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Abstract—VANET safety applications broadcast cooperative
awareness messages (CAM) periodically to provide vehicles with
continuous updates about the surrounding traffic. The periodicity
and the spatiotemporal information contained in these messages
allow a global adversary to track vehicle movements. Many
privacy schemes have been proposed for VANET, but only few
schemes consider their impact on safety applications. Also, each
scheme is evaluated using inconsistent metrics and unrealistic
vehicle traces, which makes comparing the actual performance
of different schemes in the wild more difficult.

In this paper, we aim to fill this gap and compare different
privacy schemes not only in terms of the privacy gained but
also their impact on safety applications. A distortion-based
privacy metric is initially proposed and compared with other
popular privacy metrics showing its effectiveness in measuring
privacy. A practical safety metric which is based on Monte Carlo
analysis is then proposed to measure the QoS of two safety
applications: forward collision warning and lane change warning.
Using realistic vehicle traces, six state-of-the-art VANET privacy
schemes are evaluated and compared in terms of the proposed
privacy and safety metrics. Among the evaluated schemes, it was
found that the coordinated silent period scheme achieves the best
privacy and QoS levels but fully synchronized silence among all
vehicles is a practical challenge. The CAPS and CADS schemes
provide a practical compromise between privacy and safety since
they employ only the necessary silence periods to prevent tracking
and avoid changing pseudonyms in trivial situations.

Index Terms—C2X communication, IVC, pseudonym change
scheme, privacy metric, safety metric, privacy scheme compari-
son

I. INTRODUCTION

VEHICULAR ad hoc networks (VANETs) provide wire-
less communication among vehicles to exchange infor-

mation autonomously. It is evident that VANETs will be
implemented in the near future to minimize traffic fatalities
and support self-driving cars [1]. To attain the benefits of safe
and efficient traffic flow, VANET applications broadcast Co-
operative Awareness Messages (CAM) periodically. A CAM
(aka Basic Safety Message (BSM) or beacon) contains, among
other information, time stamp, position, speed and heading.
Since this information is broadcast publicly [2], a serious
privacy threat arises if these CAMs are collected and analyzed.

Preserving different forms of privacy has been investigated
in the past decade and several research projects are considering
privacy risks and countermeasures from both technical and
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legal perspectives. For example, Privacy Flag project [3]
combines crowd sourcing, ICT technology and legal expertise
to protect citizen privacy when visiting websites, using smart-
phone applications, or living in a smart city. Moreover, numer-
ous research works have been published that address security
and privacy issues in a smart city that deploys VANET [4],
[5]. In spite of the diversity of security and privacy schemes
in VANET, there is a consensus towards adopting public key
infrastructure (PKI) for securing VANETs [6] demonstrated
by the current standardization activities (ETSI TS 102 941 [7]
and IEEE 1609.2 WG [8]). In this vehicular PKI, vehicles are
provided with a long-term certificate to ensure accountability,
along with short-term unique pseudonyms associated with
private keys. A vehicle digitally signs outgoing messages
to ensure the integrity and authenticity of the exchanged
information. The pseudonym and its corresponding certificate
are attached to the signed message to allow any vehicle verify
it. To avoid continuous linkability, pseudonyms are changed
periodically according to a privacy (i.e., pseudonym-change)
scheme.

The essential vulnerability of CAMs is that they are
linkable, whether through matching similar pseudonyms or
by exploiting the contained spatiotemporal information [9].
This vulnerability permits eavesdroppers to reconstruct vehicle
traces1 from CAMs with perfect accuracy, as shown in our
previous work [10], [11]. Although the exchanged CAMs
contain no personal information, further inference attacks can
be performed to de-anonymize the reconstructed traces. De-
anonymization can be achieved using work/home pairs [12]
or even with the help of geosocial networks [13]. Therefore,
an adversary can identify the driver’s sensitive whereabouts,
social activities and personal preferences remotely without
control or knowledge of the driver. These privacy risks must
be handled to ensure the public acceptance of VANETs.

Although there are several privacy schemes that prevent
the continuous tracking of CAMs, only a few consider their
impact on safety applications. These schemes usually reduce
the quality or frequency of the exchanged information and
may hinder the functionality of safety applications. Therefore,
when designing or evaluating a privacy scheme, it is important
to analyze its impact on the quality of service (QoS) of
safety applications. The trade-off between privacy and safety is
sporadically studied in the literature and still considered to be
an open research and deployment challenge [4]. In addition, a
comprehensive assessment of privacy schemes with consistent
privacy metrics using realistic vehicle traces is needed to judge

1Hereafter, a trace refers to the original vehicle trace and a track refers to
the reconstructed trace by the adversary.
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the actual performance of different schemes [4].
In this paper, we consider those issues by 1) proposing

privacy and QoS metrics and 2) comparing state-of-the-art
privacy schemes consistently using realistic vehicle traces. On
the one hand, location privacy is quantified by measuring how
accurately an adversary can reconstruct vehicle traces from
the collected CAMs. For this purpose, our vehicle tracker
[10], which is based on a multi-target tracking algorithm,
is employed to act as a global adversary. The reconstructed
traces by the tracker are then compared with the original
vehicle traces to calculate the distortion which expresses
on the privacy level. The more distorted the reconstructed
traces, the greater is the privacy gained by the driver. On
the other hand, the QoS of safety applications is evaluated
by estimating the probability of calculating the fundamental
requirements of a safety application using CAMs altered by
a privacy scheme. We initially proposed this QoS metric in
previous works [14], [15], but we extend it here by considering
two safety applications, namely forward collision warning
(FCW) and lane change warning (LCW) applications. These
applications are chosen because they require the most precise
location information (<1 m) and the highest beaconing rate
(10 Hz) [16]. Using these privacy and QoS metrics, six privacy
schemes are discussed and compared using realistic traces.
Thus, our contributions in this paper can be summarized as
follows:
• Propose a distortion-based privacy metric and compare it

with other popular privacy metrics such as anonymity set
size, entropy and traceability.

• Extend our previously-proposed QoS metric, which facili-
tates evaluating the impact of privacy schemes on VANET
safety applications.

• Compare six popular privacy schemes in terms of their
privacy and safety levels against a robust global adversary
using realistic vehicle traces.

The rest of the paper is organized as follows. After review-
ing related work in Section II, we discuss the assumed system
and adversary models in Sections III and IV, respectively.
In Section V, we explain our methodology, including the
employed vehicle tracker and traces. In Section VI, location
privacy metrics are discussed and evaluated in comparison
with the proposed metric. The QoS metric for FCW and LCW
safety applications is presented in Section VII. In Section
VIII, several privacy schemes are discussed and consistently
compared.

II. RELATED WORK

The basic concept of privacy schemes in VANET is to
change pseudonyms periodically in unobserved mix-contexts
to prevent linkability of CAMs. Unobservability is required
to prevent an adversary from using the CAM spatiotemporal
information to correlate the two consecutive messages of old
and new pseudonyms. Mix-context means that several nearby
vehicles change their pseudonyms simultaneously to avoid a
sole pseudonym change which is easy to correlate. Unobserved
mix-contexts are usually realized by using a silent period
before a pseudonym change or by changing pseudonyms in

cryptographic mix-zones (e.g., at road intersections). In fact,
changing pseudonyms without these unobserved mix-contexts
cannot prevent vehicle tracking, as shown in [10], [17].

Sampigethaya et al. [18] apply silent periods in VANETs
when vehicles are merging or changing lanes when joining or
leaving a freeway. Freudiger et al. [19] introduce cryptographic
mix zones (CMIX) which allow vehicles to obtain a symmetric
key from the Road-Side Unit (RSU) that controls the mix zone
and to use it to encrypt all messages while they drive within the
zone. Keys are also forwarded upon request to vehicles outside
the range of the RSU to allow them decrypt received messages
from vehicles within the zone. Buttyán et al. [20] propose
ceasing sending messages when the vehicle speed becomes
low, for example at intersections. The idea behind choosing
low speed events is that fatal accidents are less likely to occur
at low speed, and places like intersections are natural mix
areas where many vehicles are in close proximity. Wei and
Chen [21] propose obfuscating position, speed and heading of
vehicle within the radius of the safe distance calculated by
a safety analysis algorithm. They also propose changing the
length of the silent period based on the distance from other
vehicles. Thus, the closer the vehicles are to one each other,
the shorter the silent period.

Palanisamy et al. [22] propose the MobiMix framework,
which is a construction and placement model for mix zones
that is robust against timing and transition attacks. Yu et
al. [23] recently proposed MixGroup, which is capable of
efficiently exploiting the sparse meeting opportunities among
vehicles for pseudonym change. They also utilize group sig-
nature to construct extended pseudonym-changing regions, in
which vehicles can successively exchange their pseudonyms.

Location privacy cannot be protected without cost. Chang-
ing pseudonyms and remaining silent for a period of time may
degrade the performance of applications. In related work, the
quality of service (QoS) is measured from different perspec-
tives and can be grouped into three metric categories: commu-
nication quality, data quality (position error), and application
requirements. In the communication quality category, Schoch
et al. [24] analyze the impact of pseudonym changes on
the performance of geographic routing. Their results confirm
serious performance degradation in case of low-density traffic
and frequent pseudonym changes (< 30 s). Calandriello et
al. [25] measure the impact of pseudonym change in terms
of the reception timing of the new pseudonym at several
distances and relative speeds. For data quality metrics, Hoh et
al. [26] present a QoS metric for traffic monitoring applications
characterized as the error applied to each individual location
sample. For metrics based on the application requirements,
Hoh et al. [27] measure the data quality through the relative
weighted road coverage. They consider a road segment to be
covered if a data sample with 100 m accuracy is available.
Papadimitratos et al. [28] study the impact of different VANET
security and privacy schemes on an emergency braking alarm
application. They simulate a dense platoon of vehicles moving
at relatively high speed and count the occurrences of vehicle
collisions upon an emergency braking of the leading vehicle.
Lefevre et al. [29] analyze the influence of the duration of
the silent period on the effectiveness of intersection collision
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avoidance (ICA) systems. They propose an ICA system and
evaluate a silent period scheme in terms of missed and avoided
collisions. They claim that the ICA system can function well
with silent periods of less than two seconds.

III. SYSTEM MODEL

We assume that each vehicle is equipped with an on board
unit (OBU), which used to communicate with other vehicles
and broadcast CAMs periodically (1-10 Hz). The CAM con-
tains a pseudonym, a timestamp, and the current vehicle state
(i.e., position, speed and heading). Vehicles use a pseudonym
acquisition policy [6] to retrieve a pool of pseudonyms to be
used one by one in V2X communication. Pseudonyms are
attached to anonymous credentials authenticated by a certi-
fication authority to ensure trustworthiness among vehicles.
A vehicle uses a pseudonym for a minimum pseudonym time
(to ensure stable communication), then the pseudonym is
changed according to the adopted privacy scheme. The Eu-
ropean standard ETSI TS 102 867 [30] recommends changing
a pseudonym every five minutes, while the American SAE
J2735 [31] standard recommends changing it every 120 s or
1 km, whichever comes last.

Since CAMs are primarily used by safety applications, the
broadcast information must be as precise as possible. Thus,
we assume each vehicle is equipped with a GPS receiver and
combines the obtained GPS measurements with its internal
sensors to minimize the position error to 50 cm. This small
error is recommended in [32] and also realized in systems
such as [33] in order to provide useful Cooperative Collision
Warnings (CCW). We assume that a vehicle maintains the
states of its nearby vehicles located within its communication
range (e.g., 300 m) using a multi-target tracking (MTT)
algorithm, similar to [34]. The utilization of a MTT algorithm
allows a vehicle to predict the state of nearby vehicles even
if their CAMs are delayed or missed due to a communication
error or a silence period. As a result, the MTT algorithm can
enhance the effectiveness of safety applications.

IV. ADVERSARY MODEL

For the adversary model, we assume a global passive adver-
sary (GPA) that deploys low-cost receivers over a large part of
the road network and eavesdrops on all exchanged messages.
Having an external adversary that can cover the whole network
may seem far-fetched, but we assume the worst case scenario.
Also, this model is realizable, for example, by an untrusted
service provider through its deployed roadside units. The main
objective of the GPA is a tracking attack or reconstructing all
vehicle traces from their CAMs. Thus, we assume that the
drivers’ location privacy is determined by the protection level
against this attack. Although breaching the driver’s location
privacy requires de-anonymization of the reconstructed traces,
the de-anonymization process is out of scope of this paper.
However, we presume that the more complete and correct the
reconstructed traces, the more successful the de-anonymization
process.

The GPA achieves its objective by correlating the CAMs of
a vehicle by pseudonym matching. When a vehicle changes
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Fig. 1. Block diagram of the evaluation methodology. Privacy schemes are
applied to the CAMs obtained from vehicle traces. The adversary tracker tries
to reconstruct vehicle tracks which, in turn, are compared to the original traces
to obtain privacy and QoS metrics.

its pseudonym, the adversary uses a multi-target tracking
algorithm to correlate the messages of the old and new
pseudonyms. If the adversary covers only a small part of the
road network, it can still track vehicles within this limited area,
but such tracking may not be valuable for de-anonymization
as it does not reflect complete traces. Although powerful
adversaries can track vehicles using already-deployed cameras
spread over the road network, the cost and inefficiency of
global camera-based attacks will be much higher than those
for global CAM-based attacks [19].

The other adversary model that may threaten a privacy
scheme is active attacks which tries to prevent a vehicle from
changing its pseudonym or to force it to change pseudonyms
frequently until the pseudonyms pool depletes so quickly. This
adversary model usually affects cooperative privacy schemes
where the pseudonym change decision is based on an external
trigger (e.g., when k-neighbors surround a vehicle) or requires
an inter-vehicle coordination (e.g., a simultaneous pseudonym
change). Since we are seeking a holistic comparison of both
cooperative and non-cooperative schemes, we do not consider
active attacks in this paper and leave it for future work.
Readers interested in active attacks can check our previous
work [35], which evaluates the effect of a local active attack
on the CADS cooperative privacy scheme.

V. METHODOLOGY

We evaluate privacy schemes and their impact on safety
applications empirically using vehicle traces. As illustrated in
Figure 1, vehicle traces are used in generating CAMs as if they
were broadcast by vehicles in a fully penetrated VANET and
collected by a global adversary. The generated CAMs are then
modified according to the specifications of the privacy scheme
such as changing pseudonyms and suppressing some messages
during obligatory silent periods. These pseudonymous CAMs
obtained from a privacy scheme are passed to a vehicle tracker
to be reconstructed into anonymous tracks. The reconstructed
tracks are then compared with the original traces to calculate
the distortion percentage indicating the privacy level. Also,
they are compared with the filtered traces to obtain the
QoS for safety applications. Given the unified distortion and
QoS percentages, we can flexibly compare different privacy
schemes with respect to their compromises between privacy
and safety levels.
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A. Vehicle Tracker

We use an empirical tracker as a global adversary for eval-
uation of privacy schemes. This tracker is originally proposed
in [10], [11], and shows promising effectiveness in tracking
anonymous CAMs with various vehicle densities, transmit
rates, and position noise levels. Basically, the vehicle tracker
consists of four iterative phases as follows:
• State estimation using a Kalman filter, which is used to

obtain an accurate state for vehicles using both inaccurate
measurements gained from vehicle sensors and the esti-
mated states obtained from a predefined kinematic model.

• Data association using a nearest neighbor probabilistic
data association (NNPDA) algorithm, which tries to as-
sociate each CAM to its originating vehicle by calculating
an assignment probability matrix. This phase is only ap-
plied when there are two or more vehicles changing their
pseudonyms in the same time. Otherwise, consecutive
CAMs are linked by matching similar pseudonyms.

• Gating phase which is performed prior to the data as-
sociation phase to prevent unnecessary computations for
unlikely associations.

• Track maintenance phase, which is needed to handle track
initiation, confirmation and deletion since the number of
vehicles is dynamic. This phase is tuned relative to that
proposed in [11] to cope with the silent periods usually
imposed by privacy schemes. Originally, the tracker holds
a vehicle track without updating it until time-to-live
time steps, and deletes it afterwards. We added an extra
parameter for the maximum silence period (max-silence)
that can be used by a privacy scheme. The tuned tracker
only marks a vehicle track as inactive after time-to-
live time steps, and then holds it for additional max-
silence time steps. When the tracker assigns CAMs of
unmatched (new) pseudonyms to the current tracks list,
it only considers inactive tracks. This tweak increases the
linkability of CAMs, since it eliminates the matching of
CAMs for new pseudonyms with unrelated tracks.

B. Vehicle Traces

1) STRAW Traces: We employ two sets of vehicle traces.
The first traces were generated by Wiedersheim et al. [17].
They have a road map of 1 km2 and are generated from the
STreetRAndom Waypoint (STRAW) mobility model [36] on
the Central Boston map for 1000 s. The vehicles in each road
lane periodically calculate the acceleration or deceleration for
the next time step. Because no collision recognition is im-
plemented, vehicles that simultaneously cross an intersection
may collide. The vehicle density is kept constant in each trace
file by making vehicles route within road segments and never
exit. This constant density per scenario allows evaluating the
performance of privacy schemes in each traffic density.

The original traces contain the vehicle ID, time stamp, and
position with a second stepping. We calculate the velocity
assuming a constant velocity between every two consecutive
time steps and interpolate the samples to generate traces of
0.5 s stepping. The maximum vehicle speed ranges from 11
to 26 m/s depending on the road, the maximum acceleration
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Fig. 2. The road maps of the vehicle traces employed.

is 2.23 m/s2 and the maximum deceleration is 11.15 m/s2.
The road map of these traces is shown in Figure 2a, where
snapshots of the sparsest case of 50 vehicles and densest
case of 200 vehicles are represented by green points and red
circles, respectively. Each vehicle density has 10 variations
with different routes.

2) Realistic Traces: The second trace set is obtained from
Uppoor et al. [37]. This dataset is originally based on the
data made available by the TAPASCologne project [38]. This
dataset reproduces vehicle traffic in the greater urban area
of the city of Cologne, Germany with the greatest possible
level of realism. The street layout of the Cologne urban
area is obtained from the OpenStreetMap (OSM) database.
The microscopic mobility of vehicles is generated using the
Simulation of Urban Mobility (SUMO) traffic simulator. The
sources and destinations of vehicle traces are derived through
the Travel and Activity PAtterns Simulation (TAPAS) method-
ology. Uppoor et al. [39] pointed out several problems when
combining these data sources to produce traffic data. Among
these problems, vehicles are moving rapidly to large traffic
jams, travel times are unrealistic and vehicle speeds tend to
very low values. Uppoor et al.resolved these problems so that
the synthetic traffic matches that observed in the real world,
through real-time traffic information services. This is why we
call this dataset as realistic traces. We processed the dataset
to calculate the heading and velocity in xy coordinates using
consecutive time steps for each vehicle. The last heading value
was preserved when the vehicle stopped and was changed
when it started to move again.

We obtained the two-hour sample published online [37]
and selected 30 min (from 6:15 AM till 6:45 AM) for the
middle 64 km2 region, as shown in Figure 2b. We selected this
time period because the vehicle density increases dramatically,
which provides a challenging evaluation environment for the
operation of privacy schemes over different densities. There
are 19,704 distinct traces with increasing density, ranging from
1,929 to 4,572 simultaneous vehicles in the first and last time
steps, respectively. The vehicle positions in the last time step
are shown as red spots in Figure 2b.

VI. PRIVACY METRIC

Several location privacy metrics are utilized in related work.
We present and compare here four popular metrics, showing
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how effective they are. We then formally define our proposed
metric, which will be used in comparing privacy schemes.

A. Anonymity Set Size

The anonymity set of a target vehicle is the vehicles among
which this target vehicle is not identifiable or distinguishable
with respect to its location. An anonymity set can be formed
when two or more nearby vehicles change their pseudonyms
at the same time. In this case, the adversary may confuse
about the actual location of the target vehicle, since it may
be any vehicle from the anonymity set. One disadvantage of
anonymity set size is that it cannot deal with nonuniform
probability distributions of the anonymity set [40], [41].

B. Entropy

To handle the shortcomings of the anonymity set size,
Serjantov and Danezis [40] and Dı́az et al. [41] propose
an information theoretic metric, the entropy, to measure the
anonymity. Let A represent the anonymity set and pi the
probability assigned by the adversary for each member in A
to be the target such that

∑|A|
i=1 pi = 1, then the entropy H

can be defined as:

H = −
|A|∑
i=1

pi · log pi (1)

According to this definition, the entropy of a vehicle is zero
when the same pseudonym is used for several CAMs. Upon
a pseudonym change, the entropy is calculated based on the
probability distribution assigned by the adversary. The entropy
achieves its maximum value when the probability distribution
is uniform (i.e., Hmax = log2 |A|). Since H is unbounded,
Dı́az et al. [41] propose an extended metric, the normalized
entropy Hn, to measure the degree of anonymity:

Hn =
H
Hmax

(2)

Fischer et al. [42] argued that entropy-based metrics are
not suitable for measuring unlinkability because they do not
distinguish among different probability distributions of linking
subsequent messages estimated by different attackers. More-
over, Shokri et al. [43] claim that the entropy and, of course,
the anonymity set size metrics are not suitable for quantifying
location privacy. The entropy shows how uniform versus
condensed the estimated distribution is and, in consequence,
how certain the adversary is about its decision. However, the
entropy does not provide any clue about the correctness of this
decision. It may happen that the adversary is certain about its
estimate with a high probability but, at the same time, this
estimate is largely different from the actual user’s location.

C. Traceability

Another approach for measuring the location privacy is to
calculate how long an adversary can track vehicles. Success
in tracking vehicles is inversely proportional to the location
privacy. Identifying user trajectories and movement patterns

is an essential step for privacy breaches (i.e., re-identification
and localization attacks) [27].

There are several approaches to measuring traceability.
Huang et al. [44] measure how long a node can be tracked
continuously in evaluation of silent period schemes in mo-
bile networks. Sampigethaya et al. [18] define the maximum
tracking time as the maximum cumulative time that the target
anonymity set size remains as one. Hoh et al. [27] propose
the time-to-confusion metric, which is the tracking time until
the adversary uncertainty (i.e., entropy) rises above a preset
threshold. They also proposed another similar metric based on
distance rather than time in [45].

In the context of fixed mix zones at road intersections,
Buttyán et al. [9] and Freudiger et al. [19] evaluate mix zones
by the success probability of an adversary in tracking vehicles.
This success probability is calculated as the ratio of the number
of successfully mapped vehicles (before and after the mix
zone) to the total number of vehicles passed through a mix
zone, averaged over all mix zones. Furthermore, Buttyán et
al. [20] use the spatiotemporal information in pairs of CAMs
to calculate the acceleration of the vehicles to accurately
predict their next position. Then, they measure the tracking
success rate as the proportion of vehicles tracked from their
departure to their destination. Wiedersheim et al. [17] measure
the traceability as the average duration over which a vehicle is
correctly tracked. However, they allow the reconstructed traces
to include false samples from traces of other vehicles. We have
used traceability in our previous work [15], and defined it as
the percentage of vehicle traces whose tracking percentage is
more than a preset threshold (e.g., 95%).

D. Distortion

The distortion-based metric calculates the error or distortion
of the reconstructed tracks compared to the actual traces. Hoh
and Gruteser [26] propose the expected distance error, which
captures the adversary’s accuracy in estimating a user position.
Similarly, Shokri et al. [46] define an expected distortion
metric which can be calculated as follows. First, they find the
latest position from a user observed at or before a time step t,
which is denoted by et. Then, all paths that start from et and
end at t are identified to calculate the expected user positions
and their corresponding probabilities. Finally, the expected
distortion at time step t is the total weighted distance between
the expected positions and the actual position multiplied by
their corresponding probabilities. The authors also define the
distortion-based traceability, which is the tracking time until
the distortion exceeds a preset threshold.

E. Proposed Metric

As discussed above, anonymity set size and entropy are
not suitable privacy metrics. Traceability- and distortion-based
metrics are more representative but their definition in related
works is not accurate, as we will show later. Thus, we adopt
here a combined privacy metric that is based on traceability
and distortion. It is important to measure both aspects to
determine how long the adversary can track a vehicle and
how accurate the reconstructed tracks are related to the actual
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Fig. 3. The reconstructed tracks should be optimally and globally matched
to the original traces to reflect the actual capability of the adversary. In this
example, each track is matched to the trace of the longest match rather than
that initially assigned.

traces. We hypothesize that reconstructing the entire vehicle
trace is necessary to breach the driver privacy. This hypothesis
is inferred from research aimed at re-identifying anonymous
traces which use work/home location pairs [12], top N loca-
tions [47] or geosocial networks [13]. All these works depend
on finding the places frequently visited by the user over a
long period (e.g., several weeks). In VANETs, these places
can be identified by correlating the source and destination
of each trip, which necessitates the ability to reconstruct the
entire vehicle traces. If the adversary is unable to reconstruct
complete traces, then clustering techniques used in the re-
identification process will fail to find the driver places.

We investigate traceability thoroughly since comparing the
reconstructed tracks with the original vehicle traces is not
trivial, as illustrated in Figure 3. In this example, there are
three traces V1, V2 and V3 (drawn as solid lines on the
left) that are reconstructed into three tracks T1, T2 and T3
(drawn as dashed lines on the middle). By visually comparing
both sets, it is clear that each track is reconstructed from
partial segments of the original traces. For example, T1 is
reconstructed from segments of V1, V2 and V3. Traceability
metrics, presented in Section VI-C, may fail to reflect the
actual tracking capability of this adversary. The main issue
for their definition is that they assign tracks to vehicle traces
during the tracking process. In other words, they assume the
track first assigned to a vehicle trace should continue with this
trace until its end, as in [18], [26], [48]. However, this early as-
signment underestimates the length of the reconstructed tracks.
For example, if the traceability of V1 is measured by assigning
T1 to V1, then this metric shows a very short tracking time,
although V1 is reasonably reconstructed by T3. Therefore, it
is more effective if tracks are assigned to the vehicle traces
globally after the tracking process is complete. The track-to-
trace assignment is basically a nonlinear assignment problem
where the total benefit should be maximized. The benefit
represents the tracking period when a track t assigned to
a vehicle trace v continuously. Let l(v, t),∀v, t ∈ V, T be
the maximum continuous tracking period when the track t is
assigned to the vehicle trace v. Note that t can be assigned
to v for disconnected segments at different times. In this
case, l(v, t) represents the longest segment. The disconnected
segments are not summed together because the tracking is
discontinued and the track may be assigned to another vehicle
trace during this discontinuity. The Let τv be the maximal
tracking period of v; this can be obtained by solving the

following assignment problem:

maximize
∑
v∈V

τv

subject to τv =
∑
t∈T

l(v, t) · av,t, av,t ∈ {0, 1}, (3)∑
v∈V

av,t ≤ 1 ∀t ∈ T,
∑
t∈T

av,t ≤ 1 ∀v ∈ V.

Here, av,t is the assignment function which equals one if the
track t should be assigned to the vehicle trace v, and equals
zero otherwise. Note that not all tracks must be assigned to a
vehicle trace because the number of tracks can be greater than
the number of vehicle traces as some tracks are reconstructed
from partial vehicle traces. Also, not all vehicle traces have to
be assigned to a track because its l(v, t) may not contribute
to the maximal

∑
v∈V τv . In this case, τv equals zero. This

assignment problem is solved using an auction algorithm
considering tracks as the bidders, vehicle traces as the items
and l(v, t) as the bidding price. After the optimal assignment
is obtained, the traceability of the whole scenario is calculated
by counting the percentage of significantly tracked vehicles.
Thus, the traceability metric Π is defined as:

Π =
1

N

∑
v∈V

λv × 100, λv =

{
1 τv

L(v) ≥ 0.90

0 otherwise
(4)

where L(v) is the lifetime of v and N is the total number
of traces included in the dataset. This metric allows some
confusion around the endpoints of a vehicle trace (10% of the
trace lifetime) since inaccuracies in endpoints can be smoothed
by a clustering technique in a re-identification process, as
shown in [49]. According to this definition, the privacy of
the driver is considered breached if the adversary is able to
continuously track 90% of her trace. Also, this metric reflects
the probability of being tracked by calculating the proportion
of tracked vehicles rather than how long a tracker can estimate
from the actual trace as in [10], [17].

There is a shortcoming in measuring privacy using trace-
ability only: traceability does not consider how distorted the
reconstructed tracks are compared to the original traces. In
most cases, high traceability necessarily indicates low dis-
tortion and vice versa because tracks are reconstructed from
precise and frequent spatiotemporal samples exchanged for
safety applications. However, this is not always the case,
as have been detailed in [50]. Therefore, for better privacy
measurement, the distortion of the assigned track should be
included in the metric.

The distortion-based metric is measured by calculating how
different is the assigned track from the original vehicle trace.
The tracks are first assigned to vehicle traces so that the total
tracking periods are maximized for the whole scenario, as
defined in Equation 3. Then, the ratio of the distorted segments
to the total trace length is calculated to indicate the distor-
tion ratio. Formally, let the track t consist of spatiotemporal
samples tp, tp+1, ..., tm. It is assigned to the vehicle trace v,
which consists of spatiotemporal samples vq, vq+1, ..., vn (i.e.,
t ∼ v) where it is not necessary that p = q or m = n. We
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Fig. 4. Components of the proposed distortion metric for a single trace:
∆p, φs, φe

define the distortion of sample pairs δ(vi, ti) at a time step
i,∀i,max(p, q) ≤ i ≤ min(m,n) as follows:

δ(vi, ti) =

{
1 Ed(vi, ti) > ε or @ ti
0 otherwise

(5)

where Ed(vi, ti) is the Euclidean distance between vi and ti
and ε is a distortion threshold. According to this definition,
δ(vi, ti) qualifies ti as distorted if it is farther from vi by at
least ε or the adversary cannot reconstruct the sample vi (i.e.,
@ ti). The distortion threshold ε should be sufficiently large to
take into account possible distance errors or time lags between
vi and ti. We assume that a time lag of 5 s or a spatial distance
of 75 m is allowed, assuming an average speed of 15 m/s.

The length of the distorted paired segments of t and v is
calculated by taking the longest distorted segment from the
reconstructed track or the original trace, as follows:

∆p = max {
min(m,n)−1∑
i=max(p,q)

Ed(vi+1, vi) · δ(vi, ti),

min(m,n)−1∑
j=max(p,q)

Ed(tj+1, tj) · δ(vj , tj) } (6)

Since the track and the original trace may start and end
at different times, a penalty should be added to take these
unmatched segments into account. Thus, φs and φe are defined
to count this distortion as follows:

φs =


∑p−1
i=q Ed(vi+1, vi) p > q∑q−1
i=p Ed(ti+1, ti) p < q

0 otherwise

(7)

φe =


∑n−1
i=mEd(vi+1, vi) m < n∑m−1
i=n Ed(ti+1, ti) m > n

0 otherwise

(8)

Figure 4 illustrates an example for calculating the distortion
for paired and unmatched segments. In this example, the track
starts before the beginning of the vehicle trace and ends
before the trace end. From their paired samples, there are
four distorted samples because their inter-distances are larger
than ε. The unmatched segments from the trace and track are
highlighted by light orange rectangles.

Given these components, the distortion of the vehicle trace v
can be calculated as the ratio of the total length of the distorted

segments to the length of the original trace or the length of
the reconstructed track, whichever is longer, as follows:

Dv =
∆p + φs + φe

max {
∑n−1
i=q Ed(vi+1, vi),

∑m−1
j=p Ed(tj+1, tj)}

(9)

The distortion D of the whole scenario can be expressed as
the percentage of vehicle traces where the distortion exceeds a
specific ratio which guarantees preserving the driver’s location
privacy (e.g., Dv > 0.25). Formally, D can be defined as
follows:

D =
1

N

∑
v∈V

αv × 100,

αv =

{
1 Dv > 0.25 or t � v ∀t ∈ T
0 otherwise

(10)

Here, the trace is considered distorted if its Dv is more than
0.25 or there is no track assigned to this trace. We assume that
traces distorted by at least this ratio are not beneficial in posing
further privacy attacks. Since the distortion is calculated based
on a track that continuously reconstructs the vehicle trace, the
distorted segment will be at the trace endpoints. This means
that the source and/or destination of the distorted traces cannot
be reconstructed, making re-identification very difficult. Lower
distortion ratios may also be sufficient to preserve privacy, but
we chose a sufficiently large ratio to ensure a true privacy-
preserving level.

Some vehicles never change their pseudonyms during their
lifetime, which leads to perfect tracking by repeatedly match-
ing the same pseudonym. Thus, we additionally measure the
normalized distortion Dn by excluding these traces. This
normalized metric considers the effectiveness of the privacy
scheme when a vehicle changes its pseudonym at least once
and is defined as:

Dn =
1

N

∑
v∈V

αnormv × 100,

αnormv =

{
1 αv = 1 ∧ psdv(q) 6= psdv(n)

0 otherwise
(11)

where psdv(q) and psdv(n) are the pseudonyms of the trace
v at the first and last time steps of its lifetime, respectively.

Based on the metric definitions in Equations 10 and 11,
the distortion is calculated as a ratio of the distorted segment
to the total trace length, rather than a distance error, which
provides a unified scale for privacy measurement. Also, this
metric considers traceability implicitly since the track-to-trace
assignment is obtained by maximizing the tracking period for
the complete vehicle traces.

F. Metrics Comparison

In this section, we provide an experimental comparison
between the presented metrics to verify their effectiveness in
quantifying location privacy. The experiment consists of apply-
ing a simple privacy scheme with three parameter sets, which
are known to result in low, intermediate and high privacy
levels, respectively. We used STRAW vehicle traces in both
low- and high-density scenarios (i.e., 50 and 200 vehicles). A
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Fig. 5. Privacy metrics comparison in random silent period using STRAW vehicle traces. AS size shows no variation among schemes of different strengths.
Normalized entropy does not show a unified privacy level among different densities. Traceability and distortion metrics show reasonable variations among
different schemes and densities.

good privacy metric should show reasonable variation among
different parameter sets and different densities. We chose the
random silent period (RSP) privacy scheme, which keeps the
pseudonym for a fixed preset time (120 s) and then keeps
silent for a random time period and changes the pseudonym
afterwards. We selected random silent periods of (3, 5) s2,
(3, 11) s and (3, 19) s to achieve low, intermediate and high
privacy levels, respectively. We applied the RSP with each
parameter set to the traces dataset of each density 10 times. We
then used the vehicle tracker to track pseudonymous CAMs
generated by the RSP.

The traceability and distortion metrics are calculated as
defined in Equations 4 and 10, respectively. For the anonymity
set (AS) size, we calculate the maximum AS size encountered
by each vehicle and then taking the average over all vehicles.
The maximum AS size of a subject vehicle is obtained by
finding the maximum number of nearby vehicles, including
itself, that changed their pseudonyms simultaneously with a
pseudonym change by this subject vehicle. Two vehicles are
considered nearby if they are located within a distance of
100m. For the entropy, we calculate the maximum normalized
entropy Hn, defined in Equation 2, of the pseudonym changes
made by a vehicle and then take the average over all vehicles.

Figure 5 shows the results of each metric with the three
silent periods in low and high density scenarios. In Figure
5a, the AS size is almost the same in all silent periods
with a slight difference between low and high densities. This
highlights the inability of the AS size to discriminate among
the capabilities of different privacy schemes. The normalized
entropy overcomes this problem and shows consistent variation
among different silent periods, as illustrated in Figure 5b.
However, the entropy values are misleading because they do
not reflect the true privacy level in different scenarios. For
example, the normalized entropy of the RSP (3, 5) in the dense
traffic is higher than the RSP (3, 19) in the sparse traffic. This
is true regarding the adversary’s uncertainty, which will be
greater in a dense environment due to, for example, the larger
AS size. However, the privacy gained with the RSP (3, 5)
in dense traffic is not that high because most of the vehicle
traces (≥ 90%) can be reconstructed effectively, as we now
demonstrate.

2(α, β) s refers to a period of α to β seconds. It should not be misinterpreted
as reference numbers.

In Figure 5c, we show the reversed traceability (i.e., 100−Π)
instead of the traceability metric to reflect the privacy level and
to be consistently comparable with other metrics. It shows a
significantly different variation from that given by the entropy
metric. In contrast to the entropy, it demonstrates a low privacy
level in dense traffic when using a short silent period of (3,
5) s. Also, it shows that privacy can effectively be preserved
in sparse traffic when using a relatively long silent period
of (3, 19) s. This difference in the variation distribution of
the reversed traceability arises from the fact that it measures
the effectiveness of reconstructing complete vehicle traces
rather than the adversary’s uncertainty. Last but not least, the
distortion metric produces variations similar to the reversed
traceability, but it reduces the percentage values, indicating
lower privacy. This reduction is a result of the distortion metric
filtering out the cases when vehicles are completely tracked but
their reconstructed tracks are still different from the original
vehicle traces.

VII. SAFETY METRIC

As discussed in Section II, QoS can be measured in various
manners. However, we presume that the appropriate QoS
metric of a privacy scheme should reflect the deficiency in
application performance, rather than absolute distance errors
or time delays. The issue in measuring QoS as a distance error
or a time delay is that it does not explain the actual robustness
of the application against information inaccuracy or delay.
We focus on measuring the QoS of safety applications in our
analysis because privacy schemes modify the CAMs on which
safety applications depend. In addition, safety applications
have the most restricted constraints regarding information
accuracy, frequency and latency. If a privacy scheme does not
hinder the QoS of safety applications, it will not do so for
other applications as well. In [14], we proposed formulating
application requirements using Monte Carlo numerical analy-
sis to estimate the QoS of a forward collision warning (FCW)
application. Here, we apply the same approach to measure the
QoS of a lane change warning (LCW) application. But we first
briefly explain how the metric is calculated.

A. Proposed QoS metric

The main idea of the proposed QoS metric is to formulate
the probability of estimating safety application requirements
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Fig. 6. Block diagram of the QoS metric calculation. Error samples in position
are calculated between the reconstructed and filtered traces. These error
samples are then used to estimate the probability of accurately calculating
the application requirements.

in terms of vehicle states. Examples of these requirements are
correctly identifying the lane of the vehicle and calculating
the time-to-collision with a leading vehicle. Monte Carlo
numerical analysis is used to calculate these probabilities,
given the vehicle states altered by a privacy scheme. Once the
probability of each requirement is estimated, all these prob-
abilities are combined to express the QoS metric. This QoS
measurement method is inspired by the approach presented
by Shladover and Tan [32] to determine the probability of
providing useful Cooperative Collision Warning (CCWs) as
a function of the position and speed accuracy. We apply the
same concept with similar assumptions, which are as follows:

1) The position and velocity obtained from vehicle sensors
are erroneous and their errors follow a Gaussian distri-
bution.

2) To simplify the formulation of the requirements, it is
assumed that vehicles are driving on straight roads,
centered in their lanes and have constant speed without
changing their lane.

3) Communication and computation delays are ignored.
These assumptions are considered to simplify the Monte

Carlo equations without loss of generality. The second assump-
tion applies only during instantaneous Monte Carlo calcula-
tions. If this assumption were to be removed, the equations
would become complex because it would be necessary to
consider the vehicle heading, position and velocity in both
lateral and longitudinal coordinates 3.

To produce stable estimations, Monte Carlo analysis re-
quires a large number of samples drawn from the random
distribution of the measurement errors. As position and ve-
locity measurements are necessarily erroneous and are some-
times eliminated during silence periods to preserve privacy,
generating such samples should be performed carefully to
reflect the correct representation of the data. To estimate
the error distribution originating from a privacy scheme, we
assume that the subject vehicle tracks the surrounding vehicles
continuously aiming to enhance their measurements and also
predict their states when CAMs are missed. In this case, the
safety application works like a local tracker that tracks and
filters measurements received from other vehicles.

The error samples of a privacy scheme are generated as
follows and illustrated in Figure 6. Initially, we add a basic
noise to positions and speeds specified in the vehicle traces

3The lateral and longitudinal coordinates are perpendicular and parallel
to the road direction, respectively. Hereafter, the longitudinal coordinate is
referred to by x while the lateral coordinate is referred to by y.

dataset. The basic position noise is drawn from a Gaussian
distribution with a standard deviation of 0.5 m. The basic
speed noise is assumed to have a Gaussian distribution, and
its standard deviation equals 2% of the actual speed. Next,
the vehicle tracker tries to track the pseudonymous CAMs,
containing noised positions and speeds and altered by a
privacy scheme. The position and speed errors between the
reconstructed tracks and the true traces are then calculated for
all vehicles and time steps. These error samples are collected
and used directly in the Monte Carlo analysis

The true traces used in calculating error samples are slightly
different from the original traces. Generally, the Kalman filter
modifies the position and speed from those recorded in the
traces dataset to reduce presumed noise even if no noise or
privacy scheme is applied. These enhancements will contribute
to the extracted error samples if the original traces are used
as the ground truth. Thus, we calculate the error samples by
taking the filtered traces as the ground truth. These filtered
traces are obtained by applying the Kalman filter on each
vehicle trace individually and taking the position and speed
of the estimated state every time step. Thus, the error samples
are guaranteed to originate from changes made by the privacy
scheme only, not from changes made by the Kalman filter.
Moreover, the error samples are measured in the scenario
global coordinate, but, according to our assumptions, they need
to be in the vehicle coordinates (i.e., lateral and longitudinal).
The error sample ∆ is formally calculated as follows:

∆ =


δx
δẋ
δy
δẏ

 =

[
R 0
0 R

]
· (x̂p − x̂f ), R =

[
cos θ sin θ
− sin θ cos θ

]
(12)

where θ is the vehicle heading, x̂p is the estimated vehicle
state by the tracker and x̂f is the filtered state. Both x̂p and x̂f
consist of position and velocity in xy global coordinates. We
will now show how these error samples are used to estimate
the QoS of the FCW and LCW applications.

B. Forward Collision Warning Application

The FCW application aims to provide the driver of the
subject vehicle (SV) a sufficiently early alert that a possible
collision with another vehicle (OV) in the same lane is likely to
happen. To achieve this functionality, the application must be
able to (1) identify the correct lane of OVs and (2) estimate the
time to collision (TTC) within a small tolerance. To satisfy the
first requirement, accurate lateral positions of the SV and OVs
must be known. To satisfy the second requirement, knowledge
of the longitudinal positions and speeds of the SV and the next
OV in the same lane is necessary. As explained in [14], the
true and false positive probabilities for correctly identifying
lanes of the OVs can be calculated by:

Ptrue+ = P (|yOV 1 − ySV | ≤ 1.8) (13)
Pfalse+ = P (|yOV 2 − ySV | ≤ 1.8) (14)

For the second requirement, we assume that the SV is ap-
proaching the OV1 at speed differences ∆s of 5 m/s and 15
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 3.6 m
 

Fig. 7. Lane change warning scenario. SV needs to change to the left lane
while OV1 is located in the blind spot, OV2 may cause a rear collision if it
is moving too fast; OV3 is located in the third lane and should not pose any
collision threat.

m/s. The assumed true TTC is set to three seconds as an
example; thus, the true position of OV1 is generated to be
three seconds distant from the true position of SV. Here, there
is no binary classification to calculate false positives; instead,
we calculate the probability of calculating TTC within a small
tolerance of 500 ms. This 500 ms tolerance is chosen by
Shladover and Tan [32] as the maximum tolerance for issuing
a useful warning. Therefore, the TTC and the probability of
correctly estimating it within 500 ms can be calculated by:

TTC =
xOV 1 − xSV
ẋSV − ẋOV 1

(15)

PTTC = P (|TTC − 3| ≤ 0.5) (16)

In this equation, we determine how frequently the difference
between the calculated TTC and the true TTC (i.e., 3 s) is less
than the tolerance threshold of 0.5 s. Finally, the probability
of an accurate FCW application (PFCW ) can be obtained by
multiplying all three probabilities together, assuming they are
independent, as follows:

PFCW∆s = Ptrue+ × (1− Pfalse+)× PTTC∆s (17)

C. Lane Change Warning Application

There are two main scenarios that concerns LCW appli-
cation: blind spot and overtaking, as shown in Figure 7. In
the blind spot scenario, OV1 moves in the adjacent lane of
the SV at approximately the same speed and slightly behind
it, which poses a threat of collision when the SV changes
its lane. Therefore, the LCW application deployed in the SV
should give an alert about OV1, but not about OV3 as it is
located in the third lane and does not threaten the SV. In the
overtaking scenario, the approaching OV2 comes from the rear
with a high closing speed, such that it arrives adjacent to the
SV at the same time as the lane change. If OV2 is moving at
a speed that allows it to reach the adjacency of the SV at the
time of lane change, then a warning should be issued as it is
an overtaking threat. This shows that, the overtaking scenario
is just like that of FCW, but the positions of SV and OV are
reversed. Thus, we will only analyze the blind spot scenario
here.

To handle the blind spot scenario, three requirements must
be correctly identified by the SV. The first requirement is to
identify the lateral position of OV1 in the adjacent lane (i.e.,
its true center is 3.6 m away from the SV). Additionally, its
longitudinal position should be estimated slightly behind the
SV, say between 1.5 m and 6 m from the longitudinal position

of the SV. Thus, its true longitudinal position is assumed to
be in the middle of this range (i.e., 3.75 m from the SV).
The second requirement is to recognize OV3 as not located in
the adjacent lane, which means its true lateral position is 7.2
m away from the SV. The last requirement is that the speeds
of OV1 and SV should be recognized to be similar within
a small margin of 3 m/s as an example. Therefore, the true
speeds of SV and OV1 are assumed to be the same. In our
analysis, we assume that the errors of the SV measurements
are just the basic error in position and speed, as the SV obtains
these values through its own sensors, rather than through
VANET communication. According to these requirements, the
measured positions and speeds of SV, OV1 and OV3 are
defined as follows:

ySV = 1.8 +N (0, 0.5)
xSV = 3.75 +N (0, 0.5)
ẋSV = x̂SV +N (0, 0.02 · x̂SV )
yOV 1 = 5.4 + δy
xOV 1 = δx
ẋOV 1 = x̂OV 1 + δẋ
yOV 3 = 9 + δy

(18)

where x̂ is the filtered longitudinal speed and x̂SV = x̂OV 1.
The Monte Carlo equations of each requirement need some
further analysis. Assuming 2 m wide SV and OV1, OV1 must
leave enough space for the SV to enter the adjacent lane. This
means that when the SV changes its lane, the center of OV1
should be 3 m away from the right edge of the lane. Thus, the
warning of a blind spot should be fired if the estimated distance
between SV and OV1 less than or equal to 4.8 m. To avoid
a false alert about OV3, assume a 3 m wide vehicle moving
just along the edge of the third lane. Then, its center is 1.5 m
away from the lane boundary. Thus, when the distance between
centers of SV and OV3 is more than 6.9 m, the system must
not warn. Therefore, the true positive probability is calculated
when OV1 is estimated within a distance less than 6.9 m. The
false positive probability is calculated when OV3 is estimated
within a distance less than or equal 4.8 m. Additionally, the
longitudinal position of OV1 must be estimated within the
blind spot so that it is not easily visible to the SV driver (i.e.,
1.5 - 6 m behind the SV). Also, the speeds of SV and OV1
should be estimated to be similar within small tolerance of 3
m/s. These probabilities can be formulated as follows:

Ptrue+ = P (yOV 1 − ySV < 6.9) (19)
Pfalse+ = P (yOV 3 − ySV ≤ 4.8) (20)
Plong = P (xSV − xOV 1 < 6 ∧ xSV − xOV 1 > 1.5) (21)
Ps = P (|ẋOV 1 − ẋSV | ≤ 3) (22)

The probability of an accurate LCW application (PLCW )
can be obtained by multiplying these probabilities together,
assuming they are independent as follows:

PLCW = Ptrue+ × (1− Pfalse+)× Plong × Ps (23)

To measure the impact of a privacy scheme on the QoS
of safety applications, both PFCW and PLCW are calculated,
and then the minimum value is taken and multiplied by 100
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Fig. 8. The QoS of FCW and LCW applications in STRAW traces modified
by random silent period privacy scheme and CAM rate = 2 Hz. In all cases,
QoS of more than 90% can be achieved when a silent period of (3, 11) s is
employed.

to express on the final QoS percentage. Formally, the QoS of
a privacy scheme is defined as:

QoS = min{PFCW , PLCW } × 100 (24)

D. QoS of random silent period

We evaluate the QoS of the random silent period (RSP)
privacy scheme on STRAW vehicle traces using the proposed
metric. Similar to the experiment in Section VI-E, we selected
silent periods of (3, 5) s, (3, 11) s and (3, 19) s which should
achieve high, intermediate and low QoS, respectively, since
the longer the silence, the harder to predict vehicle states and
the lower the QoS. Figure 8 shows that a QoS of at least 91%
can be achieved for both applications and traffic densities if
a silent period up to (3, 11) s is used before a pseudonym
change. The QoS is expected to be slightly higher in dense
traffic because vehicles drive at lower speeds which, in turn,
results in lower absolute speed noise (Note that speed noise
is assumed to be 2% of vehicle speed).

This experiment shows a different result from that claimed
by Lefevre et al. [29]. They claim that an intersection collision
system can function only with silent periods of less than two
seconds. This difference comes from our assumption that an
in-vehicle tracker is utilized to predict vehicle states during
silence. Results shown in Figures 5 and 8 confirm that it is
possible to preserve location privacy without hindering the
functionality of safety applications. For example, an RSP of (3,
19) s can achieve a privacy level of 80% in terms of tracking
distortion with a loss of about 15% in the QoS of safety
applications. Advanced privacy schemes will compromise this
trade-off more effectively, as explained in the next section.

VIII. COMPARISON OF PRIVACY SCHEMES

In this section, selected privacy schemes are evaluated
and compared using proposed privacy and QoS metrics. The
selected schemes are RSP [48], SLOW [20], CSP [51], CPN
[52], CAPS [15] and CADS [35]. We first explain briefly these
schemes and then show their evaluation.

A. Description of Schemes

In SLOW [20], a vehicle continuously checks its current
speed and broadcasts CAMs only when its speed is higher

than a preset threshold SP . If a vehicle does not send CAMs
for ST time steps, it changes its pseudonym.

Coordinated Silent Period (CSP) is proposed by Tomandl
et al. [51] in their comparison of silent period and mix zone
schemes. CSP coordinates all vehicles in the network to remain
silent and change pseudonyms synchronously. CSP seems to
be theoretical, since the coordination overhead in real world
situations increases dramatically [51]. However, CSP increases
privacy significantly because it maximizes the size of the
anonymity set at every pseudonym change.

In the Cooperative Pseudonym change scheme based on
the number of Neighbors (CPN) [52], vehicles monitor their
neighbors within radius R and wait until they reach a threshold
K. When this trigger occurs, the vehicle sets an internal flag
ready flag, broadcasts this flag within the CAM and changes
the pseudonym in the next CAM. When a vehicle receives a
CAM with a set flag or its internal flag is set already, it changes
its pseudonym immediately.

Context-Aware Privacy Scheme (CAPS) [15] monitors sur-
rounding vehicles through their CAMs using an in-vehicle
tracker. If the vehicle determines that a previously identified
neighbor has become silent, it becomes silent as well. When
a vehicle is silent, it resumes broadcasting CAMs if its state
could be confused with another silent neighbor.

Context-ADaptive privacy Scheme (CADS) [35] is based on
CAPS but allows a driver to choose among privacy preferences
of low, normal or high. It optimizes the internal parameters of
CAPS dynamically according to the driver’s privacy preference
and the density of the surrounding traffic.

B. Comparison

We implemented the selected privacy schemes in MATLAB
as a centralized program, which operates on individual ve-
hicles in parallel. For each time step of the vehicle traces,
the program determines if a CAM would be broadcast by
a vehicle and when a pseudonym should be changed based
on the procedures of the privacy scheme. We employed the
realistic traces in this experiment and tested several parameter
sets for each scheme as listed in Table I. Recently, we
have implemented these schemes in an open-source privacy
extension for Veins framework, called PREXT [53]4, which
allows readers to verify the presented results and evaluate other
schemes using unified privacy metrics.

Since privacy schemes have different assumptions and pa-
rameters, they were aligned to their QoS levels rounded to the
nearest integer. Then, the maximum (normalized) distortion
that can be achieved in each QoS level is selected, along with
the average pseudonym lifetime selected by vehicles to achieve
this maximum distortion. Figure 9 illustrates this comparison
among RSP, CPN, CSP, CAPS and CADS. The SLOW scheme
is omitted because it results in very low QoS levels (only 50%
on average with speed threshold of 6 m/s). This significantly
low QoS occurs because of the large number of eliminated
CAMs at low speeds.

CSP provides the highest distortion of all schemes given
a similar QoS level. It results in a high QoS of up to 91%

4https://github.com/karim-emara/PREXT
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Fig. 9. Distortion versus QoS levels of different VANET privacy schemes in TAPASCologne traces. Numbers written on the graph lines represent the average
pseudonym lifetime in seconds. CSP achieves the highest distortion levels with QoS up to 91%. CPN achieves high QoS levels up to 94% but with intermediate
distortion levels and short pseudonym lifetimes. CAPS and CADS provide a practical compromise between distortion and QoS while RSP performs worse
than the others.

TABLE I
PARAMETER TEST RANGES FOR THE EVALUATED SCHEMES.

Scheme Parameter (unit) Test Range

RSP [48] Pseudonym lifetime (min) 2
Max silence time (s) 7, 11, 15, 19

CSP [51] Pseudonym lifetime (min) 2, 5
Fixed silence time (s) 5, 7, 9, 11

SLOW [20] Speed threshold SP (m/s) 3, 6, 8
Silent threshold ST (s) 10, 15, 20, 30

CPN [52] Neighborhood radius R (m) 10, 20, 30, 50
No. of neighbors K 3, 5, 7

CAPS [15] Pseudonym lifetime (min) 2, 5
Max silence time (s) 5, 7, 9, 11
Neighborhood Radius (m) 50, 100

CADS [35] Privacy preference of all vehicles Low, Normal, High

and requires a reasonable average pseudonym lifetime of
about 3 min. However, global coordination among all vehicles
in the network is challenging. Also, further investigation is
required to study possible implications of or attacks on this
globally coordinated silence. The delivery of packets and
handling safety-critical situations during the scheduled silence
are just two examples that make the CSP unpractical. The
next best scheme is the CPN, which results in the highest
QoS levels because it does not employ any silence before a
pseudonym change. It can result in high distortion levels but
with a significantly short pseudonym lifetime of 4 s. This is
a serious drawback of CPN because it requires these frequent
pseudonym changes to preserve privacy. RSP achieves a good
distortion level but at a cost in QoS. Higher QoS levels can
be attained but with low distortion levels.

CAPS and CADS provide practical compromises between
distortion, QoS and pseudonym lifetime. The performance of
CAPS varies according to the provided parameters. CAPS can
provide about 60% of normalized distortion when the QoS is
90%. The average pseudonym lifetime ranges from 1.3 min

to 2.2 min, depending on the achieved distortion and QoS
levels. CADS let drivers choose which privacy level matches
their preferences. The normal privacy preference results in
distortion of 60% and QoS of 86%. The average pseudonym
lifetime ranges from 1.5 min to 3 min.

C. Comparison with Mix Zone

We evaluate mix zones qualitatively because they are usu-
ally evaluated against timing and transition attacks. Since the
tracker utilized does not support these attacks, quantitative
evaluation will not represent the actual performance of these
schemes.

Mix zones are usually placed at road intersections since
vehicle movements are not predictable. Within a mix zone, the
exchanged CAM messages must be encrypted [19], or vehicles
must be silent [9]. If vehicles change their pseudonyms within
the mix zone, the adversary cannot correlate leaving vehicles
with those entering the zone earlier because movement cannot
be predicted. Mix zones have the following drawbacks when
compared to privacy schemes evaluated above:
• Timing and transition attacks. An adversary can utilize

additional knowledge about the timing and transition
among different entry and exit points of the intersection.
Buttyán et al. [9] showed that a tracking success rate of
up to 70% can be achieved by covering only half of the
mix zones.

• RSU dependability. Mix zones depend on RSUs to
coordinate silence periods or distribute encryption keys.
However, it is not expected that RSUs will be widely
deployed, especially in the initial deployment of VANET.

• Active attacks for cryptographic zones. An active
attacker may participate in the cryptographic mix zones
and obtain the shared key. Once the key is obtained, the
mix zone becomes useless.

• Safety concerns for silence-based zones. Road intersec-
tions or joints are risky places in road networks. In fact,
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intersection crashes represent 26% of all crashes in the
USA [54]. Silence-based mix zones are at variance with
this fact because it is inappropriate to remain silent in
places where it is important to exchange safety messages.

IX. CONCLUSION

In this paper, privacy and QoS metrics for privacy schemes
in VANET are reviewed in detail and experimentally eval-
uated. A privacy metric that is based on traceability and
distortion is formally defined and compared with entropy
and AS size metrics. Based on the comparison of privacy
metrics, the proposed distortion metric provides a unified scale
when comparing privacy schemes of different strengths at
different traffic densities. In addition, a QoS metric for two
safety applications FCW and LCW is proposed and verified
on the random silent period scheme, showing a reasonable
QoS reduction as the silence duration is increased. Finally,
six privacy schemes are discussed and compared in terms
of the proposed metrics using realistic traces. Based on the
experimental comparison, we reach the following conclusion.
First, the coordinated silent period (CSP) scheme provides the
greatest privacy and QoS levels but global coordination among
all vehicles is very challenging and needs further investiga-
tion regarding possible attacks or implications. Second, the
cooperative pseudonym change (CPN) scheme can result in a
good privacy level with a reasonably high QoS but requires
very short pseudonym lifetimes, making it impractical. Third,
both CAPS and CADS provide a more practical compromise
among acceptable privacy and QoS levels and relatively long
pseudonym lifetime. Last but not least, mix zones are effective
in reducing traceability, but they suffer from some issues such
as transition and timing attacks, active attacks and dependabil-
ity of road-side units. In future work, we will investigate how
to deploy different privacy schemes collaboratively over the
road network to get benefit of the advantages of each.
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