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A B S T R A C T

This paper proposes a combined model of Multi-Objective Dynamic Economic and Emission Dispatch (MODEED)
with Demand Side Management (DSM) to investigate the benefits of DSM on generation side. This model considers a
day ahead based load shifting DSM approach. In order to analyse the effect of DSM on the generation side, the
objectives of dynamic economic and emission dispatch problem were minimized individually and simultaneously
with and without DSM. A test system with six thermal generating units was considered for the validation of the
proposed method. In this paper, authors used Multi-Objective Particle Swarm Optimization (MOPSO) algorithm to
minimize the objectives of MODEED problem simultaneously. The simulation results of the MOPSO algorithm have
also been compared with the non-dominated sorting genetic algorithm (NSGA-II). It is clear from the results that the
proposed combined model is able to give benefits to both utilities and generating companies.

1. Introduction

Nowadays the electric power markets are showing more attention to
the demand side management programs because of the exciting benefits
such as system peak reduction, financial savings to the utilities and con-
sumers, efficient utilization of network infrastructure, proper load profile
improvement. DSM helps not only utilities and consumers but also pro-
vides impressive benefits to generating companies too [1,2]. DSM im-
plementation in the existing electric power grids requires the latest in-
formation and communication technologies. By using these technologies, a
two way communication is established between the power supplier and
consumers. Central energy consumption controller and smart meters are
the main devices for their dynamic communication [3,4].

Dynamic pricing policies like Time of Use (ToU) pricing, critical
peak pricing, real time pricing, off peak low pricing and day ahead
pricing are the smart pricing tools for the process of DSM im-
plementation [5–7]. Incentive based DSM which involves more parti-
cipants reduces the system peak demand and improves the load profile
shape [8]. According to literature, the three DSM categories such as
environmentally driven type, network driven type and market driven
type are generally used. The environmental driven DSM mainly focuses
on the social and environmental standards like reduction of greenhouse
gas emission. The network driven type aims in maintaining the relia-
bility of the system and the market driven type targets the financial
savings of the utilities and consumers [9–11]. In [12], a day-ahead
based load shifting DSM technique was implemented in a smart grid

environment with the help of a heuristic algorithm. The real time pri-
cing based energy control strategy was developed in [13] to manage the
peak load demand. An energy management algorithm was proposed in
[14] to achieve the pricing strategies and operating states of consumers.

The dynamic economic and emission dispatch (DEED) is a crucial
optimization problem in the power system operation and control. DEED
problem gives the on line generating schedules over a certain predicted
load demand period by minimizing cost and emission simultaneously.
The generation cost function with valve point loading effect is modelled
as a non convex function which has multiple local minima. This dy-
namic optimization problem has to satisfy many constraints like
equality, inequality and ramp-rate limits throughout the dispatch
period [15–17]. DSM problem which handles the demand side is also
considered as an optimization problem. DSM program should be im-
plemented with a large number of controllable devices and each device
has different consumption patterns. So, the evolutionary algorithms are
preferably used to handle the such type of complexities [12].

In literature, many meta heuristic based optimization techniques have
been proposed to solve the Dynamic Economic Dispatch (DED) problem.
For example, the Enhanced Genetic Algorithm (E-GA) and Enhanced
Differential Evolutionary (E-DE) algorithms were proposed for DED pro-
blems in [18]. In [19], the combination of GA and DE was used to solve
the DED problem with different generating unit combinations like hydro-
thermal, solar-thermal and wind-thermal. Enhanced PSO based DEED
problem with wind uncertainties was proposed in [20]. Nowadays, the
focus is mainly moving towards the combination of DED and DSM
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optimization. The impacts of Demand Response (DR) program on the Unit
Commitment (UC) problem were investigated in [21]. In [22], the UC
problem with the economic and environment DR program was proposed.
In [23], a GA based DED and DSM combination was proposed for an ef-
ficient energy management in a micro grid environment. A novel model of
DED problem integrated with demand response in regional grids was
proposed in [24]. In [25], a MODEED problem with game theory based DR
model was presented. The DEED problem and DSM combination model
incorporating high wind penetration was proposed in [26,27]. The main
goal of DEED and DSM combination models proposed in the literature was
to show the impacts of DSM on the supply side. From the overall literature,
the DED problem is incorporated with either incentive based DR program
or ToU based DSM method. In the incentive based DR program, the power
supplier can control the customers’ loads directly by providing impressive
incentives. The ToU based DSM method introduces different prices for all
individual time slots which make consumers move their loads to low
pricing slots. In this paper, authors proposed a model which uses MODEED
problem and a day-ahead based load shifting DSM program for residential
loads. Compared to other DED and DR combinations in the literature, all
necessary DSM constraints for the residential loads were considered in this
paper without any load curtailment. In this proposed model, authors also
considered the consumers’ comfort by providing different delay times for
all controllable loads based on their daily life style. The proposed com-
bined model is mainly focusing on the benefits of DSM program towards
the generation side with different residential participation levels. To the
best of authors’ knowledge, the proposed model has not been reported in
the literature. The proposed combined model can be solved effectively by
the evolutionary algorithms. In this paper, the proposed model uses non
dominated sorting based MOPSO [28,29] algorithm with a fuzzy optimi-
zation tool for minimizing MODEED problem simultaneously and single
objective PSO algorithm for minimizing the DSM technique. For a com-
parison purpose, the objectives of MODEED problem were minimized
using NSGA-II and the results of both MOPSO and NSGA-II were also
compared.

The organization of the paper is as follows. Section 2 explains the
problem formulation and the DSM approach. The proposed combined
model is explained in the Section 3. Section 4 explains the test system
considered in this paper with different assumptions. The simulation
results and their comparison are given in the Section 5. Section 6 gives
the conclusion of the paper.

2. Problem formulation

2.1. Multi-objective dynamic economic and emission dispatch (MODEED)
problem

The dynamic economic and emission dispatch is the most important
optimization problem in the power system operation and control for

satisfying the economic and social aspects. In this DEED problem, the
total fuel cost and emission are the two different conflicting objectives
which are to be minimized simultaneously. The mathematical for-
mulation of the objective functions are shown as follows [2,29,30]
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where F1 and F2 are the total fuel cost and emission of G number of
generating units over a τ total number of dispatch intervals. C P( )g t g t, ,
and E P( )g t g t, , are the fuel cost and emission functions respectively during
the time interval t and Pg t, is the gth generating unit power output at the
tth time interval. The total amount of emissions such as NOx and SOx are
modelled as a sum of quadratic and exponential terms in the emission
function. The fuel cost function with valve point effect is modelled as a
sum of quadratic and sinusoidal terms. The mathematical formulation
of these functions are given in Eqs. (3) and (4).
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where a b c, ,g g g are the gth generating unit fuel cost coefficients and
d e,g g are the fuel cost coefficients due to the valve point loading effect.
γ β,g g and αg are the gth generating unit emission coefficients and ξ λ,g g
are the emission coefficients due to the valve point loading effect.

2.1.1. Constraints
In DEED optimization problem, the objective functions are sub-

jected to the following equality and inequality constraints:

1. Power balance constraint:
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where PL t, and PD t, are the tth time interval total transmission power
losses and total load demand power respectively. PL t, can be calcu-
lated by using B-loss coefficient method. The general mathematical
form for the loss calculation is as follows
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where B g j( , ) is the power transmission network loss coefficient
value. Pg t, and Pj t, are the tth time interval gth and jth generating unit

Nomenclature

C P( )g t g t, , fuel cost function during the time interval t
E P( )g t g t, , emission function during the time interval t
Pg t, power output of gth generating unit at the tth time interval
G total number of generating units
τ total number of dispatch intervals
a b c, ,g g g fuel cost coefficients of gth generating unit
d e,g g coefficients for the valve point loading effect of gth gen-

erating unit fuel cost function
γ β α, ,g g g emission coefficients of gth generating unit
ξ λ,g g coefficients for the valve point loading effect of gth gen-

erating unit emission function
PD t, total load demand power at tth time interval
PL t, total transmission power losses at tth time interval

Pg
min minimum real power output of gth generating unit

Pg
max maximum real power output of gth generating unit

URg ramp up limit of gth generating unit
DRg ramp down limit of gth generating unit
ψ t( ) load demand value after DSM scheduling at the time in-

stant t
ζ t( ) targeted load demand value at the time instant t

tFL( ) forecasted load demand value at time instant t
tCL( ) connected load demand at time interval t
tDL( ) disconnected load demand at time interval t

N total types of controllable appliances
Xlit number of l type controllable appliances which are shifted

from i to t time slot
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real power outputs respectively.
2. Generation power limits:

⩽ ⩽ ∀ ∈ ⋯P P P g G, {1,2, , }.g g t g
min

,
max

(7)

where Pg
min and Pg

max are the gth generating unit minimum and
maximum real power operating values, respectively.

3. Ramp-rate limits of generating units:
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So, Eq. (8) can be rewritten as
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where URg and DRg are the up and down ramp rate limits of gth

generating unit respectively. The ramp rate limits are the dynamic
constraints in the economic dispatch problem. Practical thermal
generating units take some time to increase or decrease their power
outputs. These physical limitations of thermal units can be re-
presented with the constrained generating capabilities [31].

2.2. Demand side management (DSM) approach

DSM methods are mainly required for the utilities to increase their
financial savings and improve the system load profile shape. Usually the
utility companies introduce attractive type DSM methods to encourage
more number of consumers’ participation. Due to this, the utility
companies can easily succeed in achieving their goals. From the DSM
literature, peak clipping, valley filling, load shifting, strategic con-
servation, strategic load growth and flexible load shape are the six basic
load shaping methods. The first three methods are the basic level types
and remaining three methods are advanced level types which control
the overall load demand shape by either curtailing or extending with
the help of system planning and operation [27,12]. The load shifting
method is an aggregate of peak clipping and valley filling which is the
most preferable method amongst all load management techniques. The
load shifting method can be implemented with the help of controllable
loads at the consumer side. In the load shifting method, the controllable
loads are shifted from peak slots to off peak slots without changing any
energy consumption. The six basic DSM load shape methods are shown
in Fig. 1.

Day ahead based load shifting DSM technique [12] is used in this
paper for investigating the effects of it on the generation side. In this
paper the utility energy bill minimization is considered as the main
objective for the DSM implementation. For that purpose, the forecast
load demand curve is estimated according to the previous data. In order
to do that the smart prices are assigned to each individual load hours
and the utility creates a target load demand curve which is inversely
proportional to individual slot prices. One day before, the central DSM
controller receives the target load curve as an input entry and calculates
the control actions of desired load consumption. According to the re-
sults, these control actions are executed in real time period. During real
time operation, when a consumer sends a request for the device con-
nection through an appliance ON button, the DSM controller will give
either the connection permission or a new connection time. The whole
real time process is effectively done by using two way communication
and information technologies.

The wholesale electricity market prices of each individual slots are
assigned by using ToU tariff method which is one of the smart pricing
tool methods. In ToU tariff method the critical peak pricing and low
price for off peak periods are considered [32,33]. Due to these pricing
tools, the DSM participants will prefer to shift their devices in off peak
periods. Since DSM has multiple controllable loads with different power
consumption patterns, evolutionary algorithms are found to be suitable
for minimizing this problem. In this paper the DSM objective is opti-
mized by PSO algorithm to find a near global optimal solution.

2.3. Utility energy bill objective function

The main aim of the utility energy bill objective is to minimize the
distance between the forecasted and targeted load demand curves with
the help of controllable loads.The objective function is mathematically
formulated as follows [12]

∑= −
=

F ψ t ζ tmin ( ( ) ( )) ,
t

τ

1

2

(11)

where ζ t( ) and ψ t( ) are the targeted load demand value and load de-
mand value after DSM scheduling at the time instant t respectively. τ is
the total number of time instants available in the day load demand
profile.

Fig. 1. DSM load shape methods.
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2.4. Load shifting calculation and constraints

ψ t( ) can be calculated as follows

= + −ψ t t t t( ) FL( ) CL( ) DL( ), (12)

where tFL( ) is the forecasted load demand value at time instant t t,CL( )
and tDL( ) are the connected and disconnected load demand values

respectively during the load shifting operation at time interval t. These
are formulated as follows:
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where Xlit is the number of l type controllable appliances which are
shifted from i to t time slot, N is the total types of controllable appli-
ances, P l1 and − +P t k l( 1) are the load power consumptions due to l type
shifted device at 1 and − +t k( 1) time steps respectively. Here − +t k( 1)
is the l type device power consumption time step at time instant t which
is shifted from j to k.

∑ ∑

∑ ∑ ∑

=

+

= +

+

=

=

−

= +

+

=
− +

t X P

X P

DL( ) .

· .

q t

t m

l

N

ltq l

j

t

k j

j m

l

N

ljk t j l

1 1
1

1

1

1 1
( 1)

(14)

where Xltq is the number of l type controllable appliances which are
delayed from t to q time slot and also have the maximum admissible m
delay steps for the each controllable appliance.

For the load shifting process, the following conditions must be
considered for proper load management. The number of shifted appli-
ances at any time instant t must be non negative as shown in Eq. (15).
The number of total shifted devices away from the time instant t cannot
exceed the available controllable appliances at the particular time slot
as given in Eq. (16).

> ∀X l i t0 , , , .lit (15)

∑ ⩽
=

X iCtrd( ).
t

τ

lit
1 (16)

where iCtrd( ) is the total number of l type controllable appliances at
time instant i. All other conditions are given as follows:

= ∀ − + >− +P t k D0 , ( 1) .t k l( 1) (17)

= ∀ >X i t0 , .lit (18)

= ∀ − >X t i m0 , ( ) .lit (19)

where D is the total time duration of l type appliance power con-
sumption. Eq. (18) shows that the DSM method has only delayed
characteristic and not brought forward type. Eq. (19) represents the
maximum allowable delay m for all appliances.

3. MODEED optimization algorithm approach

In this paper, the MODEED problem is implemented over a 24 h
dispatch period by using non dominated sorting based MOPSO algo-
rithm [29]. PSO is a population based evolutionary algorithm. Each
population in this algorithm consists of controllable variables which
move in the search space with a proper velocity for attaining the

Fig. 2. Simplified flow chart of combined MODEED and DSM model.

Table 1
Six thermal generating units cost and emission coefficients data.

Power limits Fuel cost coefficients Emission coefficients Ramp rate limits

Pg
min (MW) Pg

max (MW) ag bg cg dg eg γg βg αg ξg λg URg (MW/h) DRg (MW/h)

50 200 0.00375 2 0 18 0.037 0.0649 −0.05554 0.04091 0.0002 2.857 50 50
20 80 0.0175 1.75 0 16 0.038 0.05638 −0.06047 0.02543 0.0005 3.333 16 16
15 50 0.0625 1 0 14 0.040 0.04586 −0.05094 0.04258 0.000001 8 10 10
10 35 0.00834 3.25 0 12 0.045 0.0338 −0.0355 0.05326 0.002 2 7 7
10 30 0.025 3 0 13 0.042 0.04586 −0.05094 0.04258 0.000001 8 6 6
12 40 0.025 3 0 13.5 0.041 0.05151 −0.05555 0.06131 0.000001 6.667 8 8
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optimal objective value. In this paper, the DSM technique is optimized
first to get a modified load demand profile. After this step, the control
variables of the MODEED problem are randomly generated between
their minimum and maximum limits. After the initialization of control
variables, their positions and velocities are updated by the following
equations.

= ∗ + ∗ ∗ −

+ ∗ ∗ −

+ ω C χ

C χ

ϑ ϑ rand() (Pbest )

rand() (Gbest ),
i
k k

i
k

i
k

i
k

k
i
k

1
1 1

2 2 (20)

= ++ +χ χ ϑ .i
k

i
k

i
k1 1 (21)

where +ϑi
k 1 and +χi

k 1 are the ith particle velocity and position vectors at
the +k( 1)th iteration respectively. C C,1 2 and ωk are parameters of PSO
algorithm. All PSO parameters were modified and updated dynamically
in this paper. The modified parameters and updating steps are adopted
from the reference [29].

In this paper, the multi-objective optimization problem was handled
by the non dominated sorting approach with a fuzzy optimization tool.
The membership and decision making concept of the fuzzy optimization
tool are shown as follows.

Table 2
Six unit test system 24 h load demand profile.

Time (h) 1 2 3 4 5 6 7 8 9 10 11 12

Load (MW) 166 196 229 267 283.4 272 246 213 192 161 147 160
Time (h) 13 14 15 16 17 18 19 20 21 22 23 24

Load (MW) 170 185 208 232 246 241 236 225 204 182 161 131

Fig. 3. Load demand curves after DSM with different participation levels.

Fig. 4. Utility energy bill savings and peak demand reduction with the different levels of DSM participation.

Table 3
Dynamic economic dispatch with different DSM participation levels.

Participation level Without DSM DSM
with 5%

DSM
with 10%

DSM
with 15%

DSM with
20%

Fuel cost ($/day) 13,555 13,515 13,475 13,470 13,461
Emission (tons/day) 7.503 7.356 7.311 7.292 7.286

Fig. 5. Convergence characteristics of dynamic economic dispatch with different DSM
participation levels.
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where Fk
min and Fk

max are the kth objective function F X( )k ’s minimum
and maximum values respectively, μ X( )k is the kth objective function
membership value. Nμj is the jth non dominated solution’s normalized
membership function value, M is the total number of non dominated
solutions and ℓ is the total number of objective functions. The max-
imum Nμj value decides the multi objective problem final solution. The
flow chart of the proposed combined model is shown in Fig. 2. The
pseudo code of the proposed model is also given in Algorithm 1.

Algorithm 1. MOPSO optimization for the combined model of
MODEED problem and DSM program.

Require: Forecasted load, targeted load, all controllable device’s
data, DSM participation level, all generating units data and the
total number of dispatch intervals ( =τ 24).

Ensure: Assign the all PSO parameter values - ω C C, ,1 2, pop and
MaxIter
1: Initialize a random population to minimize DSM objective (Eq. (11))
2: While iter < MaxIter do
3: for Each population i do
4: Update velocity and positions by using Eqs. (20) and (21)
5: end for
6: Check all constraints (Eqs. (15)–(19)) and calculate the fitness

value of each population
7: Now update the Pbest and Gbest values
8: end while
9: Print the Gbest value of utility bill and load demand curve after
DSM

10: Use this final load demand data as an input for MODEED problem
11: while t < τ do
12: Initialize the tth hour random population for economic and
emission objectives (Eqs. (1) and (2))

13: Check all equality and inequality constraints (Eqs. (5)–(10)),
delete which are not satisfied and replace with the new satisfied
populations

14: Apply non dominated sorting approach to initial random
population and save those non dominated solutions in the
repository

15: Calculate the crowding distance and rank for each non
dominated solution

16: Select the Gbest value randomly from the top 10% of non
dominated repository

17: while iter < MaxIter do
18: Repeat the steps from 3 to 5
19: Add updated population to the saved non dominated

repository and apply non dominated sorting approach
20: Repeat the steps from 15 to 16
21: end while
22: Update generator’s minimum and maximum values by using

ramp rate limits and tth hour best generation values
23: end while
24: Apply fuzzy member ship function and decision making tools

(Eqs. (22) and (23))
25: Print the best compromised values and plot the Pareto optimal set.

Table 4
Dynamic emission dispatch with different DSM participation levels.

Participation Level Without DSM DSM
with 5%

DSM
with 10%

DSM
with 15%

DSM with
20%

Fuel cost ($/day) 15,959 15,978 15,986 15,994 15,983
Emission (tons/day) 4.938 4.913 4.895 4.884 4.877

Fig. 6. Convergence characteristics of dynamic emission dispatch with different DSM
participation levels.

Table 5
Dynamic economic and emission dispatch with the different DSM participation levels.

Participation Level Without DSM DSM
with 5%

DSM
with 10%

DSM
with 15%

DSM with
20%

Fuel cost ($/day) 14,404 14,341 14,312 14,229 14,167
Emission (tons/day) 5.774 5.745 5.720 5.705 5.656

Fig. 7. Pareto sets of MODEED problem with different DSM participation levels.
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4. Test system data

In this paper, a test system with six thermal generating units is
considered for all case studies. The generator’s fuel cost coefficients,
emission coefficients, ramp rate limits, 24 h forecasted load demand
profile and corresponding all other system data are taken from Refs.
[29,34,35] and also given in Tables 1 and 2. The transmission loss
coefficient matrix of six generating unit test system is given in Eq. (24).
Generally the load of any interconnected power system is a combina-
tion of residential, commercial and industrial sector loads [36]. Due to
this, authors considered 30% of the total energy demand as the re-
sidential load. The residential area has several controllable appliances
like dish washers, washing machine, kettle, ovens and other appliances
which can be easily managed in the load shifting process when com-
pared to commercial and industrial loads. Therefore, in this paper the
day ahead based load shifting DSM technique was applied to residential
loads only.

In the DSM implementation process, the four different participation
levels 5%, 10%, 15% and 20% of the total residential load demand were
considered. The utility’s wholesale electric market prices of each in-
dividual hour was assigned by ToU tariff. According to this, two dif-
ferent prices namely critical peak pricing and low off peak price, are
considered with the values of 10 $/MWh and 5 $/MWh respectively, for
the whole dispatch period. In this analysis, the power consumption of
all controllable appliances are assumed to be 2 kW with different power
consumption patterns. In this approach, the maximum delay steps of
each controllable devices were assigned according to the consumer’s
daily life style. For example, two or three maximum delay steps are
allowable for the high priority devices like kettle, oven and hair dryers
which are considered here. Similarly, twelve maximum delay steps
were considered for low priority devices like tumble dryer, iron and
vacuum cleaners.

=

⎛

⎝

⎜
⎜
⎜
⎜

− −
−

− − − −
− − −

−
−

⎞

⎠

⎟
⎟
⎟
⎟

× −B

2.2 1.1 0.1 0.1 0.1 0.4
1.1 1.6 0 0.1 0 0.3

0.1 0 2.4 1 1 0.7
0.1 0.1 1 1.9 0.7 0.4

0.1 0 1 0.7 1.6 0
0.4 0.3 0.7 0.4 0 2.6

10 per MW4

(24)

5. Simulation results and discussion

In this paper, the impacts of DSM on both utility and generating
companies were studied. Both DSM and DEED optimization problems
were implemented in MATLAB platform. In each optimization algo-
rithm, number of populations =NP 30 and number of iterations

=MaxIter 100 were considered. In order to find out the best solution, 30
different trials were made.

5.1. DSM effects on the utility side

The primary goal of the paper is to analyse the impacts of the DSM
implementation on the generation side. However, the impacts of DSM
on the utility side were considered too. In order to achieve this, the
DSM problem was implemented with the minimization of utility energy
bill as a main objective. Fig. 3 shows the forecasted load demand curve,
targeted load demand curve and load demand curves after the DSM
implementation with different residential participation levels. From the
load demand curves, it is clear that the better load demand profile was
achieved at higher participation levels. It was seen the DSM load curves
move towards the targeted load curve at higher participation levels. So,
the utility company has achieved the attractive benefits due to the
implementation of DSM which are shown in Fig. 4(a) and (b). Ac-
cording to the simulation results of this DSM program, the utility
company’s per day energy bill savings are $370, $741, $1101 and
$1479 respectively for the participation levels of 5%, 10%, 15% and
20% of the total residential load demand. Similarly, the system peak
load demand was also reduced to 12.48MW, 24.95MW, 37.44MW and
49.93MW respectively for the above participation levels.

5.2. DSM effects on the generation side

To study the impacts of DSM on the generation side, the three dif-
ferent case studies were considered with different DSM participation
levels. In case 1 and case 2, the dynamic economic dispatch and
emission dispatch problems were individually minimized along with
the DSM technique, respectively. Case 3 explains the proposed model of
MODEED with the DSM technique.

Table 6
Generator’s 24 h optimal power outputs with and without DSM integration.

Time slot MODEED without DSM MODEED with 20 % DSM

Pg1 Pg2 Pg3 Pg4 Pg5 Pg6 Pg1 Pg2 Pg3 Pg4 Pg5 Pg6

1 59.08 43.65 21.62 14.43 15.72 13.47 65.34 38.47 20.63 10.82 16.66 16.15
2 66.53 41.18 23.10 15.41 25.32 26.91 99.19 37.63 20.33 12.36 14.69 15.38
3 78.39 50.13 29.90 19.85 27.21 26.79 91.11 43.39 24.45 18.97 16.87 21.71
4 130.08 58.17 25.51 16.98 21.04 21.73 94.69 44.16 25.91 22.48 21.73 23.83
5 159.05 55.51 24.44 15.33 17.30 20.34 126.97 41.56 22.61 17.70 13.15 16.88
6 169.58 44.31 23.38 15.31 14.27 13.83 82.16 47.62 28.88 19.28 22.07 29.37
7 146.23 39.10 21.32 14.14 16.21 15.51 70.50 46.22 28.32 21.84 24.45 29.63
8 99.08 48.46 22.77 17.47 15.07 14.11 57.87 46.15 26.90 24.74 27.57 32.26
9 75.91 41.89 22.35 19.07 17.66 17.78 62.47 47.93 27.51 26.25 25.01 30.64
10 64.63 34.97 18.35 14.86 14.93 15.20 62.47 40.93 25.41 24.76 26.04 29.81
11 54.22 34.85 19.65 10.00 15.04 14.81 67.62 44.83 23.16 22.06 22.89 22.10
12 56.89 34.59 22.27 11.61 18.11 18.23 63.44 37.51 24.27 20.84 21.35 22.88
13 75.87 36.78 19.04 15.23 12.01 13.48 67.55 42.23 23.71 21.79 19.81 17.33
14 70.27 40.25 23.44 19.05 14.51 19.88 62.11 38.93 24.93 21.03 23.13 21.64
15 84.59 46.15 24.13 20.55 17.67 18.12 82.32 45.77 23.66 23.17 16.32 19.97
16 114.34 47.42 22.33 15.89 17.81 19.11 101.91 42.29 22.21 13.54 13.41 14.82
17 141.39 40.91 20.68 15.51 17.06 16.82 107.28 46.18 19.79 14.96 15.25 14.91
18 143.11 45.61 19.34 12.99 12.29 14.31 87.61 46.73 27.68 18.02 20.69 19.73
19 113.96 43.10 25.89 19.13 16.63 22.04 72.36 49.98 25.22 22.18 24.92 25.16
20 86.51 44.74 26.25 26.50 18.37 26.07 78.24 42.93 25.11 21.63 22.83 21.67
21 83.44 46.91 21.27 21.83 17.01 16.69 68.97 46.78 28.27 27.52 24.01 25.21
22 77.51 38.99 21.52 16.96 12.26 17.35 55.44 44.73 31.69 24.76 25.32 27.92
23 57.57 37.83 21.26 12.06 15.82 18.25 66.47 44.22 23.75 23.66 23.80 21.73
24 51.54 30.93 17.50 10.00 10.36 12.00 52.25 39.36 22.39 19.23 19.32 18.92
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5.2.1. Case 1: dynamic economic dispatch with DSM
In this case, the single objective dynamic economic dispatch pro-

blem with DSM was considered to study the impact of DSM in the fuel
cost alone. In order to study it in detail, four different participation

levels were considered in the DSM program. Both the dynamic eco-
nomic dispatch and DSM problems were minimized using PSO algo-
rithm. Table 3 shows the simulation results of dynamic economic dis-
patch problem with and without DSM. Fig. 5 shows the convergence
characteristics of DED problem with and without DSM. From the re-
sults, it is clear that the DSM technique helps the generating companies
reduce their fuel cost. Simulation results show that the generation fuel
cost value was minimized more at higher participation levels of DSM.
For example, DSM with a participation level of 20% there is a reduction
of 0.7% in the total day fuel cost against without DSM. The generation
companies can save $94 every day in their fuel cost due to the im-
plementation of DSM.

5.2.2. Case 2: dynamic emission dispatch with DSM
In this case, the single objective dynamic emission dispatch problem

with DSM was considered. The simulation results of dynamic emission
dispatch with and without DSM are shown in Table 4. Fig. 6 shows the
convergence characteristics of dynamic emission dispatch problem with
and without DSM. According to the results, it is clear that there is a
considerable reduction in emission level with DSM implementation. For
example, DSM with a participation level of 20% there is a reduction of
0.061 ton per day in the emission level against without DSM.

5.2.3. Case 3: dynamic economic and emission dispatch with DSM
In this case, the multi-objective dynamic economic and emission

(a) (b)

(c) (d)
Fig. 8. Comparison of MOPSO and NSGA-II for different DSM participation levels.

Table 7
Comparison of the best compromise results of MOPSO and NSGA-II techniques.

NSGA-II MOPSO

Optimization
technique

Best cost
($/day)

Best emission
(tons/day)

Best cost
($/day)

Best emission
(tons/day)

DSM with 5% 14,371 5.878 14,341 5.745
DSM with 10% 14,345 5.781 14,312 5.720
DSM with 15% 14,283 5.747 14,229 5.705
DSM with 20% 14,272 5.695 14,167 5.656

Table 8
Hyper volume comparison of MOPSO and NSGA-II techniques.

Participation Hyper volume indicator (IH)

Level NSGA-II MOPSO
DSM with 5% 0.8358 0.9006
DSM with 10% 0.8350 0.9143
DSM with 15% 0.8468 0.9026
DSM with 20% 0.8516 0.899
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problem with DSM was considered. The objectives of DEED problem
were simultaneously minimized using MOPSO. Table 5 shows simula-
tion results of MODEED problem with the implementation of different
DSM participation levels. Fig. 7 shows the different Pareto sets of
MODEED optimization problem with various DSM participation levels.
The best compromise values of fuel cost and emission were found using
the fuzzy membership approach. From the results, it is clear that the
proposed model is able to give the better solutions than the single ob-
jective case for the same participation levels in DSM. For example, the
generating companies can get per day fuel cost savings of $63, $92,
$175 and $237 respectively for the participation levels of 5%, 10%,
15% and 20% of the total residential load demand. At the same time the
generating companies can also reduce their per day total emission le-
vels. The reduction in emission levels are 0.029 ton, 0.054 ton, 0.069
ton and 0.118 ton respectively for the above participation levels. The
generation values of the units for 24 h power schedules of the proposed
model at 20% of DSM participation level with and without DSM cases
are given in Table 6.

For a comparison purpose, the objectives of MODEED problem were
also simultaneously minimized using NSGA-II. The results of the
MOPSO algorithm have also been compared with the NSGA-II tech-
nique for the same participation levels. The Pareto-optimal sets of both
MOPSO and NSGA-II are shown in Fig. 8. The best compromise resutls
of MOPSO and NSGA-II are given in Table 7. The performance quality
of multi objective Pareto fronts are compared by using different per-
formance indicators [37]. Hyper volume indicator (IH) [38] is one of
the performance measures for multi objective problems which measures
the dominated objective space hyper volume by a given Pareto front. In
order to compare the Pareto fronts of MOPSO and NSGA-II, the average
IH values for different DSM participation levels were compared and
given in Table 8. It is clear that the MOPSO method is not only able to
give a better Pareto-optimal set than NSGA-II but a better compromise
solution too.

6. Conclusion

This paper proposes a combined model of MODEED problem with
DSM to exploit the benefits of DSM on the utility and generation sides.
In the DSM process, a day ahead based load shifting technique was
employed for handling the residential loads and the utility energy bill
minimization function was considered as the objective. According to
the consumers’ daily lifestyle all necessary constraints were included for
satisfying their comfort level.

The objectives of dynamic economic and emission dispatch problem
were minimized individually and simultaneously for a six thermal
generating units system. Four different residential participation levels
were considered for the proper investigation of DSM impacts on the
generation side. The non dominated sorting based MOPSO algorithm
was used for minimizing the MODEED problem. The simulation results
were also compared with NSGA-II technique. From the overall result
analysis, it is clear that proposed model is able to bring the benefits to
both utility and generation sides. It is also observed that the benefits are
high at 20% participation level. The authors are planning to extend the
proposed combined model to a micro grid environment with various
distributed generation and energy storage systems.
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