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Most existing ESC (Electronic Stability Control) systems rely on the measurement of both
yaw rate and sideslip angle. However, one of the main issues is that the sideslip angle
cannot be measured directly because the sensors are too expensive. For this reason,
sideslip angle estimation has been widely discussed in the relevant literature. The mod-
eling of sideslip angle is complex due to the non-linear dynamics of the vehicle. In this
paper, we propose a novel observer based on ANFIS, combined with Kalman Filters in
order to estimate the sideslip angle, which in turn is used to control the vehicle dynamics
and improve its behavior. For this reason, low-cost sensor measurements which are
integrated into the actual vehicle and executed in real time have to be used. The ANFIS
system estimates a “pseudo-sideslip angle” through parameters which are easily mea-
sured, using sensors equipped in actual vehicles (inertial sensors and steering wheel
sensors); this value is introduced in UKF in order to filter noise and to minimize the
variance of the estimation mean square error. The estimator has been validated by com-
paring the observed proposal with the values provided by the CARSIM model, which is a
piece of experimentally validated software. The advantage of this estimation is the
modeling of the non-linear dynamics of the vehicle, by means of signals which are directly
measured from vehicle sensors. The results show the effectiveness of the proposed
ANFISþUKF-based sideslip angle estimator.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

With the recent advancements in the vehicle industry, driving safety in passenger vehicles is considered to be one of the
key issues in the design of any vehicle. Electronic Stability Control (ESC) is seen as the greatest road safety innovation since
the seatbelt. Hence, the market demands more research in order to improve performance of these systems.

To improve vehicle handling and stability based on ESC, the yaw rate, that is, the yaw velocity of the chassis, and the
vehicle sideslip angle, the angle between the directions of the vehicle's velocity and its chassis, are controlled so that they
follow their target values [1,2]. The yaw rate can be directly measured by a yaw rate sensor (gyroscope) [3,4]. In addition, the
sideslip angle can be directly measured via optical or GPS sensors [5–7]. However, the drawbacks of measuring the yaw rate
).
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and the sideslip angle have to do with the accuracy, reliability and cost [8]. Sideslip angles cannot be directly measured
using standard sensors, therefore, the measurements must be estimated by means of an observer [9–11]. For this reason, an
accurate estimation of the vehicle's sideslip angle is essential for applications in vehicle dynamics and control.

Sideslip angle estimation has been widely discussed in the literature. The modeling of sideslip angles is complex due to
the non-linear dynamics of the vehicle. Some authors employ physical models for the estimation of sideslip angles [12–15].
The most-cited methods are based on the bicycle dynamic model or its variations. These models generate noise-free sideslip
angle estimations, but they can be sensitive to changes in the vehicle parameters. Other authors use kinematic based-
models that consider the motion of a body, which are not affected by uncertainties [14,16,17]. These methods integrate the
derivative of the sideslip angle, calculated from sensor signals including yaw rate, lateral acceleration and vehicle speed.
Satisfactory robustness of tire properties, road friction and vehicle parameters, such as vehicle mass and moment of inertia,
can be achieved. Finally, there are also authors who use combined methods which bring together the advantages of the
previous two methods [9,11].

Furthermore, some authors propose methods for designing observers in order to estimate the sideslip angle from
variables that can be easily measured; such as the yaw rate, lateral acceleration and velocity. Different models, such as linear
[18] and nonlinear [19], and observers such as Kalman Filters [10,20] have also been considered in order to estimate the
sideslip angle. A common feature of most of these observers for the estimation of the sideslip angle is that they rely heavily
on an accurate tire model, which may vary during vehicle operation.

The Unscented Kalman Filtering (UKF) is a powerful tool for the state estimate of nonlinear systems [21–23]. The UKF is
able to achieve good performance if the complete information of measurement noise distribution is taken as known.

The major problem for estimating the sideslip angle adequately is tire non-linarites. Nowadays, different non-linear tire
models are considered in order to carry out a good modeling. The Pacejka tire model [23] is one which has been taken into
consideration during recent years. There are various Pacejka tire models with different degrees of complexity. In one model,
which is widely used, tire forces are considered relative to both normal forces and slip, non-linear forces.

The problem is that the tire forces also depend on road conditions (icy, wet or dry road surface). Previous studies have
estimated the sideslip angle assuming that the vehicle is driven on a road with the friction coefficient constant. When, the
road friction coefficient changes, the vehicle dynamics also change. If the parameters of the model are not modified in the
observers, the estimation of sideslip angle could be mistaken.

The disadvantage of Kalman filters-based estimators is that the optimality of the estimation algorithm depends on the
quality of a priori knowledge of the process and measurement noise statistics.

More recently, Artificial Intelligence (AI) algorithms have been proposed in order to eliminate some of its inadequacies
[24–27]. AI-based algorithms have been proved to be appropriated in order to avoid issues associated with the identification
and adaptation of reference model parameters. In [28–30], AI-based algorithms are used to estimate the sideslip angle based
on fuzzy, Neural Network (NN) and ANFIS (Adaptive Neuro-Fuzzy Inference System), respectively.

In our previous work [30], we proposed an ANFIS-based observer to estimate the sideslip angle. It proved that the ANFIS-
based estimator provides an error smaller than the NN-based and Kalman-based estimators. However, the disadvantage is
that AI-based methods do not use any statistical information as input, nor do they output statistics associated with the
solution, unless methods of cross-validation are applied.

In this paper, we propose a novel observer based on ANFIS and combined with a Kalman Filter, in order to estimate the
sideslip angle that is used to control the vehicle dynamics and improve its behavior.

Other researches also combine AI-based techniques with Kalman Filter for estimation. In this case, The IA-based algo-
rithm is based on the improvement of the filter performance through the adaptive estimation of the filter statistical
information (covariance matrices) [31–33]. The problem is that the uncertainty learning is a difficult and complex process.
In this case, we do not estimate the filter statistical information but also we estimate a “pseudo-parameter”, a “pseudo-
sideslip angle”, which is introduced in Filter Kalman.

The ANFIS system estimates a “pseudo-sideslip angle” through parameters which are easily measured using actual
vehicles equipped with sensors (inertial sensor and steering wheel sensor) and this value is introduced in UKF in order to
filter the noise and to minimize the variance of the mean square error estimation. The ANFIS-based observer combines the
benefits of both Neural Networks and Fuzzy logic. The former is adaptive and can learn from generalization and pattern
recognition. The latter allows soft and steady performance [34]. In [35], an ANFIS algorithm is proposed to estimate the yaw
rate, providing good results. The advantage is that the ANFIS-observer could learn from different road conditions and
maneuvers.

CarSim software has been employed to test the effectiveness of the proposed algorithm [36] and its use has become
widespread as simulation software in the automotive industry. The software combines traditional and modern multi-body
vehicle dynamics, based on parametric modeling. The software includes a three-part graphic database of a full-vehicle
model, direction and speed control and external conditions, such as, road information, drag and so on.

CarSim results obtained after training show that the proposed observer learns to estimate the sideslip angle behavior
properly and reliably, without difficulty. The efficiency of the observer is demonstrated through plentiful simulation tests.
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2. Vehicle dynamic model

The dynamic model used in the estimation process is a 2-DOF vehicle model which consists of lateral and yaw motions.
The state space equations of the model are:

� Lateral motion:

m _VyþrVx

� �
¼ Fyf lþFyf r
� �

cosδþFyrlþFyrr

� Yaw motion:

Izr¼ a Fyf lþFyf r
� �

cosδ�b FyrlþFyrr
� �

where,m is the vehicle mass, Iz is the moment of inertia of the vehicle, a and b are the distances from the center of gravity to
the front and rear axles, respectively, Fyfi (i¼ f, r) is the lateral tire force of the front wheels, Fyri (i¼ f, r) is the lateral tire force
of the rear wheels, Vx and Vy are longitudinal and lateral velocities of CG, r is the yaw rate of the vehicle, and δ is the front
and steering angles.

Two tire models are considered to prove the effectiveness of the proposed observer: the linear tire model and the
nonlinear tire model such as the Magic Formula of Pacejka [29].
3. Proposed observer based on ANFIS combined with Kalman Filters

The sideslip angle is an essential parameter whose knowledge is fundamental for vehicle controlling behavior. The
sideslip angle of a vehicle (β) is the angle between the orientation of the vehicle and the direction of travel at the center of
gravity (COG). It is defined as:

β¼ arc tan Vx
Vy

The proposed observer architecture is shown in Fig. 1. The estimation process consists of two blocks.
The former is an ANFIS-based observer which serves to estimate the sideslip angle (pseudo-variable). The inputs to this

block are the measurements of steering angle using a steering wheel sensor, lateral acceleration, longitudinal velocity and yaw
rate using a combination of GPS and inertial measurement unit (IMU). The advantage of this observer is that it uses
Fig. 1. Observer architecture.



Fig. 2. Architecture of an ANFIS equivalent to a first-order Sugeno fuzzy model with three inputs.

B.L. Boada et al. / Mechanical Systems and Signal Processing 72-73 (2016) 832–845 835
measurements of sensors which are already incorporated in current vehicles. The ANFIS-based observer gives a “pseudo-
sideslip angle” which is going to be incorporated to the second block. This “pseudo-measurement” can not be used directly as
input in the vehicle lateral controller due to it is affected by noise of sensors. For this reason, it is necessary the second block.

The latter is a Kalman-based observer which filters the noise of measurements obtained from the first block and the
inertial sensor (IMU). In this block, the inputs are the yaw rate, which is measured by an inertial sensor, and the sideslip
angle, which is obtained from an ANFIS-based observer. Both signals are used as observed data, yk, in the Kalman Filter.
Then, the new sideslip angle is estimated in the update phase of the Kalman Filter such that the estimation error is
minimized. Different types of Kalman Filters are considered (Lineal Kalman Filter, Extended Kalman Filter and Unscented
Kalman Filter) in order to prove the effectiveness of the proposed observer.

3.1. ANFIS

ANFIS is a fuzzy inference system whose parameters are iteratively adjusted according to a given set of input and output
data. The system is an adaptive network, functionally equivalent to a first-order Sugeno fuzzy inference system. The
resultant network architecture, called ANFIS (Adaptive Neuro-Fuzzy Inference System), is shown in Fig. 2.

Consider a first-order Sugeno fuzzy inference with three inputs. The rules in this Sugeno model have the format:

if x is Ai and y is Bi and z is Ci then f ¼ p1 Uxþq1 Uyþq1 Uzþr1

The criteria considered to select the inputs for the ANFIS algorithm are:

� To select the minimum number of inputs.
� To select signals that can be measured by onboard vehicle sensors (GPS, IMU and steering wheel sensors).

Considering the previous criteria, the following input data have been selected:

� Lateral acceleration, ay.
� Steering angle, δ.
� Yaw rate/lLongitudinal velocity, (r/Vx).

Layer 1: Each node in this layer generates a membership grade of a linguistic label. Every node function of the i-th node is
a square node with a node function:

O1
i ¼ μ ið Þ

where μ(i)i are MFs. In this study, a Gaussian function with a maximum equal to 1 and minimum equal to 0 is selected:

O1
i ¼ exp � x�bi

ai

� �2
" #

where ai and bi are the parameters that change the shapes of the membership function.
Layer 2: Each node in this layer calculates the firing strength of a rule via multiplication:

O2
i ¼wi ¼ μ ið Þi Uμ ið Þiþ1



Fig. 3. ANFIS learning process.
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Layer 3: Node i in this layer calculates the ratio of the i-th rule's firing strength to the total of all firing strengths:

O3
i ¼wi ¼

wi

w1þw2
i¼ 1; 2ð Þ

Layer 4: Node i in this layer computes the contribution of i-th toward the overall output, with the following node
function:

O4
i ¼wif ¼wi p1 Uxþq1 Uyþq1 Uzþr1

� �

Layer 5: The single node in this layer computes the overall output as the summation of the contribution from each rule:

O5
i ¼

X
wif ¼

P
wifP
wi

To generate the Fuzzy Logic Estimator (FLE) presented in this work, a MATLAB ANFIS toolbox was used. The neural
network was generated and trained, based on the input data specified previously (Fig. 3). The network is trained and tested
in order to prevent the learning algorithm from falling into a global minimum.

The basic learning rule of ANFIS is the hybrid learning algorithm. This hybrid algorithm performs two phases at each
learning stage; the first is a forward path learning technique that uses the least-squares learning technique, and the second
is the back-propagation learning algorithm.

The selection of training data is a crucial process. These data should contain all of the required representative features. In
this case, different maneuvers are selected in order to characterize the linear and non-linear vehicle behavior.

A total of 80 experiments were designed and carried out for J-turn maneuvers at different speeds (30 km/h, 65 km/h,
100 km/h and 130 km/h), steering angles in the clockwise and anti-clockwise direction (45°, 75°, 100°, 125° and 150°) and
road friction coefficient (0.3 and 1).

The number of generated FLE rules was 256. For the second input group, three Gaussian membership functions (gaussmf)
were employed for each input. The number of generated FLE rules was 216 and the NN were used to train ANFIS at 5 epochs.
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3.2. Kalman Filters

The Kalman Filter is a mathematical tool that is used for stochastic estimation from noisy sensor measurements. Mea-
sured vehicle motion data includes a substantial quantity of noise and also, there are unobserved states in the systemwhich
must be estimated. For this reason different Kalman filtering techniques have been employed in this work.

The preliminary reconstruction of a sideslip angle from ANFIS-based observer is used as a “pseudo-measurement” in a
Kalman Filter. This previous calculation presents the advantage of being a simple method which considers the system non-
linarites and which gives good estimations.

3.2.1. The process to be estimated
The nonlinear system governed by the nonlinear stochastic difference equations can be written as:

xkþ1 ¼ f k xk;uð Þþwk

yk ¼ hk xk;uð Þþvk

where xk represents the state vector, [Vy, r]T, u is the input, [δ], wk the process noise vector, yk the measurement vector and vk
the measurement noise vector. wk and vk are assumed to be white, zero mean and uncorrelated:

wk �Nð0;QkÞ

vk �Nð0;RkÞ
where Q and R are the covariance matrices describing the second-order properties of the state and measurement noise.

3.2.2. Linear Kalman Filter
Assuming that the system of Section 3.2.1 is linear, then:

xkþ1 ¼ AxkþBuþwk

yk ¼Hxkþvk

where matrices A and B are obtained, a linear tire model is considered:

A¼
�ðCf þCrÞ=ðmVxÞ �ðaCf þbCrÞ=ðmVxÞ

� 	�Vx

�ðaCf þbCrÞ=ðIzzVxÞ �ða2Cf þb2CrÞ=ðIzzVxÞ

2
4

3
5

B¼
Cf =m

aCf =Izz

" #

H¼ 1 0
0 1


 �

The LKF (Linear Kalman Filter) is summarized as the following recursive equations:

1. The prediction of the state given by:

~xkjk�1 ¼ A ~xk�1jk�1þBuk

2. The predicted error covariance is computed as:

Pkjk�1 ¼ APk�1jk�1A
T þQ

3. The Kalman gain is calculated by:

Kk ¼ Pkjk�1þHT ½HPk�1jk�1H
T þR��1

4. The state estimation is updated with measurement yk:

~xkjk ¼ ~xkjk�1þKk½yk�H ~xkjk�1�

5. The error covariance is updated:

Pkjk ¼ ½I�KkH�Pkjk�1

3.2.3. Extended Kalman Filter
A Kalman Filter that linearizes in relation to the current mean and covariance is referred to as an Extended Kalman

Filter (EKF).



1

B.L. Boada et al. / Mechanical Systems and Signal Processing 72-73 (2016) 832–845838
The EKF is based on the assumption that a local linearization of the system may be a sufficient description of non-
linearity. Then, the system of Section 3.2.1 can be described as:

xkþ1 ¼ Axkþwk

yk ¼Hxkþvk

where A is the Jacobian matrix of partial derivatives of f( � ) with respect to x, that is:

Aij ¼
∂
∂xi

f iðxk;ukÞ

H is the Jacobian matrix of h( � ) with respect to x, that is:

Hij ¼
∂
∂xi

hiðxk;ukÞ

and f(.) are the equations of Section 2 assuming a non-linear tire model such as the Magic Formula of Pacejka [23].
The EKF (Extended Kalman Filter) is summarized as the following recursive equations:

6. The prediction of the state given by:

~xkjk�1 ¼ f ð ~xk�1jk�1;ukÞ

7. The predicted error covariance is computed as:

Pkjk�1 ¼ APk�1jk�1A
T þQ

8. The Kalman gain is calculated by:

Kk ¼ Pkjk�1þHT ½HPkjk�1H
T þR��1

9. The state estimation is updated with measurement yk:

~xkjk ¼ ~xkjk�1þKk½yk�hð ~xkjk�1;ukÞ�

0. The error covariance is updated:

Pkjk ¼ ½I�KkH�Pkjk�1

3.2.4. Unscented Kalman Filter
The basic premise behind the Unscented Kalman Filter (UKF) is that it is easier to approximate a Gaussian distribution

than it is to approximate an arbitrary, nonlinear function.
The nonlinear system governed by the nonlinear, stochastic difference equations can be written as:

xkþ1 ¼ f k xk;uð Þþwk

yk ¼ hk xk;uð Þþvk

where xk represents the state vector, [Vy, r]T, u is the input, [δ],wk the process noise vector, yk the measurement vector and vk
the measurement noise vector. wk and vk are assumed to be white, zero mean and uncorrelated.

Consider propagating a random variable x (dimension n) through a function, y. Assume x has mean ~x and covariance Px.
To calculate the statistics of y, a matrix X of 2nþ1 sigma vectors Xi (with corresponding weight Wi) is formed:

X0 ¼ ~x

Xi ¼ ~xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþkð ÞPxx

p� �
i
i¼ 1; ……;n

Xi ¼ ~x�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþkð ÞPxx

p� �
i
i¼ nþ1; ……;2n

and the associated weights:

W mð Þ
0 ¼ k= nþkð Þ
W mð Þ

i ¼ 1=2 nþkð Þ i¼ 1;……:;2n

W cð Þ
0 ¼ k= nþkð Þþ 1�α2þβ

� �
W cð Þ

i ¼ 1=2 nþkð Þ i¼ 1;……:;2n

where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþkð ÞPxx

p� �
i
is the i-th row of column of the matrix square root of (nþk)Pxx and Wi is the weight which is
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associated with the i-th point. k is a scaling parameter and is given by:

k¼ α2 nþεð Þ�n

where α is the distribution of the sampling points around the state mean, ~x, and is usually set to a small positive value and ε
is usually set to 0. Parameter β is used to incorporate prior knowledge of the distribution of ~x. The UKF algorithm can be
applied by restructuring the state vector, process and observation models. The state vector is augmented with the process
and noise terms to give an na¼nþq dimensional vector:

Xa
k ¼ Xk Wk

� 	T
The process model is rewritten as a function of Xa

k:

Xkþ1 ¼ f Xa
k;uk

� 	
And the unscented transform uses 2naþ1 sigma points to create:

� The augmented state estimation:

~xakjk ¼
~xkjk
0q�1

 !

� The augmented covariance estimation:

Pa
kjk ¼

Pkjk P XWð Þkjk
P XWð Þkjk Q

 !

The UKF (Unscented Kalman Filter) is summarized as the following recursive equations:
1. The set of sigma points, W cð Þ

i and W mð Þ
i , are created and they are introduced to the augmented system.

2. The transformed set is given by instantiating each point through the process model:

Xi;kþ1jk ¼ f Xa
i;kjk;Uk

h i
3. The predicted mean is computed as:

~xkþ1jk ¼
X2na

i ¼ 0

W mð Þ
i UXa

i;kþ1jk

4. The predicted covariance is computed as:

Pkþ1jk ¼
X2na
i ¼ 0

W cð Þ
i U Xi;kþ1jk� ~xkþ1jk
� �

U Xi;kþ1jk� ~xkþ1jk
� �T

5. Instantiate each of the prediction points through the observation model:

Yi;kþ1jk ¼ h Xa
i;kjk;Uk

h i
6. The predicted observation is calculated by:

~ykþ1jk ¼
X2n
i ¼ 0

W mð Þ
i UYi;kþ1jk

7. Since the observation noise is additive and independent, the innovation covariance is:

P ξξð Þ;kþ1jk ¼ Rþ
X2na

i ¼ 0

W cð Þ
i U Yi;kþ1jk�Ykþ1jk
� �

U Yi;kþ1jk�Ykþ1jk
� �T

8. The cross correlation matrix is determined by:

P XYð Þ;kþ1jk ¼ Rþ
X2na
i ¼ 0

W cð Þ
i U Xi;kþ1jk� ~xkþ1jk
� �

U Xi;kþ1jk� ~xkþ1jk
� �T

9. The filter gain is calculated by:

Kkþ1 ¼ P XYð Þ;kþ1jkP
�1
ξξð Þ;kþ1jk

10. And the priori covariance:

Pkþ1jkþ1 ¼ Pkþ1jk�Kkþ1P ξξð Þ;kþ1jkK
T
kþ1
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11. Finally, the state estimation is computed:

~xkþ1jkþ1 ¼ ~xkþ1jkþKkþ1 Yk�Ykþ1jk
� �
4. Results and discussion

The proposed observer algorithm, based on ANFIS and a Kalman Filter, presented in this work has been validated using a
typical C-class hatchback car, available in the CarSim library, having 205/55 R16 tires. Table 1 shows the hatchback vehicle
parameters such as mass, wheel base, tire radius, and moments of inertia.

CarSim software is employed to test the effectiveness of the proposed algorithm [36]. Its use has become widespread as
simulation software in the automotive industry as it combines traditional and modern multi-body vehicle dynamics, based
on parametric modeling. This software also includes a three-part graphic database of a full-vehicle model, direction and
speed control and external conditions, such as, road information, drag and so on.

In order to analyze the effect the sensor measurement noises have on the estimation of the sideslip angle, Gaussian
noises with zero mean and variances of 0.01°, 0.01°/s and 0.01 m/s2 and 0.01 km/h are added to δ (steering angle), r (yaw
rate), ay (lateral acceleration) and Vx (longitudinal velocity), respectively, obtained from CarSim.

The performance of the sideslip angle observer has been proven in maneuvers with different road conditions; for
example a double lane change maneuver of a vehicle traveling at 120 and 60 km/h on a road surface with friction coeffi-
cients of 0.3 and 0.85 and a J-turn maneuver of a vehicle traveling at 120 km/h on a road surface with friction coefficients of
0.5 and 0.85. Proof of the effectiveness of the proposed model was performed by means of a quantitative analysis that takes
into consideration the error for the different accomplished excitation conditions. The following equation has been used to
Table 1
Vehicle parameters for the C-Class hatchback car.

Symbol Description Value Unit

ms Sprung mass 1274 kg
mu Unsprung mass 142 kg
Ixx Roll inertia 606.1 kg m2

Iyy Pitch inertia 1523 kg m2

Izz Yaw inertia 1523 kg m2

a Distance from front tire to COG 1016 mm
b Distance from rear tire to COG 1562 mm
Rw Effective rolling radius 310 mm
H Height of COG 540 mm
T Wheel track 1539 mm
Ks Steering ratio 17.5:1 –

Cf Front tire cornering stiffness 125167 N/rad
Cr Rear tire cornering stiffness 125167 N/rad

Fig. 4. Results for a double lane change maneuver for a vehicle traveling at 120 km/h on a pavement of friction coefficient of 0.85 (blue points: ANFIS, green
points: ANFISþUKF, red points: CarSim).



Fig. 5. Results for a double lane change maneuver for a vehicle traveling at 120 km/h on a pavement of friction coefficient of 0.3 (blue points: ANFIS, green
points: ANFISþUKF, red points: CarSim).

Fig. 6. Results for a J-turn maneuver for a vehicle traveling at 120 km/h on a pavement of friction coefficient of 0.85 (blue points: ANFIS, green points:
ANFISþUKF, red points: CarSim).
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represent the norm error as a function of time [37]:

Et ¼
εt
σβ

where:

ε2t ¼
Z T

0
βCarSim�βestimated
� �2

σ2β ¼
Z T

0
βCarSim�μbeta
� �2

where βCarSim represents the measured sideslip angle obtained from CarSim, βestimated is the estimated sideslip angle and
μbeta is the mean value of the sideslip angle obtained from CarSim during the period T.

Fig. 4 shows the comparative results for the ANFIS-based observer (blue points) and ANFISþUKF-based observer with
lineal tire model (green points) for a double lane change maneuver for a vehicle traveling at 120 km/h on a road surface of a
friction coefficient of 0.85. This figure demonstrates that the observer based only on ANFIS shows undesirable behavior
when noisy input data are considered. However, if the sideslip angle obtained from ANFIS is considered as input of UKF, the
new obtained sideslip angle fits better with the real sideslip angle (red points). The norm error for the ANFIS-based observer
is 0.58. However, the norm error for the ANFISþUKF-based observer is 0.31. In the case of the yaw rate only being con-
sidered as observed data, the norm error for UKF-based observer is 2.77 and for EKF-based observer is 2.26.

Fig. 5 shows the results for a double lane change maneuver for a vehicle traveling at 120 km/h on a road surface of a
friction coefficient of 0.3. The norm error for the ANFIS-based observer is 0.771. However, the norm error for the
ANFISþUKF-based observer is 0.72. In the case of the yaw rate only being considered as observed data, the norm error for
the UKF-based observer is 7.122 and for the EKF-based observer it is 1.34.



Table 2
Error norms for sideslip angle estimators for Change Lane and J-turn maneuvers.

Et

DLC at 120 km/h and
friction coefficient of
0.85

DLC at 120 km/h and
friction coefficient of 0.3

DLC at 60 km/h and
friction coefficient of
0.85

J-turn at 120 km/h and
friction coefficient of 0.85

J-turn at 120 km/h and
friction coefficient of 0.5

ANFIS 0.58 0.771 0.679 2.284 2.43
ANFISþLKF 0.46 0.7 0.482 1.89 2.01
ANFISþEKF 0.46 0.7 0.48 1.89 2.01
ANFISþUKF 0.31 0.72 0.269 1.93 2.09

Table 3
Maximum errors for sideslip angle estimators for Change Lane and J-turn maneuvers.

Emax (rad)
DLC at 120 km/h and
friction coefficient of
0.85

DLC at 120 km/h and
friction coefficient of 0.3

DLC at 60 km/h and
friction coefficient of
0.85

J-turn at 120 km/h and
friction coefficient of 0.85

J-turn at 120 km/h and
friction coefficient of 0.5

ANFIS 0.049 0.12 0.0354 0.04 0.171
ANFISþLKF 0.033 0.076 0.022 0.0363 0.106
ANFISþEKF 0.033 0.075 0.022 0.0363 0.1062
ANFISþUKF 0.016 0.032 0.016 0.022 0.019
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The effectiveness of the proposed method for a J-turn maneuver for a vehicle traveling at 120 km/h on a road surface of a
friction coefficient of 0.85 (see Fig. 6) is essentially similar to those obtained in the previous case. The norm error for the
ANFIS-based observer is 2.284. However, the norm error for the ANFISþUKF-based observer is 1.93. In case that yaw rate was
only considered as observed data, the norm error for the UKF-based observer is 2.77 and for the EKF-based observer it is 2.26.

From the results, we can conclude that the proposed ANFISþUKF-based observer obtains a better estimation of the
sideslip angle.

In order to demonstrate the improvement provided by the proposed observer, other Kalman-based observers with yaw
rates and “pseudo-sideslip angles” as observer data were used for comparison purposes:

� Linear Kalman Filter with lineal tire model (ANFISþLKF).
� Extended Kalman Filter with non-lineal tire model (ANFISþEKF).

It is worth highlighting that the performance of the ANFIS-based sideslip angle estimator has also been proven in
maneuvers with different road conditions (see Tables 2 and 3):

� Double lane change (DLC) maneuver for a vehicle traveling at 120 km/h on a pavement of a friction coefficient of 0.85.
� DLC maneuver for a vehicle traveling at 120 km/h on a pavement of a friction coefficient of 0.3.
� DLC maneuver for a vehicle traveling at 60 km/h on a pavement of a friction coefficient of 0.85.
� J-turn maneuver for a vehicle traveling at 120 km/h on a pavement of a friction coefficient of 0.85
� J-turn maneuver for a vehicle traveling at 120 km/h on a pavement of a friction coefficient of 0.5

The norm and maximum errors are provided in Tables 2 and 3, respectively. The norm error supplies information about
the state response and the maximum error in relation to the transient response. It has been proven that a Kalman Filter is
necessary to reduce the noisy measurements. Although all Kalman Filter-based observers have a good performance com-
pared with ANFIS considered alone, the ANFISþUKF-observer provides an equal or a better performance that the rest
observers based on Kalman Filter (ANFISþLKF and ANFISþEKF). Similar results are obtained from observers based on
ANFISþLKF and ANFISþEKF. In this case, the advantage of use the Extended Kalman Filter is not proved.

Additionally, the proposed observer is evaluated under a slalom maneuver (Fig. 7) with a vehicle speed defined by a ramp
function profile (from 10 km/h to 120 km/h in 120 seconds) and a sine sweep maneuver (Fig. 8) at 80 km/h. Both tests are
carried out on road surfaces of friction coefficients of 1, 0.5 and 0.2. Estimation results for slalom maneuver are shown in
Fig. 9(a detail of results is shown in Fig. 10). In Tables 4 and 5, the norm and maximum errors are provided for slalom and
sine sweep maneuvers, respectively. The proposed ANFISþUKF-observer shows the smallest estimation error compared
with the ANFIS-based and ANFISþLKF-based observers.

Finally, two DLC tests are performed with different mass and suspension in order to show the sensitivity of the esti-
mation process considering parameter uncertainty. Both tests are carried out on road surfaces of a friction coefficient of
0.5 and 0.85, for a Double Lane Change test at 120 km/h. In the former case, it is considered an increase of 225 kg



Fig. 7. Slalom maneuver.

Fig. 8. Sine sweep maneuver.

Fig. 9. Results for a slalom maneuver for a vehicle traveling with a speed defined by a ramp on a pavement of friction coefficient of 1 (blue points: ANFIS,
green points: ANFISþUKF, red points: CarSim).
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corresponding a weight of 3 persons. In the latter case, the suspension of C-class hatchback car (which originally had an
independent suspension designed for a big car) is changed by an independent suspension designed for a small car. Table 6
represents the results. The variations induced by mass change are low. This can be explained as in the vehicle model, the
mass change in the denominator is partially compensated for the force change in the numerator, as it is indicated in [38].
Concerning the suspension change, the results are very similar. It worth keeping in mind the fact that the simple vehicle
models for lateral dynamics do not consider the suspension effect. The proposed ANFISþUKF-based observer is not affected
by these parameters uncertainties.
5. Conclusion

In this paper, the sideslip angle is estimated using a novel ANFISþUKF estimator. The performance of recursive state estimation
algorithms based on a Kalman Filter has been explored for sideslip angle estimation. The results indicate that the error in the
estimation of sideslip angle decreases when a “pseudo-sideslip angle”, is considered as observed data in the Kalman Filter.



Fig. 10. Detail of Fig. 9 (blue points: ANFIS, green points: ANFISþUKF, red points: CarSim).

Table 4
Error norms and maximum error for a slalom test with a ramp speed.

Friction coefficient of 1 Friction coefficient of 0.5 Friction coefficient of 0.2

Et Emax (rad) Et Emax (rad) Et Emax (rad)

ANFIS 0.83 0.3 1.01 0.21 5.3 0.52
ANFISþLKF 0.69 0.13 0.85 0.14 4.3 0.46
ANFISþUKF 0.44 0.07 0.63 0.07 2.76 0.24

Table 5
Error norms and maximum error for a sine sweep test with at 80 km/h.

Friction coefficient of 1 Friction coefficient of 0.5 Friction coefficient of 0.2

Et Emax (rad) Et Emax (rad) Et Emax (rad)

ANFIS 6.05 0.049 6.81 0.049 9.41 0.049
ANFISþLKF 4.13 0.03 4.63 0.030 6.40 0.030
ANFISþUKF 2.025 0.008 2.14 0.008 2.55 0.007

Table 6
DLC test at 120 km/h, robustness to vehicle mass and suspension: error norms and maximum errors for sideslip angle ANFISþUKF-based estimator.

Friction coefficient of 0.85 Friction coefficient of 0.5

Vehicle with initial
conditions

Increase of weight:
mþ225 kg

Suspension of a
small car

Vehicle with initial
conditions

Increase of weight:
mþ225 kg

Suspension of a small
car

Et 0.31 0.34 0.35 0.3 0.43 0.32
Emax

(rad)
0.016 0.016 0.016 0.016 0.016 0.016
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The advantage of using an ANFIS-observer to calculate the “pseudo-sideslip angle” is the modeling of the non-linear vehicle
dynamics, which requires sensor signals directly provided by vehicle sensors. The ANFIS-based estimator is better able to adapt in
variable environments and learns by generalization. The Kalman Filter is suitable for reducing the noise measurements.

The model has been validated by means of a set of maneuvers that represent different driving and testing conditions. The
ANFISþUKF observer is more suitable for estimating the sideslip angle compared with other observers based on ANFIS and
Kalman Filter such as Linear Kalman Filter (ANFISþLKF) and Extended Kalman Filter (ANFISþEKF). On the other hand, the
proposed observer is not affected by parameter uncertainties such as suspension or vehicle mass.

The proposed method has been proven by means of CarSim software, which is a widespread and validated software
employed in the automotive industry.
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