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Abstract—Recently, the studies on vehicular adhoc network (VANET) are booming due to the huge potential. Road side unit (RSU) is a
key component of the VANET infrastructure connecting mobile vehicles and the rest of the infrastructure. To maximize the availability of
RSUs, RSUs should be densely deployed. Otherwise, blind spots may exist in which vehicles lose the connection to the infrastructure.
Unfortunately, the massive deployment of RSUs to seamlessly cover the whole area of interest, which could be a vast metropolitan,
can be very expensive. As the effectiveness and the benefits of the VANET are not fully proven yet, such large scale deployment
can hardly be a viable option as of today. Motivated by this observation, this paper investigates a new strategy to best deploy RSUs
so that their spatio-temporal coverage is maximized under a limited budget. In detail, for the first time in the literature, we consider
an innovative RSU deployment framework, which is a well-balanced combination of three different approaches, deploying RSUs on
static locations, public mobile transportation, and fully controllable vehicles owned by the local government. We first introduce a new
strategy to abstract a map of city area into a grid graph. Then, we formulate the problem as a new optimization problem and show its
NP-hardness. To solve this problem, we transform this problem into another optimization problem. Then, we propose a new polynomial
running time approximation algorithm for the problem and show that the performance ratio (the ratio between the quality of an output
of the proposed algorithm and the quality of the best possible solution) is at least half of the best possible ratio. We also conduct
simulations under various setting to study the effectiveness of the proposed approach.

Index Terms—Vehicular ad-hoc networks, road side unit deployment, approximation algorithm, graph theory, optimization.
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1 INTRODUCTION

These days, vehicular ad hoc network (VANET) is get-
ting more attention due to its huge potential. Originally,
the concept of VANET has been introduced to improve
driving safety. Recently, VANET is being considered
as a platform to enable a wide range of commercial
applications such as remote vehicle personalization and
diagnostics, Internet access, digital map downloading,
real time video relay, and value-added advertisement [6].

In the literature, the term, VANET, refers to a wire-
less adhoc network of mobile vehicles with optional
infrastructure support. An (infrastructure-independent)
VANET can be constructed spontaneously by a group of
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VANET nodes (mobile vehicles) moving nearby without
relying on any infrastructure. On the other hand, lots
of emerging applications of (infrastructure-dependent)
VANET exploits various public and private infrastruc-
ture such as public/private cloud, government authority
server, etc. In this paper, we consider the later types
of VANETs. Compared to the infrastructure-independent
VANET, infrastructure-dependent VANET is uniquely
characterized by the heavy presence of back-end in-
frastructure, in particular, road side units (RSUs) [7].
Generally speaking, RSUs are relay nodes connecting
the VANET to the outside networks such as the Internet
as well as providing a hybrid routing path combining
wired and wireless links for high-speed large-capacity
communication among distant VANET nodes. Naturally,
RSU is a key component for cooperative and distributed
applications in VANET. Nowadays, RSUs are also con-
sidered for different roles such as traffic directories, data
disseminators, security management, location servers,
and service proxies.

Due to the significance of the roles of RSUs in VANET,
the proper distribution of RSUs is of great importance
to improve the service quality of VANET. Naturally, this
issue has attracted a lot of attention. In [8], Barrachina
et al. identified that the cost of densely deploying RSUs
could be a major hinderance to make VANET service
ubiquitously accessible. Their report also shows that as
the traffic density of an area differs over time, maximiz-
ing the utility of fixed RSUs is very challenging. In [9],
Aslam et al. considered to deploy a limited number of
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fixed RSUs to maximize their utilization over time. Later,
Wu et al. [10], Liang et al. [11] considered similar issues
of best deploying fixed RSUs. More recently, several
researches are conducted to use public infrastructure
such as buses and taxis to disseminate messages [12],
[13] or route messages by using them as data mules [14],
[15], [16].

While deploying RSUs on static locations or on public
transportation were reasonable ways to deploy RSUs,
another plausible scenarios would be deploying RSUs
on government vehicles, which are fully controllable.
However, to the best of our knowledge, such problem
has not been considered yet. To fill this void, this paper
proposes an innovative strategy to unify and comple-
ment the existing approaches to best deploy available
RSUs to maximize their coverage. More specifically, we
assume that there is a budget limitation to deploy RSUs,
known costs to deploy each RSU on (a) a fixed loca-
tion, (b) a public transportation such as a bus and a
light rail, whose routes are known in advance, but not
controllable, and (c) a fully controllable vehicle, which is
owned by the local government, as well as the statistical
information of the traffic density over each area. Then,
we introduce a new strategy to best deploy RSUs using
the three different types of deployment strategies under
the limited budget.

The main contribution of this paper is that to the
best of our knowledge, this is the first paper in the
literature to consider three different RSU deployment
strategies on a unified framework; static, mobile but not
controllable, and mobile and fully controllable. Under
the assumption that there is only light traffic and there-
fore, traffic jam is negligible, we introduce a new strategy
to abstract a given metropolitan map into a grid graph
such that when a fixed RSU is deployed over a point
on the grid graph, then the whole region corresponding
to the point in the map can be covered by the RSU
placed on the center of the region. Then, we convert the
problem of our interest into a new NP-hard optimiza-
tion problem, namely the generalized budget coverage
problem (GBCP), and show that it is NP-hard. Next,
we transform GBCP to a new optimization problem
called the budgeted maximum coverage problem with
cardinality constraint and propose a new polynomial
time approximation algorithm for it. Most of all, we show
that the performance ratio of this algorithm is at least half
of the best possible. We conduct simulation to study the
performance of the proposed approach under different
parameter setting. Our result shows that the cost of
deploying each type of RSU has a strong impact on the
coverage of the RSU. Also, the simulation result shows
that our framework provides a cost-effective solution
compared to the case adopting a single deployment
strategy. It also shows that our algorithm works well
under moderate traffic jam.

The rest of this paper is organized as follows. Related
work is discussed in Section 2. The formal definition
of the problem and its justification are in Section 3. We

introduce a transformation of the problem into another
optimization problem in Section 4 and propose a new
polynomial time approximation algorithm for it in Sec-
tion 5. In Section 6, we present our simulation result and
analyze it. Finally, we conclude this paper in Section 7.

2 RELATED WORK

In this section, we outline the state of the art regard-
ing the role of the public buses and the deployment
of RSUs in a VANET. First we start with the RSUs
deployment in VANET. VANET is composed of basically
two major kind of entities, i.e. mobile vehicles and the
roadside infrastructure. The movement of the mobile
vehicles is limited by the road topology and the RSUs
must be deployed in optimized locations at roadside for
maximum performance. Roadside infrastructure is used
for a number of purposes ranging from data ferrying
and routing to location-based services [7]. To date, there
have been proposed a number of schemes that suggest
different RSUs deployment strategies.

In [37], Yang et al. studies a RSU deployment problem
which aims to minimize the number of static RSUs while
satisfying a given objective. By structure, this is a dual
problem of ours, which aims to maximize the (spatio-
temporal) coverage with a given number (budget) of
static RSUs. Therefore, a solution for their problem is
not applicable to ours.

The problem in [36] aims to deploy a given number
(budget) of static RSUs so that their own objective func-
tion is maximized. We would like to emphasize that the
static RSU deployment strategy in our comprehensive
RSU placement algorithm places RSUs to the locations
with highest weights in a greedy manner, and therefore
it is an optimal algorithm and no other static RSU de-
ployment algorithm can work better than ours under our
performance metric. Furthermore, Section 6.3 shows that
our comprehensive approach outperforms such greedy
deployment strategy of static RSUs. This proves that our
algorithm works better than [36] in our performance
metric. Besides, the algorithm in [36] assumes that it
knows how many cars will be on the street, and what
are the confrontation probabilities among them at each
location of the city. This is highly privacy violating
information and hard to collect in the real world. As
we do not assume such information available, the result
in [36] cannot be used for our purpose.

Kitani et al. [17] proposed a public transportation
based mechanism for message ferrying. They aim at
the low density urban areas where buses provide con-
nectivity and provide the other vehicles with traffic
information. Another similar approach was followed by
Luo et al. [18] where they used buses as a backbone
network for data delivery and next-hop relays in the
routing decisions like Lai et al. [19] who also use buses in
routing decisions. Nevertheless this information is local
and we assume that other vehicles on their own can
have such traffic information through beacon messages.
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On the other hand Dow et al. [20] proposed bus-based
service information discovery where bus routes are used
to create a backbone structure to avoid the broadcast
storm problem. Buses have also been used for efficient
broadcast strategies by Holzer et al. [21]. Their scheme
namely BROADTRIP uses network coding technique to
reduce the number of retransmission in a location-based
broadcasting.

A multi-modal message dissemination scheme with
the help of public transportation is proposed by Zhang
et al. [12]. In their scheme, public buses assist the mes-
sage dissemination in public taxis and they studied the
interconnection time among vehicles. In another work
by Xu et al. [13] public buses have been used to detect
the traffic congestion in the urban localities. They detect
the traffic congestion of the area based on the travel time
of the bus. Lan et al. [14] studied the feasibility of the
public buses as data mules for traffic monitoring. Their
proposed scheme is based on the assumption that all
buses, bus stops and the traffic lights installed on the
roads, are equipped with wireless devices in order to
communicate with each other and the neighbors. For
granularity, they calculate the average travel time of the
bus for certain time.

Jiang et al. [15] proposed a bus vehicular network
where buses are used with deployed RSUs for traffic
information dissemination for better coverage. Another
bus-based next-hop forwarding scheme has been pro-
posed by Huang et al. [16]. They analyze the upper and
lower bounds of the multicast capacity of bus-assisted
VANET where ordinary vehicles when sending messages
to other nodes, select the buses as next-hop forwarding
nodes. Recently Tonguz et al. [24] proposed another
scheme where cars are used as RSUs in VANET. Their
scheme is also inspired by the initial deployment of the
dedicated short range communications (DSRC) and the
problems faced by such deployment. Therefore they use
the ordinary cars as temporary RSUs. Whenever a car
acts as a temporary RSU, it makes brief stops during
which they act as Communication Bridge for other vehi-
cles in the network. However, while this scheme seems
practical, the stops of the ordinary vehicles (temporary
RSUs) still leave a question mark on the robustness and
reliability of the system.

Fillipini et al. [26] proposed a game theoretic-based
technique for RSU deployment. Their scheme is based on
concurrent decision on part of the operators to deploy
RSU in an optimized fashion. In another work, Tao et
al. [27] target the message propagation efficiency and
power consumption in VANET, and devise the RSU de-
ployment strategies to improve upon the aforementioned
factors. Similarly Liu et al. [28] proposed RSU deploy-
ment mechanism to smoothen the content distribution
in VANET and thus-forth their proposed scheme covers
single dimension, i.e. contents distribution in VANET.
Another similar scheme has been proposed by Mehar et
al. [34] where they make the RSU deployment decision
for the delay-sensitive VANET applications. Their aim is

to deploy RSUs in such an optimal way that can improve
the end-to-end delay for the applications as well as to
reduce to deployment cost. Farsi and Szczechowiak [29]
targeted the car density and traffic data to decide on the
optimal locations for RSU deployment. They input these
matrices to the algorithm to find out the optimal spots
for static RSU deployment in VANET. Another optimal
RSU deployment mechanism is proposed by Patra et
al. [30] where they use analytic hierarchy process (AHP).
They also take RSU to RSU communication delay as a
performance metric. Nonetheless, their scheme is static
and does not take the variations in the mobility into
account.

Aslam and Zou [31] proposed a balloon optimization
method to deploy RSUs along the highways in the initial
stages of VANET with minimum budget and limited
resources. Their aim is to minimize the message propa-
gation delay from one RSU to another neighbor RSU.
Similarly Rizk et al. [32] proposed a greedy method
to deploy RSUs in both urban and rural areas based
on overlap-based greedy method (OGM). They mainly
consider two dimensions for the optimal RSU deploy-
ment, sites of interests with higher probability and RSU
coverage radius. Another similar scheme has been pro-
posed by Makkavi et al. [33] where they consider sites of
interest for RSU deployment. Their scheme is cumulative
weight based method (CWM) where CWM decides on
the highest weight first, in the RSU distribution process.
However, these factors may not always guarantee full
coverage for RSUs in both rural and urban localities.

Based on our comprehensive survey, we can conclude
that our work is the first effort to consider the com-
prehensive deployment approach of insufficient number
of RSUs using three different different strategies at the
same time.

3 PROBLEM STATEMENT
In this paper, we investigate how to deploy various static
and mobile RSUs on a metropolitan area so that the
coverage of RSUs can be maximized under a limited
budget. We make the following assumptions.
(a) RSUs can be deployed on a static location (D-Type

1), on mobile public transportation such as buses and
light rails, which are mobile but not controllable (D-
Type 2), and/or on government vehicles which are
fully controllable by need (D-Type 3).

(b) The cost to deploy an RSU on each deployment type
is fixed and known in advance.

(c) In case of Deployment D-Type 2, each mobile trans-
portation does not suffer from any delay, and their
travel schedule is known. Note that this is mostly
true for light rails, as well as for buses within a
city area without heavy traffic jam. This assumption
implies that the location of each transportation at any
moment of a day is known in advance.

(d) D-Type 3 does not suffer from traffic jam. In practice,
this can be handled by constructing their travel
schedule under very low speed.
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Fig. 1: Abstraction of a metropolitan area map M into a
graph.

(e) The significance of each region (e.g. traffic load)
within the metropolitan area is available. This can
be obtained by collecting the relevant statistical in-
formation over time.

In the following, we first introduce a new way to ab-
stract a metropolitan area map M into a graph model.
Then, we formulate the problem of our interest as an
optimization problem on the graph. Last, we show the
problem of our interest is NP-hard.

3.1 Abstraction of Topology

In this paper, we assume the shape of the map M of
a metropolitan area of our interest is a rectangle, e.g.
Fig. 1(a). Suppose the communication range of both
VANET nodes and RSUs are equal to r. Next, we parti-
tion M into regular squares whose height and width are
(r/
√
2) × 2, e.g. Fig. 1(b). Observe that the RSU at the

center of the grid square with this length and height is
accessible from a VANET node in any location within
the grid square. Now, we represent each grid square
as a point and obtain a set of grid points representing
the whole map, e.g. the points in Fig. 1(c). Finally, we
construct a topology graph G = (V,E) such that V is the
set of central points of the grid squares. For each pair of
points u, v ∈ V , (u, v) ∈ E if the two squares, whose
central points are u, v, are adjacent in M (i.e. the grid
squares share exactly one common edge), e.g. Fig. 1(d).

Once the topology graph is constructed, then we
assign a weight on each node, which implies the im-
portance of the node, e.g. business of the grid square.
By definition, if a grid space includes a popular spot
with more traffic, then the corresponding node will get
a higher weight. Note that the weight of a node may vary
during the day as the traffic situation of a metropolitan
area changes over time. Therefore, if we divide a day into
T consecutive time slots, we can obtain a set of temporal
graphs [25] G = {G0 = (V0, E0, w0 : V0 → R+), G1 =

(V1, E1, w1 : V1 → R+), · · · , GT = (VT , ET , wT : VT →
R+)} as an input of our problem of interest. Note that
V0 = V1 · · · = VT and E0 = E1 · · · = ET , but the graphs
only differ in node weights.

We would like to emphasize that in the real world
scenario, we actually need some additional number of
RSUs due to various physical effects such as non-Line-of-
Sight issue. However, such issues can be easily solved by
adding a few extra RSUs, and therefore, we will proceed
our discussion with the G.

3.2 Problem Definition using Abstracted Topology

Fig. 2: Location of a mobile public infrastructure varies
over time.

Previously, we explained how to obtain a set of tem-
poral graphs G which represents the logical relationships
among the subregions (grid squares) in the metropolitan
area and their corresponding significance over time. We
can easily observe that some deployment strategies (D-
Type 1 and D-Type 2) over the set of temporal graphs
have the following characteristics.
(a) In case of a static RSU deployment (D-Type 1), once

we decide to deploy one RSU on a node in G0, it
also represents the deployment of the same node on
the rest of the graphs in G as the RSU is not mobile.
This is because by our construction, the graphs are
different only in node weights.

(b) In case of D-Type 2, as we can see in Fig. 2, the
location of a mobile public transportation varies over
time. Therefore, once we decide to deploy an RSU on
such mobile unit, the exact location of the RSU may
be changed in each graph in G.
Still, as the travel schedule of the RSU is known in
advance (following Assumption 3, see Fig. 3), we
know which node in each Gi ∈ G will be covered
by an RSU on the mobile transportation exactly. This
means that when we deploy multiple RSUs using D-
Type 2 strategy, the group of nodes covered by the
RSUs changes over time, but we can compute what
they are at each moment exactly.

Now, let us introduce one related problem.

Definition 1 (Budgeted Maximum Coverage Problem).
Given a budget B, a set S = {s1, s2, · · · , sn}, their cor-
responding weights W = {w1, w2, · · · , wn}, a collection S
of subsets {S1, S2, · · · , Sm} of S, and their corresponding
cost C = {c1, c2, · · · , cm}, the budgeted maximum coverage
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Fig. 3: The subset of nodes covered by the RSUs attached
to mobile public infrastructures are changing over time,
but can be predicted.

problem is to find a subset S ′ ⊂ S to maximize
∑

i:si∈S

wi · yi

subject to
(a)

∑
1≤j≤m

cj · xj ≤ B, // the cost of selecting the subsets is

no greater than the budget limit.
(b)

∑
j:si∈Sj

xj ≥ yi for each si, // yi = 0 if for every Sj

containing si, xj = 0.
(c) 0 ≤ yi ≤ 1, // yi = 1 if si is covered, i.e. xj = 1 for

some Sj including si.
(d) xj ∈ {0, 1}. // xj = 1 only if Sj is selected, i.e. Sj ∈ S ′.

In the definition, xj = 1 if the subset Sj is selected,
otherwise 0 (Constraint (d)). Also, yi = 1 if si is covered
by any subset, otherwise 0 (Constraint (c)). By Con-
straint (b), if no subset including si is selected,

∑
j:si∈Sj

xj

becomes 0, and this enforces yi = 0. Otherwise, to
maximize the objective goal, yi = 1 is always selected.
Note that the budgeted maximum coverage problem is
a known NP-hard problem [23].

Based on our discussion so far (without considering
D-Type 3), we can construct a budgeted maximum cov-
erage problem instance as follows: Given a budget B, we
first construct a set S = V (G0)

∪
V (G1)

∪
· · ·

∪
V (GT ),

where V (Gi) is the set of nodes in Gi with corresponding
node weights. Note that the weight of each node in S is
known in advance and we have W . Then, we create an
empty collection S of subsets of S. Then, for each node
vi ∈ G0 and its identical nodes in the rest of the temporal
graphs G1, · · · , GT , we create a subset Si and add it to
S . Then, each Si represents a grid point covered by a
static RSU deployed on the vi over time period [0, τ ],
where τ = T × µ, and µ is the length of each time slot.
Next, for each public mobile transportation, we collect
the set of grid nodes covered over time period [0, τ ] by
an RSU over the mobile transportation and construct a
new subset. Then, we also add this subset to S. This
subset represents the set of grid points covered by the
RSU attached to the mobile transportation over time. For
each subset in S, we assign the known cost to the subset
which is corresponding to the cost to deploy and operate
an RSU to cover the nodes in the subset over time,
then we have C. Then, we obtain a budgeted maximum
coverage problem instance.
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Fig. 4: This figure shows the movement of a fully control-
lable mobile node over time becomes one subset in S in
the budgeted maximum coverage problem instance. For
instance, if we decide to move the node through g1,0 →
g1,1 → g2,2, a corresponding subset {g1,0, g1,1, g2,2} is
added to S . This movement implies that a mobile node
starts from g1,0 and stays there for one more time unit
and then finally moves to g3,2.

Finally, let us discuss how the consideration of D-Type
3 deployment strategy (fully controllable) will impact
our formulation so far. Given a starting location of fully
controllable node with an RSU in G0, the node can
always stay at the same location or move to adjacent
location in the next graph in the set of temporal graphs.
From this observation, we can construct a new directed
acyclic graph (DAG) GU = (VU , EU ) such that V (GU )←∪

Gi∈G V (Gi) and for each v ∈ V (Gi) and u ∈ V (Gi+1)
pair, there exists a directional edge from v to u in EU only
if v = u or v and u are adjacent in Gi (which also means
that they are adjacent in Gi+1). Fig. 4 shows that under
such construction, a feasible path of a mobile node which
is located at g1,0 is a path from G0 to GT , and the number
of such paths is exponential. This means that while our
problem of interest is similar to the budgeted maximum
coverage problem, it is significantly more challenging
as there are so many choices to construct a subset for
each fully controllable mobile node, which becomes a
new subset into S in the formulation of the budgeted
maximum coverage problem.

Below is the formal definition of our problem of
interest.

Definition 2 ( Generalized Budgeted Maximum Cover-
age Problem). Given
(a) a DAG GU = (VU , EU ) with their corresponding node

weights W ,
(b) a collection S of subsets of VU and their corresponding

cost C,
(c) a budget B,
the generalized budget coverage problem is to construct a
subcollection of subsets of S by (a) computing subsets, each of
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which represents the grid points covered by fully controllable
mobile nodes with an RSU which moves over GU and (b)
selecting additional subsets, each of which represents the set
of grid points covered by either a static RSU or an RSU
attached to a public mobile transportation, such that the total
cost to deploy the RSUs is under the limited budget B and
the coverage of RSUs over time is maximized, which is the
sum of the weight of each grid point in any Gi ∈ G covered
by the subsets in the subcollection.

It is worthwhile to notice that the constraints (a) and
(b) are not necessarily in that order. That is, we may com-
pute the paths for fully controllable mobile nodes first
and then select some more subsets from S, or vice versa.
Also, it is allowed to do interchangeably. Meanwhile, it
is easy to see that the generalized budget coverage prob-
lem is NP-hard as its simplest version without any fully
controllable mobile node (this is possible by assuming
the cost to operate each fully controllable mobile node
is greater than the given budget), is equivalent to the
budgeted maximum coverage problem.

Remark 1. The cost to deploy a fully controllable mobile node
with an RSU and operating them for whole one year can be
much higher than deploying an RSU on a fixed location or a
mobile public transportation. This means that the maximum
number k of fully controllable mobile nodes under a limited
budget may not be huge.

Due to Remark 1, in the rest of this paper, we will
focus on a variation of generalized budgeted maximum
coverage problem, in which the number of available
fully controllable mobile nodes is specifically given as
a positive integer k. Clearly, by solving this problem
in polynomial time, we can solve the original version
in polynomial time by selecting the best result among
all possible choices of the number of fully controllable
mobile nodes, which is bounded by the limited budget
B divided by the cost of deploying one fully controllable
mobile node.

4 BUDGETED MAXIMUM COVERAGE PROB-
LEM WITH CARDINALITY CONSTRAINTS

Now, we reformulate the generalized budgeted maxi-
mum coverage problem, whose input is ⟨G,W,C, k,B, T ⟩
to a new optimization problem namely the budgeted
maximum coverage problem with cardinality constraints
(BMCP-CC), see Definition 3, as follows. First, from G
and W , we can construct a DAG Γ = (V ′, E′) as follows:
V ′ ← V (G0)∪V (G1)∪ · · · ∪V (GT ). For any two nodes u
and v, there exists a direct edge from u to v in E′ only
if (a) u ∈ Gi is same as (a copy of) v ∈ Gi+1 or (b)
u ∈ Gi and v′ ∈ Gi are adjacent in Gi, where v′ is a copy
of v ∈ Gi+1. Note that this construction is similar to the
construction of GU . Without loss of generality, suppose

V ′ = {v01 , v02 , · · · , v0n; v11 , v12 , · · · , v1n; · · · , vT1 , vT2 , · · · , vTn },

where each vji represents the i-th node of V in the j-th
moment t = j for j = 0, 1, · · · , T , i.e. vji is a copy of vi in
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Fig. 5: This figure shows how G from a generalized bud-
geted maximum coverage problem instance is used to
construct Γ in a budgeted maximum coverage problem
with cardinality constraints instance.

V (Gj). There is a directed edge from vji to vj+1
k only if

either nodes vi and vk are adjacent in graph Gi or i = k;
see Fig 5 for example.

Now, we are given a collection of subsets

S = S1 ∪ S2 = {S1, S2, · · · , Sm} ∪ {S′
1, S

′
2, · · · , S′

l},

(a) where S1 represents the set of all possible tra-
jectories for fully controlled vehicles in Γ, which
consists of all possible subsets of nodes constituting
a directed path from some nodes in time t = 0 to
time t = T in graph Γ. Note that the cardinality of
S1 can grow exponentially in terms of T and n, and
cannot be given explicitly.

(b) where each subset S′
i in S2 contains T + 1 nodes

from V ′, which forms a directed path from some
nodes in time t = 0 to some nodes in time t = T
in graph Γ corresponding to the trajectory of the
stationary (and mobile) RSUs. The cost c(S′

i) of S′
i

is given in advance, the coverage benefit of S′
i is

w(S′
i) =

∑
v∈S′

i
w(v).

Definition 3 (Budgeted Maximum Coverage Problem
with Cardinality Constraints, BMCP-CC). Using nota-
tions above, given a positive integer k and a budget B, we
are asked to select k subsets from {S1, S2, · · · , Sm} and some
subsets from {S′

1, S
′
2, · · · , S′

l} with total cost no more than
B, such that the total weights of nodes covered is maximized.

5 A NEW APPROXIMATION ALGORITHM FOR
BMCP-CC
As BMCP-CC is NP-hard, in this section, we introduce
a new α-approximation algorithm for it, where α =
1
2 (1 −

1
e ). This means that the quality of the output

of the algorithm is at least the half of the best possi-
ble solution. The basic idea follows from the existing
work [23]. However, since the number of subsets in S1
can be exponentially large, even a simple greedy strategy
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does not work (it takes exponential time if we simply
enumerate all possibilities). This means that it is not
possible to directly apply the modified greedy strategy
in [23] to solve BMCP-CC. Fortunately, we manage to
make the greedy strategy work, by exploiting the special
structures of Γ (which is a directed acyclic graph), based
on dynamic programming strategy and a clever node
weight reassignment procedure.

The basic idea of our algorithm is based on the greedy
strategy. The algorithm mainly consists of two inde-
pendent stages. In the first stage, we apply the greedy
algorithm for the Maximum k Coverage Problem with
S1 as the input. The second stage uses greedy strategy
to solve the budgeted maximum coverage problem with
input S2 and budget B. The algorithm takes the union
of solutions obtained in two stages as the outputs.
Algorithm 1. Algorithm for BMCP-CC
Input: (G = (V,E), T,B, k,S1)
Output: k subsets from S1 and a sub-collection S ′ ⊂ S2
with cost at most B.

• Step 1 (Greedy Algorithm for Maximum k Cov-
erage). A1 ← ∅; Select subsets in S1 into A1 in a
greedy manner, i.e., first find a subset S ∈ S1 which
covers nodes with maximum total weight, then at
each round, pick a subset in the remaining subsets
in S1 which covers the uncovered nodes in V with
maximum total weight, until there are k subsets
selected in A1. Let A1 = {S1, S2, · · · , Sk} be the
collection of selected subsets in this step.

• Step 2 (Greedy Algorithm for the Budgeted Max-
imum Coverage Problem). Apply the (1 − 1/e)-
approximation algorithm in [23] for the budgeted
maximum coverage problem over BMCP-CC with
k = 0 (which means we have no fully controllable
mobile nodes. Under this condition, BMCP-CC be-
comes a traditional budgeted maximum coverage
problem). Suppose after running this algorithm, we
obtain A2 = {Ŝ1, Ŝ2, · · · , Ŝp}, for some p ≤ l.

• Step 3. Let A = A1 ∪ A2, output A.
The main consideration is how to efficiently select

subsets from S1 such that the greedy strategy works.
Next, we show Step 1 can be done in polynomial time,
by using dynamic programming. We remark, however,
that finding the longest paths in general graphs is NP-
hard.
Step 1(a). Finding the longest directed path in Γ (starting
from a node in t = 0 and ending at a node in t = T ).
Input: (G = (V,E), w, T, )
Output: the longest path staring from t = 0 and ending
at t = T .

(i) Transform Γ into an edge-weighted graph as fol-
lows: Let eij = (vi, vj) be a directed edge. Then
w(eij) = w(i) + w(j)/2 if i = 0 and j ̸= T ;
w(eij) = (w(i) + w(j))/2, if 1 ≤ i, j ≤ T − 1;
w(eij) = w(i)/2 + w(j), if i ̸= 0 and j = T ; and
w(eij) = w(i) + w(j) if i = 0 and j = T = 1. In
this way, we induce the graph from Γ such that

the weight of each edge in the induced graph is
the sum of the half of the weights of the two end-
points of the corresponding edge in Γ. In this way,
we can transform a problem on a node weighted
graph into another problem on an edge-weighted
graph.

(ii) (Dynamic Programming) In the (node weighted)
temporal graph, the sum of nodes on the path from
a node (could be static or mobile) in t = 0 to another
node in t = T represents its coverage. After the
temporal graph is changed into the edge-weighted
graph, the sum of edge weight of the same path
on the induced graph is equivalent to the sum
of the node weights on the path in the temporal
graph. As a result, for each node in t = 0, the path
with maximum edge weight (or mathematically
equivalent to the longest path) to another node
t = T in the induced graph is the best trajectory
for the node. Therefore, we shall find the longest
path between any pair of nodes starting from time
t = 0 and ending at time t = T . First, define
the outgoing neighbors of a node v in Γ to be
Nout(v) = {u|(v, u) ∈ E(Γ)} and the incoming
neighbors of v to be Nin(v) = {u|(u, v) ∈ E(Γ)}.
Let dist(v0i , v

j
k) be the distance of the longest path

between v0i and vjk. Then dist(v0i , v
0
k) = 0, ∀i, k =

1, 2, · · · , n. Generally,

dist(v0i , v
j
k) = max

r∈Nin(v
j
k)
{dist(v0i , r) + w(r, vjk)},

for i, k = 1, 2, · · · , n and j = 1, · · · , T . Based on
above recursive relation, we can find all the longest
paths from v0i to any node vTk at time t = T .

(iii) After computing all the longest distance between
v0i and vTj for any i, j = 1, 2, · · · , n. We can choose
among them the longest paths from a node in t = 0
to a node in t = T .

Step 1(b). Procedure(Γ, T,B, k)
Input: (Γ, T, B, k)
Output: k subsets in S1.

(i) In the edge weighted graph Γ, find the first longest
path, say P1 = v0i1v

1
i2
· · · vTin ;

(ii) Reset the node weights of P1 to be zero in graph Γ,
then reconstruct the edge weight of Γ according to
the rule in Step 1(a). Find the longest path, say P2,
in Γ with new edge weights, by using Step 1(a);

(iii) Repeat the above process until k paths have been
selected.

Now we have the following theorems.

Theorem 1. Algorithm 1 runs in polynomial time.

Proof. We show that both Step 1 and Step 2 in Algorithm
1 can be done in polynomial time.

First, let us estimate the time complexity of Step 1 (a),
which consists of two sub-steps (i),(ii) and (iii). Clearly,
the weight re-assignment process (i) can be done in
O(|E(Γ)|) = O(n2T ), where n is the number of nodes.
Sub-step (ii) is a standard dynamic programming which
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is used to compute the longest paths in graph Γ with
varied edge weights. For each fixed i = 1, 2, · · · , n, we
maintain a table of size at most n × T in which the
distances computed so far have been recorded. For each
1 ≤ j ≤ n, dist(v0i , v

k
j ) can be computed within time

O(|vin(vkj )| = O(n). So the k-th column of the table can
be computed within n × |vin(vkj )| = O(n2). It follows
that for each i, the table can be completed in O(n2)T .
Therefore, in (iii), all pairs of distances between v0i and
vTk can be computed in O(n3T ), for i, k = 1, 2, · · · , n. So
the total complexity of Step 1 is O(kn3T ).

Now we show Step 2 can also be done in polynomial
time. Note that each subset in S2 represents a trajectory
of a stationary (and mobile) RSU. Let N be the total
number of trajectories of mobile RSUs available. Then
the number of subsets in S2 is bounded by n+N . Thus,
according to the polynomial time (1− 1

e )-approximation
algorithm in [23], the running time of Step 2 is bounded
by a polynomial in n and N .

Theorem 2. Algorithm 1 is a 1
2 (1 −

1
e )-approximation for

BMCP-CC, which is guaranteed to produce a solution at least
1
2 (1−

1
e ) times the optimal solution.

Proof. Let A = A1 ∪ A2 = {S1, S2, · · · , Sk} ∪
{Ŝ1, Ŝ2, · · · , Ŝp} be the solution of BMCP-CC obtained
by Algorithm 1. Let A∗ = A∗

1 ∪ A∗
2 = {S∗

1 , S
∗
2 , · · · , S∗

k} ∪
{Ŝ∗

1 , Ŝ
∗
2 , · · · , Ŝ∗

q } be an optimal solution of BMCP-CC.
Let OPT1 be the cost of an optimal solution of the
Maximum Coverage Problem by selecting k subsets from
S1, and let OPT2 be the cost of an optimal solution of the
Budgeted Maximum Coverage Problem by only selecting
some subsets from S2 with total costs at most B. Then
it follows from [22] and [23] respectively that

w(A1) = w(S1 ∪ S2 ∪ · · · ∪ Sk) ≥ (1− 1/e)OPT1, (1)

w(A2) = w(Ŝ1 ∪ Ŝ2 ∪ · · · ∪ Ŝp) ≥ (1− 1/e)OPT2. (2)

Note w(A1∪A2) ≥ max(w(A1), w(A2)) ≥ w(A1)+w(A2)
2 .

It follows that

w(A1 ∪ A2) ≥ w(A1) + w(A2)

2

≥ 1

2
(1− 1/e)(OPT1 +OPT2)

≥ 1

2
(1− 1/e)(w(A∗

1) + w(A∗
2))

≥ 1

2
(1− 1/e)w(A∗

1 ∪ A∗
2)

=
1

2
(1− 1/e)w(A∗),

where w(A∗
1) = w(S∗

1∪S∗
2∪· · ·∪S∗

k) ≤ OPT1 and w(A∗
2) =

w(Ŝ∗
1 ∪ Ŝ∗

2 ∪ · · · ∪ Ŝ∗
q ) ≤ OPT2 follow from the fact that

OPT1 and OPT2 are optimal solutions, respectively. This
completes the proof.

By the theorem, the performance ratio of our algorithm
is 1

2 (1−1/e). Similar to [23], as our problem without the
fully controllable mobile node and the budget constraint

(a) Initial Graph

(b) This figure illustrates an example
output of our algorithm. The 10 distinct
red lines represents the trajectories of
the RSUes on the buses, the 7 blue lines
represents the trajectories of the fully
controllable RSUes, and the 2 green
circles represents the static RSUes. The
overall coverage of 0.48 is achieved.

Fig. 6: An output of our algorithm under a small budget
of 330 with the deployment cost 10, 10, and 30 for each of
static, mobile, and fully controllable RSUs, respectively.
The time frame considered is T = 24 hours, with
increments of t = 1 minute.

(or with a huge budget) is essentially a maximum cover-
age problem, it is not possible to approximate no better
than (1 − 1/e) [35]. As a result, our algorithm achieves
at least half of the best possible.

6 SIMULATION RESULT AND ANALYSIS

In this section, we evaluate the performance of the
proposed algorithm through a simulation.

6.1 General Simulation Setting

To construct the map on which our algorithm will feed
on, we first obtain a map data from Open Street Map
database [1], filter it using the Osmfilter command line
tool [1], and produce a simplified map which only
includes primary roads from the original map, e.g.
Fig. 6(a). Once the simplified graph is obtained (shown
in Fig. 6(a)), we applied the grid space on the map (with
r = 280 ×

√
2 meters in Fig. 1(b), where the size of the

whole map is 283,360 square meters and produce an
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Fig. 7: The NSTC achieved by our algorithm changes
over budget.

abstract graph (e.g. Fig. 1(d)) with 13,046 nodes. This
means that for a vehicle to move from one grid square to
another grid square, its speed should be around 35mph,
which is a setting as a car in a big metropolitan area.

Public transportation routes are computed using infor-
mation from the Metropolitan Transportation Commis-
sion (MTC) of San Francisco where data on routes, route
times, and stops are available [2]. The routes are incor-
porated into the map with the aid of an open traffic sim-
ulation suite known as the Simulation of Urban Mobility
(SUMO) [3]. Lastly, the weight assigned to each node is
calculated using a reference of the citys traffic density
distribution by the San Francisco County Transportation
Authority [4]. The simulation code was coded using the
C++ language (Visual studio 2015) on a Lenovo U310
personal computer (3rd Generation Intel Core i5-3317U
(1.70GHz, 3MB), 4GB DDR3 RAM, Samsung 850 EVO
500GB, SATA III Internal SSD, Windows 10 Operating
System), reading in xml files outputted by SUMO as the
graph and routes of the mobile RSUs.

Under the settings, we run the algorithm and deter-
mine how many RSUs on static locations, on public
transportation, and on fully controllable mobile nodes
we need, respectively, to maximize the total normalized
spatio-temporal coverage (NSTC). While computing the
optimal numbers, at the same time, the algorithm also
determines which public transportation should be se-
lected and what the trajectory of each fully controllable
mobile node with an RSU should be. Once the output
comes out, each RSU is used during the period and the
NSTC is computed. Note that during the rest of this sec-
tion, we use hundred dollars as the unit for the budget
and cost. The time frame considered is T = 24 hours,
with increments of t = 1 minute. Fig. 6(b) illustrates
an output of our algorithm under a certain parameter
setting.

6.2 Performance of Proposed Algorithm using Real
Data

In this section, we evaluate the performance of the
proposed algorithm with respect to the budget increase.
We consider the deployment cost 10, 10, and 30 for each

Fig. 8: The change of the normalized spaito-coverage
achieved by our algorithm over a time span of 24 hours
is given.

Fig. 9: NSTC change over cost.

of static, mobile, and fully controllable RSUs, respec-
tively. Fig. 7 illustrates the change in NSTC as the bud-
get increases. The rise in NSTC becomes less apparent
with each augmentation of the budget, thus following
a logarithmic curve. As shown in the figure, a budget
of 4000 yields approximately the same results as that if
the budget were 5000. The lack of a stark difference in
spatio-temproal coverage would make 4000 the better
choice. Once the map is fully covered, adding onto the
budget will bring no added benefit and NSTC reaches
at 1.

Fig. 8 shows the change of normalized spatio-coverage
over time 8 under a small budget of 330. The fluctua-
tions in normalized spatio-coverage are primarily due
to mobile RSUs traveling to higher or lower weighted
areas and routes not being continually offered at all
times. In our simulation, the hours from 2 A.M to 4
A.M have the lowest normalized spatio-coverage since
most mobile routes are not offered at that time. With a
peak normalized spatio-coverage of 0.0391 and a low of
0.0288, our solution has a satisfactory level of stability
with a range of 0.0103 and a mean of 0.0335. Higher
stability could be achieved if a larger number of static
RSUs are selected or fully controllable RSUs such that
routes are continually offered.

Fig. 9 depicts the effects an increasing cost of deploy-
ing of an RSU type has on the overall NSTC given an
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initial condition. Such a condition is a budget of 120,
cost of deploying a static and mobile RSU being 10,
and cost of a fully controllable RSU being 30. Since the
fully controllable RSUs provide much added coverage,
lowering the cost of deployment will increase the num-
ber of controllable RSUs selected, and thus increase the
overall coverage of the solution under the same budget.
This means that despite of the higher deployment cost,
if we adequately operate the fully controllable RSUs,
the NSTC per cost achieved by them can exceed that of
the other two RSU deployment approaches. The cost of
deploying a static and mobile RSU are initially relatively
low in comparison. Thus increasing their cost will make
it so less of them can be deployed. Static RSUs were not
initially selected in great numbers due to the selection of
mobile RSUs, so increasing their cost will not negatively
affect the NSTC significantly. Mobile RSUs, on the other
hand, were the primary selection due to their great
coverage and low cost. Thus increasing the cost of mobile
RSUs leads the solution to depend primarily on static
RSUs and the costly controllable RSUs. As shown in the
figure, this decreases the overall NSTC greatly.
6.3 Performance of Proposed Algorithm against
Base Strategies

In the previous section, we conducted a simulation to
evaluate the performance of the proposed algorithm,
which aims to identify a balance of three different RSU
deployment strategies under a limited budget to max-
imize the overall NSTC, based on real world topology
and traffic data. On the other hand, from the simulation,
it remains unclear which deployment strategies is more
influential. To fill this void, in this section, we apply
each of the deployment strategies as base strategies and
compare them with the proposed algorithm.

Fig. 10(a) illustrates our solution given a budget of 120,
cost to deploy static and mobile RSUs being 10, and fully
controllable RSUs being 30, which achieved an NSTC of
0.37. In comparison, deploying only mobile RSUs pre-
formed below our solution with an NSTC of 0.30, despite
mobile RSUs being relatively inexpensive (Fig. 10(b)).
Fig. 10(c) and Fig. 10(d) further show that with the
given budget and costs, a single deployment strategy
is not optimal, but rather, it is a blend of strategies that
provides for a better solution. Fig. 10(c) deployed only
static RSUs with an NSTC of 0.02, showing that static
RSUs provide the least influence in weighted coverage,
although as described in Section 6.2, they do provide the
highest stability in NSTC. Fig. 10(d) to Fig. 10(f) vary
the cost of fully controllable RSUs to better illustrate the
influence this deployment strategy has on the overall
solution. With the cost of fully controllable RSUs being as
high as they are in Fig. 10(d), very few can be deployed
which leads to an NSTC of 0.20. Lowering the cost to 20,
a higher NSTC of 0.24 is achieved as more RSUs are able
to be deployed under the given budget. With a cost of
10, equaling that of mobile and static RSU costs, fully
controllable RSUs outperformed all other deployment

TABLE 1: NSTC outputs when a probability of traffic
delay is introduced. Parameters include a budget of
330, deployment costs of 10, 10, and 30 for each
static, mobile and fully controllable RSU deployment
strategy respectively.

Probability of Traffic Delay (p) NSTC
0.00 0.48
0.10 0.50
0.20 0.55
0.30 0.57
0.40 0.59
0.50 0.60
0.60 0.55
0.70 0.49
0.80 0.35
0.90 0.31
1.00 0.29

strategies with an NSTC of 0.48. This shows that fully
controllable RSUs bring the most weighted benefit to the
solution and thus are the most influential. This is not to
disregard the need for other deployment strategies since
mobile and static RSUs are reasonably cheaper to deploy,
a combination of these strategies leads to the highest
coverage given reasonable costs.

6.4 Impact of Traffic Delay on The Performance of
The Proposed Algorithm

So far, we have been studying the problem of our interest
under the assumption that the traffic is very light and
there exists no traffic jam. While there are many places
in which this assumption holds, this may not be the case
in the well-known big cities. In this section, we conduct
another set of simulation and see how our algorithm
works when the area of interest is suffering from zero
to moderate traffic jams. In detail, we first apply our
algorithm and obtain an output, which determines how
RSUs should be deployed on static positions and mobile
public transportation, as well as the route of each fully
controllable RSU. Then, we adopt the probability of
traffic delay p in a way that a public transportation or a
fully controllable RSU can move from the current node
to another neighboring node with the inverse weighted
probability q = (1 − p ∗ w), where w is the normalized
weight (importance) of the current node. Remember that
w is higher if w has more traffics. As a result, q becomes
higher if the area (represented by the current node) has
less chance to suffer from a traffic jam.

Table 1 shows our simulation result and from which
we can observe that the performance of our algorithm
improves when the traffic increases from zero to moder-
ate. This is primarily because as traffic jam increases,
an mobile RSU (on a bus or on a fully controllable
node) will have a better chance to reside in a node with
high weight for a longer period of time. As a result,
the algorithm achieves a higher NSTC as the degree
of traffic jam increases up to some moderate level. On
the other hand, when the traffic jam becomes really
serious, the all of the mobile RSUs (both controllable
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(a) Our Solution with NSTC of 0.37 (b) Mobile RSUs deployed with
NSTC of 0.30

(c) Static RSUs deployed with NSTC
of 0.02

(d) Fully controllable RSUs deployed
with cost of 30 and NSTC of 0.20

(e) Fully controllable RSUs deployed
with cost of 20 and NSTC of 0.24

(f) Fully controllable RSUs deployed
with cost of 10 and NSTC of 0.48

Fig. 10: Our solution is compared with different deployment strategies in order to better realize with strategy has
the most influence in the overall solution.

and uncontrollable) suffer and behave almost like static
RSUs. As the cost to deploy fully controllable RSUs is
higher than the static, our algorithm actually pays higher
cost for almost static RSUs. As a result, its performance
goes down.

From this simulation, we can conclude that our algo-
rithm works well under zero to moderate traffic situation
even it does not consider the impact of the traffic jam
explicitly. At the same time, we can learn that under
very heavy traffic situation, one may generate a better
comprehensive RSU deployment algorithm by exploiting
very detail traffic data. However, as this is out of the
scope of this work, we leave this part as our future work.

7 CONCLUSION

In this paper, we propose a new strategy to deploy
RSUs under the limited budget. Given that the cost-
effectiveness of VANET is not sufficiently recognized by
general public yet, we believe massive deployment of
RSUs all over the wide metropolitan area, which will
incur high cost, is difficult in the near future. This paper
is intended to provide a new way to test the viability of
VANET. In particular, we consider three different RSU
deployment strategies, static, mobile but not controllable,
and fully controllable, each of which will cost differently.
Then, we propose a new optimization problem to best
deploy RSUs under a limited budget, and propose a
new approximation algorithm whose performance ratio

is at least half of the best possible. As a future work,
we plan to investigate the tightness of our algorithm
and further investigate the existence of approximation
algorithms with better performance ratio to close the
gap. We are also interested in introducing a new model
and corresponding strategy to deal with heavy traffic.
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