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Dislocations in glassy polymers do they exist? Are they useful?
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Abstract

This paper reviews a series of models which apply the concept of dislocation to the interpretation of yield phenomena in glassy polymers.
The point is made on three different scales. At the macroscopic scale (=1 mm) shear fronts are observed at the tips of deformation bands,
their elastic singularity being modeled by the theory of spread dislocations. At the mesoscopic scale (=1 m) the development of localized
sheared domains is readily predicted by micromechanical simulations. At the microscopic scale (=1 nm), the existence of dislocations among
chain distributions is more problematic, but is supported by the large Baushinger effect observed during plastic cycling. © 2001 Elsevier

Science B.V. All rights reserved.
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1. Introduction

Since experimental evidence of plasticity was presented
in amorphous materials below glass-transition temperature
in the 1960s (previously reviewed for metals [1] and for
polymers [2,3]), many authors were tempted to apply to dis-
ordered materials the concept of dislocation which was so
successful for crystallized metals and ceramics. Not only
glassy materials yield abruptly within localized shear bands,
but also their disordered microstructure exhibit remarkable
regularity when analyzed at the scale of the first atomic
neighbors (Voronoi polyhedron). The aim of this work is to
make a point on some experimental facts and theoretical ar-
guments concerning dislocations in glassy polymers and to
figure out their usefulness in the search for predictive mod-
eling of yield behavior and microstructural transformations.

2. Macroscopic dislocations

Among the specific features of glassy polymers, their plas-
tic behavior during a deformation cycle under simple shear
is of particular interest [4,5]. As shown in Fig. 1 in the case
of polycarbonate at room temperature (that is well below
glass transition temperature, T'¢ = 145°C), the upper yield
point is followed by an abrupt decrease of the shear stress (B
to C). As stress decreases, plastic deformation concentrates
in a single shear band which elongates until it reaches the
extremities of the sample at point C (Fig. 1). Consequently,
during this softening stage, the band is confined within the
specimen, each tip of the band constituting a ‘shear front’.
As shown in Fig. 2, the local shear inside the band is as

large as yp ~ 0.75, while the applied shear is only y =~
0.1 [6]. Subsequently, during the long stress plateau (C to
D) the band gradually widens at the expense of the unde-
formed material, until it covers the whole sample at point D.
Taking into account the true shear behavior of polycarbon-
ate, (¥, ¥b), obtained from local measurements inside the
band, it was shown that this plastic instability phenomenon
could be reproduced quite accurately by means of the the-
ory of spread dislocations [7] otherwise applied with much
success in seismology [8].

In the test of Fig. 1, shear strain rate is reversed at point D.
In the return stage (D to G), it is observed that shear returns
homogeneously to zero, not by formation of negative shear
bands. Although the macroscopic state at point G is identical
to the initial state, it is remarkable that the cycled sample be-
haves quite differently to the first run if direct shear strain is
applied a second time (G to I): (1) yield stress is reduced by a
factor of nearly 1/2 (point H); (2) no stress drop is observed
at yield; (3) deformation is still homogeneous in the whole
sample without further banding. This large Baushinger ef-
fect indicates that cycling introduces some ‘defects’ in the
microstructure. Since scanning electron microscopy of fine
markers shows no microstructural inhomogeneities down to
a scale of 20 nm within the shear band, such defects should
be expected at an a smaller scale [9].

3. Mesoscopic dislocations

Investigation of polymer plasticity at the mesoscopic scale
was recently performed by Argon et al. [10] by means of
a stochastic simulation for a pseudo-3D aggregate whose
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Fig. 1. Stress—strain behavior of polycarbonate under simple shear in the
case of a plastic cycle (after G’Sell and Gopez [4]).

size is about 0.2 wm. This structure combines about 60,000
cells, each of them containing 500-1000 individual atoms
and measuring 2-3.5 nm.

Within the cells, the simulation is based on molecular me-
chanics. It takes into account the rotation potential of the
covalent bonds and the predominant van der Waals inter-
actions between the molecules. It correctly reproduces the
transition jumps from the trans conformations to gauche
conformations predicted by previous theories [11] and FTIR
experiments [12]. However, only the plastic behavior at zero
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Fig. 2. Aspect of the lower tip of the shear band in polycarbonate during
the strain softening stage (after Grenet and G’Sell [6]).

Kelvin is predicted, since no thermal activation is taken into
account at the level of the cells. Under such conditions, it
is found that the elementary molecular jumps correspond to
local increments of shear not larger than about 2%. How-

Fig. 3. Mesoscopic shear bands in the stochastic modeling of Bulatov and Argon [10]. The small drawing apart shown an constitutive microscopic cell

in the case of amorphous polypropylene [11].
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ever, similar modeling by Fan [13] shows that yield stress
and softening amplitude differ considerably from a cell to
another. The weakest cells are thus likely to behave as initial
‘defects’.

At the level of the mesoscopic aggregate, Bulatov com-
putes the internal stresses generated by the yield inhomo-
geneities, each cell being considered as an Eshelby inclusion
among their neighbors. The viscoplastic behavior of the as-
sembly is obtained by a thermally activated Eyring analysis.

For a polymeric glass well below T, the model of Bula-
tov generates shear bands, about 5-10 nm in width, which
multiply and grow at about 45° with the tensile axis (Fig. 3).
Therefore, the band tips can be considered as mesoscopic
dislocations. However, the model seems unable to reproduce
the Baushinger effect observed experimentally when cycling
under shear. This is probably due to the absence of thermal
activation at the microscopic scale in the individual cells.

4. Microscopic dislocations

After the pioneer works of Li and Gilman [14] and Argon
[15] who analyzed the interaction of chain kinks with the
surrounding elastic medium, several authors have modeled
the cooperative distortion of macromolecules in a micro-
scopic shear domain. Their approach was inspired from the
work of Gilman [16] who imagined that mobile dislocations
(screw or edge) could be nucleated in glasses as well as in
crystalline metals and ceramics, with a Burgers vector equal
to the short range interaction distance of the microstructure.

From this idea, Bowden and Raha [17] developed a yield
model in which the nucleation of a dislocation loop is the
critical step in the formation of a microscopic shear band.
Polymer segments are brought to high-energy conforma-
tions as they are swept by the dislocation line, in such a
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Fig. 4. Dislocation loop after Bowden and Raha [17].
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Fig. 5. Somigliana dislocation after Escaig [20].

way that the shear strain jumps from nearly zero up to about
unity from outside to inside the loop (Fig. 4). Burgers vec-
tors ranging from 0.27 to 0.49 are thus obtained for various
polymers such as PMMA, PVC, PS, PC and PET. Although
the oversimplifying assumptions of the model lead to some
discrepancies with experimental yield stress at low temper-
ature, it should be considered as an important step toward
the correct description of yield.

More elaborated dislocation models were published by Li
[18,19] and Escaig and coworker [20-22] from the topolog-
ical scheme of Somigliana [23]. While overall compatibility
requires that deformation should proceed by a uniform shear
displacement (b) along the strain direction, the fluctuations
oblige the Burgers vector, b, to vary along the line and gen-
erates topological resistance to the dislocation propagation
(Fig. 5). A Somigliana dislocation can be represented as a
distribution of Volterra dislocations of resulting misfit (b),
plus a collection of localized dislocation loops of individual
burgers vector 8. Consequently, its propagation is controlled
by the formation of new loops ahead of the shear front and
the trailing of remnant loops behind the front. Because of
that, after Escaig, dislocation propagation is more difficult
than in simple van der Waals monoatomic structures, partic-
ularly at chain entanglements where topological constraints
impose large deviations to b. Highly energetic loops must

Fig. 6. Dislocation loops after Perez [24].
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Fig. 7. Microscopic interpretation of the cyclic shear test of Fig. 1, after G’Sell and coworker [9,27].

be formed around the entanglement, whose radius is of the
order of the length of the statistical chain element. Another
source of glide hindrance is imposed by the component of
b normal to the glide plane, which is mainly responsible for
the pressure effects in the plasticity of glassy polymers [22].

Furthermore, Perez and coworkers [24,25] has related the
mechanisms of plastic deformation to molecular dynamics.
He ascribes the mobility of chains in the glassy state to the
[3-transition movements, with an increasing cooperativity at
large stress and/or large temperature. At yield, collective
chain motion occurs in shear microdomains surrounded by
Somigliana dislocations which multiply and coalescence as
plastic strain increases (Fig. 6). In this model, temperature,
strain rate and hydrostatic pressure play important roles on
the deformation kinetics, since they affect the degree of co-
operativity on the B processes and the relaxation of the de-
fects [26].

In previous papers [9,27], we have also applied the con-
cept of microscopic dislocations for interpreting the differ-
ent features of transient yield effects. The classical Orowan
equation, yp1 = N (7, y)bv(7), is thus valid for expressing
the influence of dislocation density, N, and velocity v, on
plastic strain rate, 1. Following Johnston [28] we interpret
strain softening after the yield point as a period of intense
dislocation multiplication as dislocation loops get more nu-
merous and/or enlarge. In polycarbonate under shear (Fig. 7a
and b), this process is concentrated in a single shear band
initiated from any geometrical or microstructural defect. By
the virtue of its own internal stress field, the band propa-
gates quickly up the ends of the specimen (Fig. 7c and d),
before widening and eventually occupying the whole vol-
ume of the sample, at y ~ 1 (Fig. 7e and f). When plastic

cycling is imposed by reverting the strain rate, dislocation
density is high enough to ensure homogeneous deformation
(Fig. 7g). At the end of the cycle, the specimen retrieves its
original shape, but keeps a memory of its history through a
much larger dislocation density (Fig. 7h) which readily pro-
vokes the large Baushinger effect observed experimentally.
Furthermore, we have shown [5] that this phenomenon is
completely recoverable by dislocation relaxation and/or an-
nihilation as the specimen is heated near T for a sufficient
time. Unlike in metallic crystals, the shrinkage of dislocation
loops on unloading is much more efficient in glassy poly-
mers, because of the extensive chain orientation induced by
plastic shear [29], the excess free energy of extended chains
being added to the own line energy.

5. Conclusions

Modeling the original features of polymer plasticity has
stimulated a very animated debate in the international poly-
mer community for more than 30 years. Taking benefit of
more accurate mechanical testing systems, microstructure
investigation instruments and fast modeling tools, authors
have particularly argued on whether or not dislocations could
exist in macromolecular glasses. It is now clear that the prob-
lem must be addressed specifically at the different scales of
the microstructure, typically: macroscopic, mesoscopic and
microscopic. At each scale, results reveal evidence of plastic
instability and plastic shear fronts, although rigorous dislo-
cation topology is formally difficult to describe due to the
absence of long range order in the undeformed material.

Whatever the answer to this open problem, it is impor-
tant to recall here the assertion formulated by Gilman [16]
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as early as 1968: “the concept of dislocations in glassy ma-
terials is not just a forced analogy but is desirable because it
allows the flow properties of these structures to be discussed
in a more organized way than otherwise possible. That is, it
provides a simple means for describing the correlations that
must exist between adjacent elementary shear processes”.
Following this author, we consider that the development of
dislocation models in glassy polymers has been very fruitful
to many respects, even though some ones are still doubtful on
the actual existence of these defects at the microscopic scale.
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