
quire an extra calibration step in order to output well-calibrated
posterior probabilities [31]. The use of posterior entropy to reject
spots enabled higher accuracies to be obtained for the remain-
ing spots. Fig. 6 suggests that very low tumor misclassification
rates can be achieved by setting the rejection threshold appropri-
ately. Similarly, as the entropy threshold on scoring predictions
was decreased, the mean absolute error tended to decrease [see
Fig. 10(a) and (b)]. This suggests that it is possible to auto-
matically process reasonable fractions of spots that are more
unequivocal whilst identifying the more difficult spots for hu-
man assessment.

The generative topic modeling approach exemplified by
LDAL is worth exploring further. In particular, sharing of topic
models across classes [32] and use of hierarchical Dirichlet
processes to automatically determine the number of latent top-
ics [33] might be expected to yield improved accuracy. In LDAL
models with a single layer of latent topics, the optimal number
of topics tends to be considerably larger than the range of tissue
types in a TMA spot. The addition of a second layer of latent
topics (modeled as distributions over topics of the first layer)
might, therefore, help to successfully represent different tissue
types. The inclusion of additional layers of topics could also be
used to model the relationship between epithelial regions and
the immunopositivity of nuclei, in that both tumor and normal
regions may contain both immunonegative and immunopositive
nuclei.

A method for computing formalized Quickscore values from
local likelihood functions was proposed and used to estimate
ordinal Quickscores. The nonlinear GPOR and MLP methods
gave better scoring results than did linear methods. Given the
ordinal nature of the scores, GPOR might have been expected
to be more accurate. Further research may be needed to take full
advantage of the ordinal regression model. A possibility would
be to investigate modifications that allowed us to accurately
model the way in which pathologists mislabel spots, based on
observer variability data. Currently, the GPOR method models
noisy labeling through a single o2 . hyperparameter. A set of

noise
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variability parameters on which the user could set a prior might
be more appropriate.

Spots were classified and scored without taking into account
the differing costs of errors. The cost of misclassifying a tumor
spot as normal will be greater than the cost of misclassifying a
normal spot as a tumor spot, for example. Modeling such costs
is left for future work.

The methods presented here were evaluated on spots im-
munostained for PR. Evaluation on other nuclear stains such as
ER and tumor protein 53 (p53) is left for future work. However,
analysis of these stains is probably easier than that of PR, due
to their appearance.

Several commercial systems exist to assist in assessment of
IHC in TMAs; published performance evaluations are limited
[34], [35]. An attempt to assess the agreement between three
such systems and pathologists was reported by Bolton et al.
[36] and included PR IHC-stained breast tissue, but the manual
tuning of various system parameters to the datasets used makes
any direct comparison problematic.

Finally, we note that many other feature representations are
possible and could be usefully compared. Errors on sparsely
distributed epithelial and inflammatory tissue regions suggest
that the local features should be combined with more contextual
features. We are currently exploring the use of distribution-based
descriptors such as intensity domain spin images [37], [38] and
the use of methods for modeling spatial context for segmentation
of tumor regions [38]-[40]. A system capable of automatically
segmenting regions of tumor, benign tissue, fat, and stroma, and
further segmenting tumor and normal regions into stained and
unstained subregions, could in principle be used as a basis for
both classification of TMA spots into types and their scoring.
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